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We consider a number-operator–annihilation-operator uncertainty as a well-behaved alternative to the number-
phase uncertainty relation, and examine its properties. We find a formulation in which the bound on the product
of uncertainties depends on the expectation value of the particle number. Thus, while the bound is not a constant,
it is a quantity that can easily be controlled in many systems. The uncertainty relation is approximately saturated
by number-phase intelligent states. This allows us to define amplitude squeezing, connecting coherent states to
Fock states, without a reference to a phase operator. We propose several setups for an experimental verification.
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I. INTRODUCTION

The finding of a phase operator conjugate to the number
operator and construction of number-phase uncertainty rela-
tions has an extensive literature [1–3]. However, definition
of a Hermitian phase operator for an infinite system, that is,
a harmonic oscillator, is not possible, and all the different
approaches must make certain compromises.

Historically, the first important contribution was that of
Dirac, who introduced the phase observable φ based on the
decomposition of the annihilation operator as a = R exp(iφ)
[4]. Assuming that R and φ are Hermitian operators, one
obtains R = N1/2, where N = a†a is the number operator.
Hence, exp(iφ) must be equal to

E =
∞∑

n=0

|n〉 〈n + 1| = (N + 1)−1/2a. (1)

However, E is not unitary; thus φ cannot be Hermitian either.
Several methods have been presented to circumvent the

difficulties above. Since there are extensive reviews on
the topic [1–3], we cite only the literature that is directly
connected to our approach. Susskind and Glogower [5]
constructed the Hermitain operators C = 1

2 (E + E†) and S =
1
2i

(E − E†) to describe the quantum phase. They obtained
uncertainty relations with them; however, for the description
of the phase two operators were needed. In order to overcome
this inconvenience, Lévy-Leblond [6] suggested the use of
the non-Hermitian E defined in Eq. (1). He argued that
physical quantities could also be represented by non-Hermitian
operators, interpreted the meaning of variance for such
operators, and wrote down uncertainty relations with N and E.

Later, Hermitian phase operators were constructed for finite
systems [3,7]. This makes it possible to carry out a calculation
for an expression with the phase operator for a finite dimension
D, and then take the limit D → ∞, which provides the
value corresponding to the infinite-dimensional case. By use
of this theoretical background, the number-phase uncertainty
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relations could be obtained and the states saturating them,
called number-phase intelligent states, were identified [8]. The
procedure that provides a connection from one number-phase
intelligent state to another one with a smaller number variance
is called amplitude squeezing [9].

With reference to these ideas, in this paper we choose
the two operators to be, not N and E = (N + 1)−1/2a, but
simply N and the annihilation operator a. We present the
relation

(
(�N )2 + 1

4

)(
(�a)2 + 1

2

)
� 〈N〉

4
+ 1

8
. (2)

We will show that states saturating the number-phase un-
certainty are very close to saturating Eq. (2). This makes it
possible to define amplitude squeezing without reference to a
phase operator.

In addition to its connections to quantum optics, this
problem is also interesting from the point of view of quantum
information theory. A family of uncertainty relations with
N and a has already appeared in Ref. [10], and has been
used for the detection of quantum entanglement [11–13].
Such uncertainty relations made it possible to construct en-
tanglement conditions with small experimental requirements.
Remarkably, these conditions detect non-Gaussian entangled
states that cannot be detected based on the first and second
moments of the quadrature components [14]. The uncertainty
relation Eq. (2) presented in this paper can be seen as a single
relation replacing the family of uncertainty relations described
in Ref. [10]. For given 〈N〉, Eq. (2) identifies most of the values
for the variances of N and a that are not allowed by quantum
physics [15].

The paper is organized as follows. In Sec. II, we discuss
how the variance of the annihilation operator can be defined. In
Sec. III, we derive the uncertainty relation Eq. (2). In Sec. IV,
we discuss the tightness of the uncertainty relation presented.
Finally, in Sec. V, we discuss possible physical tests of the
proposed uncertainty relation. In the Appendix we present
uncertainty relations for two-mode systems.
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II. VARIANCE OF THE ANNIHILATION OPERATOR

In this section, we discuss the definition and the properties
of the variance of the annihilation operator. We relate it to
quadrature-independent properties of the quantum state.

We define the variance of a non-Hermitian operator A as
[6,16]

(�A)2 = 〈A†A〉 − 〈A†〉〈A〉. (3)

Note that, for non-Hermitian operators, usually we have
(�A)2 �= (�A†)2.

Let us now consider the A = a case. (�a)2 is zero only for
coherent states. The variance (�a)2 measures, in a sense, how
close the quantum state is to a coherent state. For this reason,
it has been used to study the dynamics of various quantum
systems (e.g., see Refs. [17–20]).

Let us now interpret (�a)2 by relating it to the quadrature
components.

(i) Let us define the quadrature components as

xβ = ae+iβ + a†e−iβ

√
2

,

(4)

pβ = ae+iβ − a†e−iβ

√
2i

,

where β is real. Then, one finds that

(�a)2 = (�xβ)2 + (�pβ)2

2
− 1

2
. (5)

Hence, (�xβ)2 + (�pβ)2 is independent of the choice of the
angle β [21].

When the invariance properties of (�a)2 are under dis-
cussion, it is instructive to point out its connection to the
correlation matrix defined as

�β

=
(

(�xβ)2 1
2 (〈�xβ�pβ + �pβ�xβ〉)

1
2 (〈�xβ�pβ + �pβ�xβ〉) (�pβ)2

)
.

(6)

One can obtain �β ′ from �β through orthogonal transforma-
tions. However, the trace of �, which equals (�xβ )2 + (�pβ)2,

remains invariant under such transformations.
Thus, since (�xβ)2 + (�pβ)2 is independent of β, it seems

to be a good measure of the uncertainty of the orthogonal
quadrature components. Note that an alternative measure could
be the product (�xβ)2(�pβ)2; however, it is not independent
of β.

(ii) In another context, (�a)2 can be expressed as

(�a)2 = 1

2π

∫ 2π

β̃=0
(�xβ̃)2dβ̃ − 1

2
. (7)

Thus, (�a)2 is connected to the average variance of the quadra-
ture components xβ. That is, if β is chosen randomly between
0 and 2π according to a uniform probability distribution,
then (�a)2 + 1

2 gives the expectation value of the quadrature
variance (�xβ)2.

(iii) Finally, let us examine the connection between (�a)2

and important properties of the Wigner function of the quantum
state. For the following discussion, as well as in the rest of the

paper, we will leave the β subscript, and will use x and p in
the sense of x0 and p0, respectively. (�a)2 gives information
on the sharpness of the peak of the Wigner function W (x,p)
of the state, since [22]

(�x)2 + (�p)2

=
∫

[(x − 〈x〉)2 + (p − 〈p〉)2]W (x,p)dx dp. (8)

For states with a non-negative Wigner function (i.e., squeezed
coherent states), 2(�a)2 + 1 is the sum of the squared widths
of the Wigner function in two orthogonal directions. The
sharpest peak is obtained for the coherent states for which
Eq. (8) is the smallest.

III. UNCERTAINTY RELATION WITH THE NUMBER AND
THE ANNIHILATION OPERATORS

In this section, we present a simple derivation of Eq. (2)
and relate it to the uncertainty relation with the variances of N

and E. We also discuss how to improve the relation Eq. (2).
We start from the two Heisenberg uncertainty relations

(�N )2(�p)2 � 1
4 |〈x〉|2,

(9)
(�N )2(�x)2 � 1

4 |〈p〉|2,
where we used the fact that for operators A and B we
have (�A)2(�B)2 � 1

4 |〈[A,B]〉|2 [22]. Summing the two
inequalities of Eq. (9) and using Eq. (5) and |〈p〉|2 + |〈x〉|2 =
2|〈a〉|2, one obtains the following uncertainty relation with N

and a:

(�N )2
(
(�a)2 + 1

2

)
� 1

4 |〈a〉|2. (10)

From Eq. (10) it follows that, knowing 〈a〉, which determines
the “center” of the Wigner function W (x,p) of the state, and
(�a)2, which is based on the the width of the Wigner function
in two orthogonal directions, we can obtain a lower bound for
the particle number fluctuation.

The bound in the uncertainty relation Eq. (10) is not a
constant: it depends on 〈a〉, which is zero for a wide class of
states. It would be meaningful to find a similar relation with
a constant bound, or at least with a bound depending on a
quantity that is easily measurable and controllable.

We now construct a relation in which the bound depends
on 〈N〉 rather than on 〈a〉. For that, we add [(�a)2 + 1

2 ]/4
to both sides of Eq. (10), and, using (�a)2 = 〈N〉 − |〈a〉|2,
we obtain Eq. (2). The right-hand side of Eq. (2) is minimal
for the vacuum |0〉. In all other cases, the right-hand side is
greater than 1

8 ; thus the uncertainty finds some part of the
(�a)2-(�N )2 plane inaccessible for quantum states.

Next, we relate Eq. (2) to the uncertainty relation with N

and E. For that, we determine the form of Eq. (2) for the case
of large N and (�N )2 � 〈N〉2. In this case, a ≈ √〈N〉E and
we obtain

(�N )2(�E)2 >∼ 1
4 [1 − (�E)2], (11)

which is in accordance with the results of Ref. [6],

(�N )2(�E)2 � 1
4 [1 − (�E)2 − 〈P (0)〉], (12)

where P (0) = |0〉 〈0| .
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Finally, Eq. (2) can be improved by use of the Robertson-
Schrödinger inequalities [22]. First, they can be used to
improve the two uncertainty relations in Eq. (9). Then, after
steps similar to the previous ones, we obtain(

(�N )2 + 1

4

)(
(�a)2 + 1

2

)
� 〈N〉

4
+ 1

8
+ 1

4
|〈{�N,�a}+〉|2,

(13)
where {A,B}+ = AB + BA is the anticommutator.

IV. TIGHTNESS OF THE INEQUALITY

In this section, we investigate the tightness of Eq. (2) and
look for quantum states that are close to saturating it. We also
discuss the result that the states saturating the left-hand side of
Eq. (2) interpolate between coherent states and Fock states.

Our inequality does not contain the highest possible lower
bound. The reason for that is that we constructed Eq. (2)
by summing the two uncertainty relations in Eq. (9). While
the relation Eq. (10) is valid, it is not tight, since the two
uncertainty relations in Eq. (9) are saturated by different states.
Thus, the tightness of the bound in Eq. (2) must be verified.

In Fig. 1, we plotted the points corresponding to values of
[(�a)2,(�N )2] that saturate Eq. (2) for 〈N〉 = 25. All points
below this line violate the relation Eq. (2). For Fock states,

(�a)2
Fock = 〈N〉, (�N )2

Fock = 0. (14)

Hence, Fock states saturate Eq. (2). For coherent states we
have

(�a)2
coh = 0, (�N )2

coh = 〈N〉. (15)

For (�a)2 = 0, the particle number variance saturating Eq. (2)
is (�N )2 = 1

2 〈N〉. This already shows that the lower bound
in Eq. (2) cannot be optimal, because for (�a)2 = 0 there
is no quantum state with a smaller particle number variance
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FIG. 1. (Color online) Numerical test of the inequality (2).
F refers to the Fock state |n = 25〉, C to the coherent state |α = 5〉,
and Z to the point that saturates inequality (2) for (�a)2 = 0. Solid
line: Boundary of the region defined by Eq. (2) for 〈N〉 = 25. All
points below this line correspond to aphysical (�a)2-(�N )2 values.
Dashed line: Points corresponding to squeezed coherent states. The
equation of the curve is given in Eq. (23). Inset: Solid line: Boundary
of the region defined by Eq. (2). Dashed line: Points corresponding
to states with a Gaussian wave vector Eq. (16). Circles: States
corresponding to photon-added coherent states, Eq. (27).

than 〈N〉. States minimizing (�N )2 for 0 < (�a)2 < 〈N〉, in
a sense, interpolate between coherent states and Fock states.

We will now examine the tightness of Eq. (2) numerically
through choice of appropriate trial states. Our search can be
simplified by noting that it is sufficient to search over wave
vectors with non-negative real elements. To see this, let us
consider a state of the form |�〉 = ∑

n |cn|eiφn |n〉 . One finds
that, if all angles φn are set to zero, (�N )2 and 〈N〉 do not
change. On the other hand, |〈a〉| cannot decrease. Hence,
(�a)2 = 〈N〉 − |〈a〉|2 cannot increase. Thus, it is sufficient
to search over states with all φn = 0. Moreover, a state with
φn = const × n will give the same values for (�N )2,〈N〉, and
(�a)2 as does a state with φn = 0.

A. Gaussian wave vector

Let us consider states with a Gaussian state vector

|N0,�〉 = 1

C

∑
n

exp

(
− (n − N0)2

4�2

)
|n〉 , (16)

where C is for normalization. For such states, 〈N〉 ≈ N0

and (�N )2 ≈ �2. In the inset of Fig. 1, the dashed line
corresponds to states of the form Eq. (16), while the solid
line corresponds to points saturating Eq. (2). It can be seen
that states of the form Eq. (16) are close to saturating Eq. (2).
In Fig. 2, we plotted the relative difference between the left-
and the right-hand sides of Eq. (2) for particular values of �

and N0.

Finally, Fig. 3 shows the distance in the (�a)2-(�N )2 plane
of the points corresponding to states of the form Eq. (16)
from the curve corresponding to states that saturate Eq. (2)
[23]. The distance does not grow with N and remains smaller
than 0.15. This means that for large N, for which (�a)2 and
(�N )2 cannot be measured with an accuracy of 0.15, the states
Eq. (16) are indistinguishable from the intelligent states of the
uncertainty relation Eq. (2).

The states Eq. (16) are the subset of the number-phase
intelligent states called |g′〉 presented in Ref. [8]. There, the
coefficients of |n〉 have a Gaussian dependence on n, just
as in Eq. (16); however, the phase of the coefficients is not
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FIG. 2. (Color online) Numerical test of the inequality Eq. (2).
The difference between the left- and right-hand sides of Eq. (2)
divided by the right-hand side is shown for states Eq. (16) with
a Gaussian wave vector for (from left to right) N0 = 100, 25, 10,
and 5.
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FIG. 3. (Color online) Distance of the points corresponding
to states with a Gaussian wave vector Eq. (16) from the curve
corresponding to states that saturate Eq. (2) for (from left to right)
N0 = 100, 25, 10, and 5. � and N0 are the parameters of the state
Eq. (16).

zero but has a linear dependence on n. As we have already
discussed, a state vector with a phase with a linear dependence
on n has the same values for (�a)2,(�N )2, and 〈N〉 as a state
with zero phase. Thus, all the |g′〉 states presented in Ref. [8]
are very close to saturating Eq. (2). Hence, our inequality
makes it possible to define number-phase intelligent states and
amplitude squeezing [9] without reference to a phase operator.

There are other states known to be number-phase intelligent
states [24,25]. We now consider the states presented in
Ref. [26]. They are defined as the superposition of coherent
states on a circle,

|α0,u〉 ∝
∫ +∞

−∞
exp

(− 1
2u2φ2 − iδφ

)|α0e
iφ〉dφ, (17)

where δ = α2
0 . The overlap with Fock states is

〈α0,u|n〉 ∝ αn
0√
n!

exp

(
− (n − δ)2

2u2

)

= 〈α0|n〉 exp

(
− (n − δ)2

2u2

)
. (18)

The second expression stresses the fact that we have the overlap
of a coherent state |α0〉 and a Fock state |n〉 , multiplied by a
Gaussian centered around α2

0, that is, the expectation value
of the particle number for |α0〉 . Thus, |α0,u〉 has an almost
Gaussian wave vector for large N in the number basis. Hence,
these states give similar results numerically for our uncertainty
relation Eq. (2) as does Eq. (16).

B. Squeezed coherent states

It is natural to ask to what extent squeezed coherent states
approach the curve defined by Eq. (2). Squeezed coherent
states can be obtained from the vacuum state as [27,28]

|α,ζ 〉 = D(α)S(ζ ) |0〉 , (19)

where D is the displacement operator and S is the squeezing
operator. Next, we use the relationships

D†(α)aD(α) = a + α,
(20)

S†(ζ )aS(ζ ) = a cosh(s) − a†eiϑ sinh(s),

where ζ = seiϑ . Hence, with α = |α|eiθ , we obtain

〈N〉|α,ζ 〉 = sinh2(s) + |α|2,
(�a)2

|α,ζ 〉 = sinh2 s, (21)
(�N )2

|α,ζ 〉 = |α|2 [cosh(2s) − sinh(2s) cos(2θ − ϑ)]

+ 2 sinh2(s)[1 + sinh2(s)].

For given |α| and s, the variance (�N )2 in Eq. (21) is
minimal if cos(2θ − ϑ) = 1. This is fulfilled, for example, if
θ = ϑ = 0, that is, both ζ and α are real and non-negative.
Hence,

(�N )2
min(|α|,s) = |α|2[cosh(2s) − sinh(2s)]

+ 2 sinh2(s)[1 + sinh2(s)]. (22)

Based on Eq. (22), we obtain the smallest possible (�N )2 for
squeezed coherent states, for given (�a)2 and 〈N〉, as

(�N )2
min = [〈N〉 − (�a)2][

√
1 + (�a)2 −

√
(�a)2]2

+ 2(�a)2[1 + (�a)2]. (23)

The dashed curve in Fig. 1 corresponds to Eq. (23).
Let us interpret this result. Since (�a)2 and (�N )2 are

invariant under a rotation around the origin in the x-p plane,
we can start from coherent states |α〉 with a real and positive α.

Then the state we considered for the curve Eq. (23) corresponds
to squeezing of the x quadrature component, which is called
“number squeezing” in the literature (e.g., see Ref. [28]),
and it reduces the number variance for a small amount of
squeezing. Thus, for small squeezing Eq. (23) is not far
from the bound given by Eq. (2). With further squeezing,
the number variance starts to grow. Thus, for large (�a)2,
there are no squeezed coherent states giving an almost minimal
particle number variance, and one has to look for non-Gaussian
states for that. As a by-product of our discussion, note that
the non-Gaussianness of quantum states can be verified by
measuring only (�a)2 and (�N )2.

C. Displaced Fock states

Displaced Fock states are defined as [29]

|α,n〉 = D(α) |n〉 . (24)

Using Eq. (20), we obtain

〈N〉|α,n〉 = n + |α|2,
(�N )2

|α,n〉 = (2n + 1)|α|2, (25)

(�a)2
|α,n〉 = n.

Hence, for displaced Fock states we get the equation

(�N )2 = [2(�a)2 + 1][〈N〉 − (�a)2], (26)

where (�a)2 must be a non-negative integer. It is fulfilled by
both Fock states and coherent states. Other points in the (�a)2-
(�N )2 plane satisfying Eq. (26) are very far from saturating
Eq. (2).

D. Photon-added coherent states

Photon-added coherent states are defined as [30]

|α,m〉 ∝ (a†)m |α〉 . (27)
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They are close to saturating Eq. (2), as can be seen
in Fig. 1.

E. Eigenstates of a†a + const × a

According to Heisenberg’s method, states that minimize the
uncertainty product (�X)2(�Y )2 for Hermitian X and Y with
a constant commutator are the eigenstates of X + icY, where
c is some constant [31]. While in Eq. (2) we do not have the
product of the uncertainties of two Hermitian observables, this
method can still give us the idea of considering the states |d,k〉
defined through the eigenvalue equation

(a†a + da) |d,k〉 = k |d,k〉, (28)

where d and k are constants. Writing |d,k〉 as
∑

k c′
n |n〉, we

obtain

c′
n+1 = (k − n)

d
√

n + 1
c′
n (29)

for the coefficients. Equation (29) leads to a normalizable wave
vector only if k is a non-negative integer. In this case, cl = 0
for all l > k. Numerical evidence suggests that states |d,k〉 are
close to saturating Eq. (2), but they are inferior to the states
given by Eq. (16).

F. States minimizing (�N)2 for given (�a)2 and 〈N〉
Let us now look for states that minimize (�N )2 for given

(�a)2 and 〈N〉. For that, we follow an approach similar to the
one presented in Ref. [31]. Since (�a)2 = 〈N〉 − 1

2 (〈x〉2 +
〈p〉2), this task can be reformulated as a search for the states
that minimize (�N )2 for given 〈x〉, 〈p〉, and 〈N〉. Let us write
the state as |�〉 = ∑

k c′′
n |n〉 . Hence, we have to look for the

minimum of the function

f (〈�|,|�〉,λN,λp,λx)

= 〈N2〉 − N2
0 + λx(〈x〉 − x0) + λp(〈p〉 − p0)

+ λN (〈N〉 − N0), (30)

where λk are Lagrange multipliers. Note that we do not include
explicitly the 〈�|�〉 = 1 condition in the function f. The
minimum is given by one of the critical points for which all
derivatives are zero. Equation (30) can be rewritten as

f (〈�|,|�〉,λN,λp,λx) = 〈O(λN,λp,λx)〉|�〉, (31)

where O is defined as

O(λN,λp,λx)

= λNa†a + (a†a)2 +
(

λx + iλp√
2

)
a +

(
λx − iλp√

2

)
a†.

(32)

We have to look for {|�(k)〉,λ(k)
N ,λ(k)

x ,λ(k)
p } that minimize

Eq. (31). It is easy to see that |�(k)〉 must minimize
〈O(λ(k)

N ,λ(k)
p ,λ(k)

x )〉. Hence, states |�(k)〉 must be the eigenstates

of the operator O(λ(k)
N ,λ(k)

p ,λ(k)
x ) with the smallest eigenvalue

(i.e., they have to be “ground states”). Note that the operator
given in Eq. (32) appears as a system Hamiltonian in self-
consistent calculations for the Bose-Hubbard model based on
the Gutzwiller ansatz [32,33].

V. DISCUSSION

Let us discuss the use of quantum states that minimize
(�N )2 for given 〈N〉 and (�a)2. They present a trade-
off between two requirements: the smallest possible vari-
ance of a randomly chosen quadrature component and the
smallest possible particle number variance. In a sense, they
are similar to states minimizing (�N )2 for given (�φ)2.

The latter present a trade-off between the smallest possible
variances for phase measurements and for particle number
measurements.

Clearly, the right-hand side of Eq. (2) is not a constant, but
it is a quantity that can be controlled easily in many systems.
Moreover, note that the measurement of (�a)2 does not require
measurement of variances of x and p if we use (�a)2 = 〈N〉 −
|〈a〉|2 = 〈N〉 − 1

2 (〈x〉2 + 〈p〉2).
A single trapped ion seems to be a good candidate for testing

our inequalities and realizing quantum states that saturate them
[34–36]. For a trapped ion, x and p are the physical position
and momentum coordinates, and N determines the energy of
the ion.

The uncertainty relation Eq. (2) can also be verified
experimentally in a single-mode electromagnetic field. The
two orthogonal quadrature components can be measured, for
example, with homodyne detection [37]. The result is not
influenced by which two orthogonal components we choose
to measure.

Bose-Einstein condensates of alkali-metal atoms seem to be
also a possible candidate for experiments [35,38]. It is usual
to talk about number squeezing in multiwell Bose-Einstein
condensates in the sense that an increase in the barrier height
between the wells decreases the number fluctuation within the
wells [39]. Here, one has to note that for cold atoms the particle
number is conserved. Because of that, for a single bosonic
mode of cold atoms, superpositions of states with different
particle numbers are not allowed. For this reason, for pure
states (�N )2 = 0. It is possible to mix states with different
particle numbers, making (�N )2 > 0. However, even for such
states 〈a〉 = 0 and (�a)2 = 〈N〉, which makes our inequalities
trivial in such systems.

While we cannot create particles in a single mode, we can
move particles from one mode to another one. Thus, it is
instructive to consider two-mode systems of cold atoms. The
two modes can be realized with atoms in a double well or with
a single Bose-Einstein condensate of two-state atoms. Let us
denote the annihilation operators of the two modes by a1 and
a2, respectively. The corresponding particle numbers are N1

and N2. If 〈N1〉 � 〈N2〉 and (�N2)2 � 〈N2〉2, then with the
substitution

a → a1a
†
2√〈N2〉

,

(33)
N → N1

the uncertainty relations Eqs. (10) and (2) can be tested. In
the Appendix we present relations that do not require such
approximations.

Finally, in the statistical physics of bosonic systems, 〈�(x)〉,
that is, the expectation value of the field operator, plays the role
of the order parameter. In this context, our findings present
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a quantitative relationship between the variance of the field
operator and the variance of the particle density �(x)†�(x).

VI. SUMMARY

We constructed uncertainty relations with the particle
number and the annihilation operator. The variance of the latter
describes the uncertainty in the phase space, and is independent
of the absolute phase of the quadrature components. We
proposed quantum optical systems in which our inequality
could be tested.
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APPENDIX: UNCERTAINTY RELATIONS FOR
TWO-MODE SYSTEMS

For the two-mode system, inequalities similar to Eqs. (10)
and (2) can be found using the Schwinger representations of

the angular momentum operators

Jl = 1

2

(
a
†
1

a
†
2

)T

σl

(
a1

a2

)
, (A1)

for l = x,y,z, where σl are the Pauli spin matrices. Let us
define an operator that is an analog of a in the two-mode
system as

ã = Jx − iJy ≡ a1a
†
2. (A2)

With this definition, we have

(|�ã|2) = 1
2 [(�ã)2 + (�ã†)2] = (�Jx)2 + (�Jy)2,

(A3)|〈ã〉|2 = 〈Jx〉2 + 〈Jy〉2.

Using Eq. (A3) and the Heisenberg uncertainty relation
(�Jk)2(�Jl)2 � 1

4 |〈Jm〉|2, we obtain the analog of Eq. (10),

(�N1)2(|�ã|2) � 1
4 |〈ã〉|2. (A4)

Adding 1
4 (|�ã|2) to both sides of Eq. (A4) and using

J 2
x + J 2

y = 1
2 (N1 + 1)(N2 + 1) − 1

2 , (A5)

we obtain an analog of Eq. (2),(
(�N1)2 + 1

4

)
(|�ã|2) � 1

8 〈(N1 + 1)(N2 + 1)〉 − 1
8 . (A6)

As we mentioned previously, number squeezing with Bose-
Einstein condensates in a double well can occur if the barrier
between the wells increases [39]. Equation (2) bounds the
number variance of a well in such systems [40].
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