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A recent paper �M. Seevinck and J. Uffink, Phys. Rev. A 65, 012107 �2002�� presented a bound for the
three-qubit Mermin inequality such that the violation of this bound indicates genuine three-qubit entanglement.
We show that this bound can be improved for a specific choice of observables. In particular, if spin observables
corresponding to orthogonal directions are measured at the qubits �e.g., X and Y spin coordinates�, then the
bound is the same as the bound for states with a local hidden variable model. As a consequence, it can
straightforwardly be shown that in the experiment described by J.-W. Pan et al. �Nature 403, 515 �2000��,
genuine three-qubit entanglement was detected.

DOI: 10.1103/PhysRevA.72.014101 PACS number�s�: 03.65.Ud

Before presenting our comments concerning Ref. �1�, let
us briefly recall the difference between genuine three-qubit
entanglement, partial �biseparable� entanglement, and full
separability. A pure state is called fully separable if it is of
the product form ���= �a��b��c�. It is called biseparable if a
partition of the qubits into two groups can be found, for
which the state is separable, while for genuine three-qubit
entangled states this is not possible. For example, the state
��000�+ �110�� /�2= ��00�+ �11���0� /�2 is biseparable since
the third qubit is not entangled with the first two, while
�GHZ�= ��000�+ �111�� /�2 is a state with genuine three-qubit
entanglement �2�.

Let us now consider the three-qubit Mermin inequality. Its
Bell operator is �3�

M3 ª X�1�X�2�X�3� − Y�1�Y�2�X�3� − X�1�Y�2�Y�3� − Y�1�X�2�Y�3�,

�1�

where X and Y are Pauli spin matrices. Note that these ob-
servables correspond to orthogonal measurement directions.
For states allowing a local hidden variable model, it is
known that the Mermin inequality ��M3���2 has to hold �3�.
Consequently, all fully separable states have to obey the
same inequality, since they allow for a local hidden variable
model.

Let us now show that for biseparable states the bound is
also 2, thus ��M3���2 implies that the state carries genuine
tripartite entanglement. For biseparable pure states of the
form �=�12 � �3 we have

�M3� = �X�1�X�2���X�3�� − �Y�1�Y�2���X�3�� − �X�1�Y�2���Y�3��

− �Y�1�X�2���Y�3�� . �2�

Now �M3� is given with six operator expectation values. We

are looking for its maximum, with the constraint that these
expectation values have physically accessible values. That is,
for example, the values for �X�3�� and �Y�3�� obey �X�3��2

+ �Y�3��2�1. Let us now define two vectors with the expec-
tation values as

v�1 ª ��X�1�X�2� − Y�1�Y�2��,− �X�1�Y�2� + Y�1�X�2��� ,

v�2 ª ��X�3��,�Y�3��� . �3�

The relevant constraints for physical states are summarized
in �v�1��2 �8� and �v�2��1. One easy way for getting an upper
bound for ��M3�� is using the Cauchy-Schwarz inequality

��M3�� = �v�1 · v�2� � �v�1��v�2� � 2, �4�

where · denotes scalar product. Since M3 is invariant under
permuting qubits, this bound is clearly valid also for bisepa-
rable pure states with partitions �1� �23� and �13� �2�. It is
easy to see that the bound is also valid for the mixture of
pure biseparable states �4�.

In Ref. �1� it was shown that for biseparable quantum
states

��M3�� � 2�2 �5�

has to hold, and that violation of this bound implies genuine
tripartite entanglement. This bound was found by consider-
ing the following expression:

� ª �E�a,b,c� − E�a�,b�,c� − E�a,b�,c�� − E�a�,b,c��� ,

where a ,b ,c ,a� ,b� ,c� are arbitrary dichotomic observables
on each qubit and E�a ,b ,c� denotes the expectation value of
the corresponding product a ·b ·c, if a is measured at the first
qubit, b is at the second, etc. The upper bound of � for fully
separable states is known to be ��2.

References �1,5,6� show that for biseparable quantum
states we have ��2�2. Whether this bound is sharp can be
checked by looking for states for which �=2�2. Such a state
is presented in Ref. �1�: For this example c=c�. Thus this
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bound is sharp if we allow arbitrary observables to be mea-
sured at the qubits. When the observables are fixed to be X
and Y, the bound can be improved, as we have seen above.
The bound in our new inequality ��M3���2 is sharp since for
the biseparable state ��00�+ �11����0�+ �1�� /2 we have
��M3��=2.

In Ref. �1� several experiments were discussed and it was
investigated, whether three-qubit entanglement was present
in these experiments. The experiment described in Ref. �7�
aimed to create a GHZ state with three photons. Here the
horizontal and vertical polarization of the photons encoded
the one-qubit information. After the state was created, the
polarization of the photons was measured. In particular, for
the expectation value of M3 they obtained 2.83±0.09. Based
on our present discussion, we can say, based merely on the
value measured for �M3�, that three-qubit entanglement has
been detected in these experiments.

In this Addendum, we have shown that the general bound
obtained in Ref. �1� for biseparable states can be improved

for the specific choice of orthogonal observables as in the
three-qubit Mermin inequality. We determined the sharp
bound for this case. We showed that the three-qubit Mermin
inequality can be used to detect genuine three-qubit en-
tanglement with the same bound which is used to detect the
violation of local realism.

This sheds new light on old experimental data in Ref. �7�
and shows that genuine three-qubit entanglement has already
been realized experimentally �9�. Our discussion also has a
message for using the Mermin inequality to detect genuine
multiparticle entanglement in future experiments.
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