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We present an efficient algorithm for twirling a multiqudit quantum state. The algorithm can be used for
approximating the twirling operation in an ensemble of physical systems in which the systems cannot be
individually accessed. It can also be used for computing the twirled density matrix on a classical computer. The
method is based on a simple nonunitary operation involving a random unitary. When applying this basic
building block iteratively, the mean squared error of the approximation decays exponentially. In contrast, when
averaging over random unitary matrices the error decreases only algebraically. We present evidence that the
unitaries in our algorithm can come from a very imperfect random source or can even be chosen determinis-
tically from a set of cyclically alternating matrices. Based on these ideas we present a quantum circuit realizing
twirling efficiently.
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I. INTRODUCTION

Twirling was first introduced for bipartite systems in Refs.
�1,2� in the context of entanglement purification and still
appears as part of various quantum-information-processing
protocols �3–5�. For example, in the single-party case, twirl-
ing makes it possible to obtain the average gate fidelity of a
positive map �6�. Later, twirling was generalized to multipar-
tite systems: For a given density matrix � the twirled state is
defined as �7–9�

P� ª �
U�U�d�

U�N��U�N�†dU , �1�

where U�d� is the group of d-dimensional unitary matrices,
N is the number of qudits, and dU is the normalized Haar
measure over U�d�. For the bipartite case one can also con-
sider twirling defined as

Piso� ª �
U�U�d�

U � U*��U � U*�†dU , �2�

where the asterisk denotes elementwise complex conjuga-
tion. States obtained from P and Piso are called Werner states
and isotropic states, respectively. Isotropic states are quite
useful in quantum-information processing: They are the
maximally entangled state mixed with white noise. While in
this work we focus on P, our results generalize trivially to
the computation of Piso.

The importance of twirling in the multipartite case is that
it transforms a general mixed state into a state that can be
characterized with only a few parameters �7,10,11�. En-
tanglement of formation is known for bipartite isotropic
states �12,13� and necessary and sufficient conditions for the
entanglement of tripartite Werner states are also known �8�.
Therefore, since twirling cannot increase any entanglement
monotone, if we can experimentally twirl a state, we can
simplify the estimation of its entanglement properties.

Moreover, twirling also appears in various calculations in
quantum-information science �e.g., it is used to define a fam-
ily of quantum states in Ref. �14��. Integrals over U�d�, simi-
lar to twirling, appear in many areas of physics �15�. In par-
ticular, the computation of integrals of the form

�
U�U�d�

Ui1j1
Ui2j2

¯ Uimjm
�Uk1l1

Uk2l2
¯ Uknln

�*dU �3�

is needed. Such integrals for the m=n case can straightfor-
wardly be obtained from twirling appropriately chosen den-
sity matrices. Twirling is also closely related to unitary
t-designs which have raised interest recently �16,17�.

It seems straightforward to implement twirling: One has
to apply a random multilateral unitary rotation to each copy
of a state, and then average over the ensemble. However,
problems quickly arise when considering practical imple-
mentations. Applying different random rotations to different
systems of the ensemble requires that we are able to access
the systems individually. In practice, very often this also
means temporal averaging �18�. We repeat many times the
following two steps: �i� Generate the quantum state and �ii�
apply a random rotation. The disadvantage of this approach
is that the execution time is proportional to the number of
systems in the ensemble. Moreover, in many physical real-
izations of quantum computing, e.g., in a nuclear magnetic
resonance �NMR� quantum computer, this approach cannot
be used since the systems cannot be individually accessed.
From the numerical point of view, the problem is that aver-
aging over the randomly rotated matrices is a very inefficient
way for calculating the integral in Eq. �1�.

Another approach is using group theory to replace the
integral �1� with a sum over a finite number of rotated den-
sity matrices �19�. This works for small systems and, for
example, for N=2 and d=2 we need to employ 12 such
matrices �2,20�. However, the number of unitaries needed
increases rapidly with N and d, making the implementation
of twirling for large systems difficult this way �16�. Clearly,
this approach does not seem to fit ensemble quantum com-
puting. From the point of view of a realization on a digital*Electronic address: toth@alumni.nd.edu
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computer, there is the added complexity of computing the
required unitaries when compared to averaging over random
unitaries.

Numerically, there is another approach for replacing the
integration with a discrete sum. The idea is that twirling
transforms any quantum state into a U�N invariant state �7�.
The density matrix of such a state can be written as �
=�k�Rk��Rk where the Rk basis operators are obtained from
orthogonalizing the N! permutation operators �8,9�. Since
twirling does not change the expectation values of Rk, we can
use these values to reconstruct the final Werner state P� on a
classical computer. However, once more, while this approach
is feasible for small systems �for N=2 and 3 qubits there are
two and, respectively, five such matrices �8,9��, for large N
the number of permutation matrices increases dramatically.

In this paper we show that a multiqudit state can be ap-
proximately twirled by iterating the single nonunitary opera-
tion

�k+1 =
1

2
��k + Uk

�N�k�Uk
�N�†� , �4�

where �k are density matrices and Uk are random unitaries.
Using this building block, the error of our approximation
decays exponentially with the number of iterations. The ex-
ponent of this decay depends neither on the number of qudits
nor on their dimension. In contrast, when approximate twirl-
ing is realized by averaging density matrices obtained from
multilateral random rotations, the convergence is algebraic.
We show evidence that the unitary matrices applied can
come from a highly imperfect source and also demonstrate
through examples that the random unitaries can be replaced
by a set of cyclically alternating unitaries, while preserving
the exponential convergence. Finally, based on the previous
ideas, we present a quantum circuit for twirling by means of
controlled unitary gates �see Fig. 1�.

Experimental implementation of this operation looks fea-
sible in many physical systems. It is important to stress that,
when applied to an ensemble of many systems, our method
does not need individual access to the individual systems.

We show that for a given set of cyclically alternating unitar-
ies it is possible to obtain general statements for the conver-
gence which are valid for all density matrices. This makes it
possible to design algorithms tailored for the operators avail-
able in a given physical system. Thus twirling can be one of
the quantum algorithms which are especially fitting for real-
ization on a quantum computer. On the other hand, when
realizing our algorithm on a classical computer, the program-
ming and computational effort is extremely small.

Our paper is organized as follows. In Sec. II we discuss
the usual way twirling is computed on a quantum or a clas-
sical computer. In Sec. III we present our proposal, together
also with an analysis of the convergence of the approach. In
Sec. IV we show that our method is quite robust against the
imperfections of the random number generator. In Sec. V we
show that, instead of random unitaries, cyclically alternating
operators can also be efficiently used for twirling. In Sec. VI
we discuss the case of large dimensions. In Sec. VII we
explain how to use our ideas for experiments. In Sec. VIII
we show how to generalize our method for the numerical
integration of useful formulas over the unitary group. Finally,
in Sec. IX we discuss connections of our research to existing
work.

II. STRAIGHTFORWARD NUMERICAL INTEGRATION

P� can be approximated by an average of a finite number
of randomly rotated density matrices

PM� ª

1

M
	� + �

k=1

M−1

Uk
�N��Uk

�N�†
 . �5�

Here M denotes the number of terms and we assume that the
unitaries �Uk� are distributed uniformly in U�d� according to
the Haar measure. In this section we examine how well PM�
converges to P� for increasing M.

Since we use random matrices, we will obtain a different
state for each realization of PM�. To analyze the error, we
introduce an expectation value or average over the different
choices for Uk as �21�

�A� ª� A dU1dU2dU3 ¯ . �6�

Using this average, we can analyze how fast PM� converges
to P� for increasing number of unitaries. Simple calculations
show that the average error of a particular initial state �
decreases algebraically as M−1,

�PM� − P�2� = �PM�2� + P�2 − 2 Tr��PM��P��

= �PM�2� − P�2 =
1

M
��2 − P�2� ,

�7�

where A2
ªTr�A†A� is the Hilbert-Schmidt norm. In the

derivation we used that �PM��= �1/M��+ ��M −1� /M�P� and
Tr��P��=Tr��P��2�.

While computing the error for a given state is illuminat-
ing, it is more useful to characterize the convergence of PM

FIG. 1. Twirling can be realized by the repeated application of
this basic building block where Uk is a random unitary generated
for the kth iteration or a unitary chosen from a cyclically alternating
set of unitaries. M represents measurement in the computational
basis.
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in a manner that is independent of the initial state. For that,
first we will show how to define a matrix describing the
action of a linear superoperator and will define a measure of
distance between superoperators. Then, we will determine
the matrices describing the action of P and PM, and will
compute the norm of their difference.

Density matrices are vectors in a Hilbert space of com-
plex matrices with the scalar product �� ,���ªTr�����. Thus
it is convenient to switch from matrix notation

� = �
kl

�kl�k��l� �8�

and treat the matrices as vectors defined by �22�

�� = �
kl

�kl�l� � �k� . �9�

That is, �� is obtained from � by joining its columns consecu-
tively into a column vector. We can use the vector form for
any Hermitian operator A, not only for density matrices.
Then the expectation value of A can be written as

Tr�A�� = �A� �†�� . �10�

Any physically allowed transformation of the density matrix
is a linear positive map and it can be written as a matrix
acting on ��

��� = S�� . �11�

Matrix S describes the transformation realized by the super-
operator. Both the vectors �� ,���, and the matrix S have to
satisfy constraints to ensure the Hermiticity and the positiv-
ity of the density matrices. The distance between superopera-
tors can be measured in the form of the Hilbert-Schmidt
norm of their difference �23�,

S − S̃2
ª Tr��S − S̃��S − S̃�†� . �12�

In this formalism, the superoperators describing the action of
P and PM are, respectively,

SP = �
U�U�d�

�U�N�*
� U�NdU , �13a�

SPM =
1

M
	1d

�2N + �
k=1

M−1

�Uk
�N�*

� Uk
�N
 , �13b�

where 1d denotes a d�d unit matrix. Based on Eq. �13a�, it is
easy to see that

SPSP = SP = SP
† . �14�

Using these, straightforward calculation shows that

�SPM − SP2� = �SPM2� + SP2 − 2Tr�SP�SPM��

=
1

M
�1d

�2N2 − SP2� . �15�

Thus the error in the superoperator formalism decays alge-
braically with increasing number of steps M, irrespective of
the initial state �see the Appendix for details�.

III. TWIRLING USING A RECURSIVE FORMULA

In order to decrease the error of the result, rather than
doubling the number of terms in the summation and comput-
ing P2M, we can apply twice the averaging operation with
M–1 unitaries and calculate PMPM�. In this section we show
that, even though in both cases �2M random unitaries are
needed, the error of the second method is much smaller.

Let us write out the result after two twirlings explicitly:

PMPM� =
1

M2 �
k=1

M−1

�
l=1

M−1

� + Uk
�N���Uk

�N�† + UM−1+l
�N ���UM−1+l

�N �†

+ �UM−1+lUk��N���UM−1+lUk��N�†, �16�

where �Uk�k=1
M−1 and �Uk�k=M

2M−2 are the random unitaries chosen
for the first and second twirlings, respectively. Equation �16�
is the average of M2−1 rotated density matrices and the
original matrix. We have the same number of terms when
computing PM2�. However, the �M2−1� unitaries are not in-
dependent; thus we might expect that the error for PMPM� is
larger than that for PM2�.

Let us now consider repeated applications of Pm. For sim-
plicity we will first focus on the m=2 case, leaving the m
�2 case for later. After M iterations, the outcome is

QM� ª P2P2 ¯ P2� = 	�
k=1

M

P2
� . �17�

Using the definition Eq. �17� we can write the recursive for-
mula

QM� =
1

2
�QM−1� + UM

�N�QM−1���UM
�N�†� , �18�

where again UM is a random unitary. As before, we measure
the convergence of this operator by the average error in the
Hilbert-Schmidt norm,

�QM� − P�2� = �QM�2� − P�2. �19�

For computing the error as a function of M, we need the M
dependence of the �QM�2� term on the right-hand side of
Eq. �19�. For that first we express �QM�2� with �QM−1�2�

�QM�2� =
1

2
��QM−1�2� + �QM−1�UM

�N�QM−1���UM
�N�†2��

=
1

2
��QM−1�2� + P�2� . �20�

Then, from Eq. �20� the M dependence of �QM�2� can be
obtained as

�QM�2� = �2 + �P�2 − �2��1 − 2−M� . �21�

Substituting Eq. �21� into Eq. �19� we obtain

�QM� − P�2� = ��2 − P�2�2−M . �22�

That is, the squared error decays exponentially with M,
while according to Eq. �7� the decay was proportional to M−1

for the method described in Sec. II. Note that computing
QM� and PM� needs the generation of M and M −1 random
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unitaries, respectively. Thus the computational effort is
roughly the same for the two cases.

One can repeat this calculation in the superoperator pic-
ture. The definition of SQM based on Eq. �18� is

SQM =
1

2
�SQ�M−1� + ��UM

�N�*
� UM

�N�SQ�M−1�� . �23�

For the error of the approximation we obtain

�SQM − SP2� = �SQM2� + SP2 − �Tr�SQM
† SP��

− �Tr�SQMSP��

= �SQM2� − SP2. �24�

For obtaining the M dependence of the error, we need the M
dependence of SQM2. This is obtained in two steps. First,
we use Eq. �23� to find a recursive relation for �SQM2�,

�SQM2� =
1

2
��SQ�M−1�2� + SP2� , �25�

and then we obtain �SQM2� without using recursion as

�SQM2� = 1d
�2N2 + �SP2 − 1d

�2N2��1 − 2−M� . �26�

Combining Eqs. �26� and �24� we obtain

�SQM − SP2� = �1d
�2N2 − SP2�2−M; �27�

thus the error of the superoperator decays exponentially.
Let us now consider combining twirl operations PK with

more than two unitaries. With that aim we define

QK,M ª �PK�M . �28�

On the one hand, when computing the average error for this
operator we obtain formulas similar to Eqs. �22� and �27�,
but with a mean squared error proportional to K−M vs the
original, proportional to 2−M. On the other hand, the number
of random unitaries required increases, as it is now K−1 per
iteration step. Based on these we can write the dynamics of
the mean squared error as a function of the number of uni-
taries NU as

�QK,M − P2� � exp	−
ln K

K − 1
NU
 . �29�

Hence one can see that, for a given number of unitaries, the
smallest error is achieved for K=2. For many experiments,
this is also a good reasoning since the experimental effort is
very often measured in NU. Thus we will consider the K=2
case in the rest of the paper.

We have verified numerically the previous results �24�.
For this we focused on the three-qubit case, for which we can
compute the twirl operation exactly using the techniques
mentioned in the introduction �see the Appendix�. In Fig. 2
we plot the error �SPM −SP2� averaged over 10 000 trajec-
tories. As the figure shows, the simulation results perfectly fit
the exponential decay of the error calculated theoretically
�27�.

IV. SENSITIVITY TO THE IMPERFECTIONS
OF RANDOM NUMBER GENERATION

In this section we examine what happens if our random
number generator does not work perfectly and the random
unitaries are not uniformly distributed over U�d�. An imper-
fect random unitary generator can be characterized by the
distribution f�U� describing the probability density for get-
ting U. We will show that if infUf�U��0 then our algorithm
still converges to the twirled state and the error decays ex-
ponentially.

Let us use a simple model for our faulty distribution in
which with probability pg the unitary is drawn according to
the probability distribution g�U� while with probability �1
− pg� it is drawn according to the uniform distribution. The
corresponding distribution function f�U� is

f�U� ª pgg�U� + �1 − pg� , �30�

where we used that �U�U�d�dU=1. Expectation values over
this probability distribution are computed as

�A� f ª �
U�U�d�

Af�U1�f�U2�f�U3� ¯ dU1dU2dU3 ¯ .

Let us now examine how the usual method described in Sec.
II is affected by such an error of the random number genera-

tor. We will define by P̃M the equivalent of Eq. �5� with our
biased probability distribution. The mean value of the den-
sity matrix obtained from such twirling is

�P̃M�� f =
1

M
�� + �1 − pg��M − 1�P�� + �pg�M − 1�

�� dW g�W�W�N��W�N�†� .

Here �dW is an integral over the unitary group U�d�. Taking
the limit M→� one obtains
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FIG. 2. �Color online� Mean squared error for the recursive
method with random matrices when applied on three-qubit states.
We plot �dotted� the average over 10 000 realizations and �solid
line� the theoretical prediction computed from Eq. �27�. For better
visibility, the error is shown only for every second iteration.
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�P̃M�� f → �1 − pg�P� + pg� dW g�W�W�N��W�N�†.

Thus the expectation value of the operator does not converge
to P�.

On the contrary, when P̃2 is applied M times, the state of
the system still converges to the twirled state and the error
decays exponentially with M. To show this, let us denote the

operation above by Q̃M. As before, we measure the conver-
gence of this operator by the average error in the Hilbert-
Schmidt norm

�Q̃M� − P�2� f = �Q̃M�2� f − P�2. �31�

Hence straightforward algebra yields

�Q̃M�2� f �
1 + pg

2

2
�Q̃M−1�2� f +

1 − pg
2

2
P�2. �32�

For obtaining the upper bound in Eq. �32� we used

Tr�Q̃M−1�U�N�Q̃M−1���U�N�†� � Q̃M−1�2,

�� dW g�W�W�N�Q̃M−1���W�N�†�2

� Q̃M−1�2, �33�

where U is a unitary matrix. From Eq. �32� the M depen-

dence of �Q̃M�2� f can be deduced as

�Q̃M�2� f � �2 + �P�2 − �2��1 − 	 2

1 + pg
2
−M� .

�34�

Substituting Eq. �34� into Eq. �31� we obtain

�Q̃M� − P�2� f � ��2 − P�2�	 2

1 + pg
2
−M

. �35�

The mean square error of the superoperator corresponding to

Q̃M also decays proportionally to �2/ �1+ pg
2��−M. Thus we

have convergence if pg�1, i.e., if the uniform distribution
has a nonzero weight in Eq. �30�. For functions f�U� that
satisfy

inf
U

f�U� � 0, �36�

it is always possible to find a decomposition of the type Eq.
�30� such that pg=1−infUf�U�. Thus for such probability dis-
tribution functions our algorithm converges and the error de-
cays exponentially.

Finally, the sufficient condition for the convergence of our
method Eq. �36� can also be formulated for the case when
f�U� is of the form

f�U� = fr�U� + �
k

ck	�U − Vk� , �37�

where fr :U�d��R, ck
0 are constants, 	 is the Dirac delta
function, and Vk are unitaries. In this case the algorithm con-
verges if

inf
e�U�
�

U�U�d�
f�U�e�U�dU � 0, �38�

where for the function e�U� we require that e�U�
0 and
�U�U�d�e�U�dU=1.

V. DETERMINISTIC TWIRLING WITH FEW UNITARIES

The example shown in Sec. IV demonstrated that, even if
the random unitaries used in our algorithm come from a very
imperfect source, the algorithm may still converge. In this
section we will examine what happens if these unitaries are
not random but they are chosen deterministically from a
small set such that they are cyclically alternating.

Let us consider the two-qubit case. Common sense tells us
that we need at least two unitaries since, two unitaries are
able to generate the elements of U�2� we need for twirling
�25�. We will see that two unitaries are sufficient.

Let us choose the two unitaries as

Ux ª eic�x,

Uz ª eic�z, �39�

where �x/z are Pauli spin matrices and c is a constant. Now
we can use the method described at the end of Sec. III to
compute the dependence of the superoperator on the number
of iterations. We look for the c for which the decay of the
error is the fastest. Through numerical optimization we find
that the error of the superoperator is the smallest after 50
iterations for c=1.0894. Figure 3�a� shows the results of our
numerical calculations for two qubits with this value for c.
The dashed line shows the square of the error for the recur-
sive method using random unitaries described in Sec. III.
Note that the error for the deterministic method, denoted by
disks, decays faster than for the random method.

Let us see a three-qubit example with three cyclically al-
ternating unitaries

Ux ª ei2�/3�x,

Uy ª ei2�/5�y ,

Uz ª ei2�/3�z. �40�

Figure 3�b� shows the results of our numerical calculations.
Now the error decays somewhat more slowly than in the case
of the random method.

The advantage of our approach is that, by studying the
superoperator, we can make general statements, independent
of the initial state, about the algorithm. Thus without a thor-
ough group-theoretical study we can show that the error de-
cays exponentially with M and the recursive algorithm with
the given alternating unitaries can be used for the efficient
twirling of two or three qubits, respectively. Similar calcula-
tions can be carried out for several qubits trying out other
unitaries or higher dimensions can also be investigated.
These calculations can always consider the gates easily avail-
able in an experimental implementation.
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VI. TWIRLING FOR QUDITS WITH LARGE DIMENSIONS

In the literature there was a considerable effort to find a
method for two-qudit twirling which can be realized with
relatively few quantum gates even if the dimension of qudits
is large. In this section we show through examples that the
number of quantum gates necessary for two-qudit twirling
with our algorithm seems to scale better with the dimension
of the qudits than for the algorithm generating a
d-dimensional random unitary uniformly distributed accord-
ing to the Haar measure.

A method for generating a random unitary of large dimen-
sions was presented in Ref. �26�. The system was considered
to be a multiqubit system which fits well for many physical
realizations. The algorithm presented has two steps: �i�
Single-qubit random unitaries act on the individual qubits;
�ii� a nearest-neighbor Ising interaction acts on the one-
dimensional array of qubits. These two steps must be re-
peated several times. It was found that the number of gates
necessary for generating a random unitary this way scales
exponentially with the number of qubits n.

In Ref. �3� it was shown that two-qudit twirling over
U�2n� gives the same result as two-qudit twirling over the
Clifford group. This makes efficient twirling possible since

the number of gates needed for generating a random Clifford
group element scales polynomially with n. The results of
Ref. �3� were extended to unitary 2-designs in Ref. �16�.

Let us now examine whether it is possible to find an ef-
ficient way to realize our algorithm for d�2. We also con-
sider the d=2n case. We look for a simple way for generating
an imperfect random unitary such that it still can be used for
two-qudit twirling. In particular, we would like that the error
does not decay slower than when using unitaries which are
uniformly distributed according to the Haar measure.

We use a slight modification of the algorithm presented in
Ref. �26�. Our random n-qubit unitary is generated by apply-
ing first different random unitaries for each qubit, then mak-
ing the system evolve under an Ising Hamiltonian with
nearest-neighbor interaction realizing

UIsing ª exp	i�
k

�z
�k��z

�k+1�
 , �41�

where  is a constant and we consider a periodic boundary
condition. Thus we use a single iteration of the method pre-
sented in Ref. �26�. The gate requirements increase linearly
with n for such an algorithm.

Next we show simulations with the density matrix rather
than simulations with the superoperator. The reason is that
the size of the superoperator is 16n�16n which would make
it possible to consider only small systems. We calculate the
dynamics obtained from our algorithm for several random
density matrices which have a uniform distribution according
to the Hilbert-Schmidt measure �27�. In order to compare
trajectories corresponding to different density matrices, we
compute the normalized error

Enorm ª

�QM� − P�2�
��2 − P�2�

. �42�

It follows from Eq. �22� that for the method using random
matrices uniformly distributed over U�d� we have Enorm

=2−M.
Figure 4 shows the results of our calculations for d=23

and d=24. We used =1.10 and 1.03, respectively. We find
that the error decays almost as in the case of using random
unitaries uniformly distributed over U�d� and the difference
between the two error curves seems to be subexponential.

VII. EXPERIMENTAL REALIZATION

There are two different situations from the point of view
of experimental realizations. In many experiments several
copies of a quantum system are available at a time. Very
often the systems cannot be individually accessed. However,
we would like that these systems undergo different multilat-
eral random unitary rotations. In this case, according to our
algorithm we have to achieve that at each iteration step half
of the systems undergo a unitary rotation Uk

�N, while the
other half does not. While numerically the mixing of the
state � and the rotated one, Uk

�N��Uk
�N�† is a matter of add-

ing two matrices, experimentally this mixing can be done
with the help of a controlled operation. The corresponding
quantum circuit is shown in Fig. 1. For a single step of the
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FIG. 3. �Color online� Time dependence of the error for �a� two
and �b� three qubits for the deterministic method using two and
three unitaries, respectively. For better visibility, the error is shown
only for every second iteration. Dashed line indicates the error for
the method using random matrices, given in Eq. �27�.
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algorithm we realize P2. The inputs are the state and an
ancilla in a superposition state ��0�+ �1�� /�2. The same uni-
tary Uk is applied on all qudits of the state, but only when the
ancilla qubit is in state 1. Finally, we measure the ancilla and
the outcome is 1

2 ��+Uk
�N��Uk

�N�†�. This basic block is ap-
plied M times, each time using either a different, random
unitary or a unitary from the finite set as in Sec. V. Note that
the control qubit can be a qubit which have a short coherence
time compared to the other qubits. It rapidly decays to state
�0� or �1�, and can be used as a sort of classical control for
permitting the unitary rotations on the other qudits.

In other experiments only a single copy of the state is
produced. For having an ensemble average of some quantity,
the experiment must be repeated many times. In this case our
method can be used the following way. Each time after the
single copy of the state is created, with 50% probability we
apply U1

�N, then with 50% probability we apply U2
�N, etc.

The number of gates needed in average is the half of the
number of iterations. If we use the deterministic version of
our method described in Sec. V then it makes it possible to
twirl with a few single-qubit gates. This is an advantage in
some systems. For example, when using photons created
with parametric down-conversion and postselection, the
single-qubit gates can be realized with wave plates.

VIII. NUMERICAL INTEGRATION OVER U„d…

As we have already mentioned, our method can be used
for integrating numerically expressions of the type Eq. �3�. In
this section we discuss how to generalize our approach for
integrating expressions of the type

I ª �
U�U�d�

Tr�A1U�Tr�A2U� ¯ Tr�AmU�

� Tr�B1U†�Tr�B2U†� ¯ Tr�BnU†�dU , �43�

where Ak and Bk are d�d matrices.
Based on the main ideas of the paper, Eq. �43� can be

computed in two steps. �i� First we need to obtain

M ª �
U�U�d�

U�m
� �U†��ndU . �44�

This can be done by iterating the formula

Mk+1 =
1

2
�1d

��m+n� + Uk
�m

� �Uk
†��n�Mk, �45�

where M0=1 and Uk are random unitaries. The series Mk will
converge very fast to M. �ii� The second step in computing
Eq. �43� is

I = Tr�MA1 � A2 � ¯ � Am � B1 � B2 � ¯ � Bn� .

�46�

Note that M does not depend on Ak and Bk. Thus, when we
compute Eq. �43� for several �Ak� and �Bk�, we have to com-
pute M only once.

These ideas seem to work also when integrating over a
subgroup of U�d�, in particular, over the special unitary
group SU�d�. Such integrals appear, for example, in quantum
chromodynamics �28,29�.

IX. DISCUSSION

First let us discuss the importance of the fact that our
algorithm does not require an individual access to the sys-
tems of the ensemble. This characteristic is important since
we are presenting the realization of a superoperator mapping
a density matrix to another density matrix. Ideally, we want
that this mapping works even if the density matrix describes
an ensemble of very many systems. A method which requires
an individual access to the systems of the ensemble cannot
handle this situation. When realizing a superoperator in a
physical system, it is also advantageous that if a pure state is
mapped to a mixed one then this mixed state is realized as
the reduced state of a pure state of a larger system �30�. The
usual method is not able to create such a purification of the
output density matrix. In contrast, our method can handle a
very large ensemble. Also, when we apply the quantum cir-
cuit proposed in this paper for twirling, and we omit the
measurements then we get a pure state. The twirled state is
the reduced state of this pure state.

The algorithm presented in this paper is intimately related
to other works on random matrices. For instance, Ref. �31�
studies the statistical properties of unitary matrices com-

FIG. 4. �Color online� Time dependence of the normalized error
of the density matrix for bipartite twirling for d��a� 8 and �b� 16. In
both cases 25 realizations are shown. See text for the algorithm
used for generating d-dimensional unitaries. For better visibility, the
error is shown only for every second iteration. Dashed line indicates
the error for the method using random matrices uniformly distrib-
uted over U�d�.
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posed as the product of random unitaries. In Ref. �32� it is
proved that the product of a series of random unitaries with
nonuniform distribution converges exponentially fast to the
uniform distribution in many cases.

The relation of our paper to these works is the following.
We also used composed ensembles of unitary matrices. How-
ever, when looking at Eq. �16�, we can see that our com-
posed unitaries are not independent and they are composed
from a small set of random matrices. Thus, especially in the
first part of the paper, the main goal was to realize twirling
on an ensemble of many systems using only a few random
unitaries, rather than realizing twirling using unitaries from
an imperfect random source. Note that we assumed that our
unitaries were drawn from a perfect random source providing
unitaries distributed uniformly in U�d�. In the second half of
our paper we found that our results can also be applied to the
case of an imperfect source or for a deterministic algorithm.

The key point of our algorithm is mixing of a suben-
semble in the original state and the other subensemble in
which all the systems undergo the same multilateral rotation.
This mixing can be realized efficiently both in a classical
computer and in a quantum computer. Let us analyze the role
of mixing pointing out something seemingly paradoxical. Let
us consider redefining P2 as the application of a unitary U
which with 50% probability it is the identity and with 50%
probability it is uniformly distributed. That would amount to
applying a unitary with a distribution

h�U� ª
1

2
	�U − I� +

1

2
. �47�

However, if we compute the error of a single application of
this “new” P2 we find

�P̂2� − P�2�h =� U�N��U�N�† − P�2h�U�dU

=� ��2 − P�2�h�U�dU

= �2 − P�2, �48�

which, unlike Eq. �22�, does not give us an exponential con-
vergence. Of course, this is because in the algorithm de-
scribed in this paragraph there is only one component
present: The application of a random unitary. The other com-
ponent, namely, mixing of two subensembles, is missing.

Moreover, while Ref. �32� studied the convergence of the
distribution of the composed unitaries to the uniform distri-
bution, we studied the convergence of a certain quantum
operation, namely, twirling. In particular, we computed the
exponent of this convergence and found that it does not de-
pend on N or d. When studying unitaries composed from
random ones with a nonuniform distribution, clearly the re-
quirements for the convergence of the operator built from
these unitaries are much weaker than the requirements for
the convergence of the distribution of the unitaries. It is also
easier to get general statements on the convergence of the
operator for a quite wide class of faulty random unitary gen-
erators. Indeed, we proved that convergence is reached even
in the case of a very poor random source.

Note that recursive algorithms can also be applied to sum-
ming over discrete groups. For example, it has already been
discussed in Ref. �3� that a random element of the Clifford
group can be generated by a sequence of O�n8� operations.
At each step, with 1/2 probability nothing happens, and with
1/2 probability a random element of the generating set is
executed. Another example is discussed in Refs. �33,34�. An
N-qubit state can be depolarized by summing over the stabi-
lizer group �35,36� of a Greenberger-Horne-Zeilinger �37�
state or a graph state �38,39� as

� = �
k=1

2N

Sk�0Sk
†, �49�

where �Sk� are the group elements. Exploiting that the stabi-
lizer group is commutative and that Sk

2=1, the operation Eq.
�49� can be realized in N steps. At step k with 1/2 probability
nothing happens, and with 1/2 probability gk is executed.
Here gk are the N generators of the stabilizer group.

Finally, twirling a completely positive map �16�, rather
than a quantum state, is also a useful procedure. Twirling a
map makes it possible, for example, to estimate the average
fidelity of a physical implementation of the map �6�. It can
be done with a slight modification of our algorithm in three
steps: �i� Applying the circuit Fig. 1 several times with uni-
taries U1 ,U2 , . . . ,UM, �ii� applying the map, and �iii� apply-
ing again the circuit Fig. 1 with unitaries UM

† ,UM−1
† , . . . ,U1

†.
The control qubit for rotations Uk and Uk

† must be the same.

X. CONCLUSIONS

Summing up, we have presented a very efficient approach
for the realization of twirling. Although it is based on ran-
dom matrices, it converges very fast, that is, the error decays
exponentially with increasing number of steps during the it-
eration. Together with the simplicity of the method, this
means that our algorithm requires very little experimental or
computational effort, for the implementation in either a
quantum or a classical computer. We have demonstrated the
robustness of the algorithm, which converges both in the
case of an imperfect random number generator and if the
unitaries are chosen deterministically from a small set. In the
future, it would be interesting to extend our approach to op-
erations which realize twirling with a subgroup of U�d�. In
particular, we would like to apply the method described in
Sec. VIII for integrating numerically over the SU�d� group
and look for possible applications.
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APPENDIX: COMPUTING THE SUPEROPERATORS
CORRESPONDING TO TWIRLING

For evaluating the right-hand side of Eq. �15�, we need to
know �SP2�. For studying the convergence through simula-
tions of individual trajectories we need even the matrix SP. In
this appendix, we will study the general properties of SP and
determine it explicitly for small systems.

Based on Eq. �14� we can write

�SP2� = Tr�SPSP
†� = Tr�SP� . �A1�

Based on Eq. �14� we also know that SP is a projector matrix
with eigenvalues 0 and 1; thus �SP2� must be an integer. We
can get to know more about SP by recalling that twirling
produces a Werner state and such a state is a linear combi-
nation of permutation operators. Since these permutation ma-
trices are not linearly independent, one has to first orthogo-
nalize them. Let us assume that �Rk�k=1

NR are the matrices
obtained this way, satisfying Tr�RkRl�=	kl where 	 is the
Kronecker symbol. Now it is easy to see that we can write
the twirled matrix as

P� = �
k

Tr��Rk�Rk. �A2�

Hence using Eq. �10�, we obtain

SP = �
k

R� k�R� k�†. �A3�

Thus

�SP2� = Tr�SP� = NR. �A4�

Now, let us determine SP explicitly for two and three qu-
dits. For N=2 we have NR=2 and a possible choice of the
basis matrices is �7�

R1 ª
1d � 1d + V12

�d�d + 1�
,

R2 ª
1d � 1d − V12

�d�d − 1�
. �A5�

Here V12 is the permutation matrix exchanging the two qu-
dits and d is the dimension of the qudits. Hence SP can be
reconstructed based on Eq. �A3�. For N=3 and d=2 we have
NR=5, while for d�2 we have NR=6. The basis matrices
can be found in Refs. �8,9�.
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