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Mapping the spatial distribution of entanglement in optical lattices
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In this work we study the entangled states that can be created in bipartite two-dimensional optical lattices
loaded with ultracold atoms. We show that, by using only two sets of measurements, it is possible to compute a set
of entanglement witness operators distributed over arbitrarily large regions of the lattice, and use these witnesses
to produce two-dimensional plots of the entanglement content of these states. We also discuss the influence of
noise on the states and on the witnesses, as well as the relation to ongoing experiments.
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I. INTRODUCTION

The quantum engineering of useful many-body states and
the characterization of their entanglement properties are two of
the most challenging topics in Quantum Information Science,
both theoretically and experimentally. In the laboratory, the
creation of entangled states has been addressed in two ways.
The first one starts from the control of individual quantum
systems (e.g., photons [1-4], neutral atoms [5,6] or ions [7,8]),
and aims at the creation of ever larger many-body states.
The second one consists of taking large numbers of these
components (e.g., 103-10° atoms) and studying collective
degrees of freedom [9]. It thus seems that one has to make a
compromise between having large entangled states or having
a fine-grained knowledge of the properties of the state.

In this work we show that there is an intermediate approach,
by which it is possible to gain local information about a very
large entangled state. More precisely, we introduce a family of
operators that allow for obtaining lower bounds on the fidelity
or detecting multipartite entanglement in regions of a two-
dimensional (2D) graph state. The entanglement witnesses
[10—14] are optimized for setups with ultracold atoms in 2D bi-
partite lattices, in which one now has access to the state of indi-
vidual atoms [15,16]. Remarkably, our witnesses only require
the simultaneous measurement of all atoms, but with a postpro-
cessing of the measurement statistics they provide a map of the
quality and multipartite entanglement of the many-body state.

This paper is structured as follows: In Sec. Il we review
the experimental techniques available to create graph states in
optical lattices. We present observables that characterize the
state and act as entanglement witnesses in Sec. III, in which
we also face the main difficulties associated with this method.
We find that even under decoherence, states that are useful for
quantum computation can be found, and we analyze simple
observables that bound the fidelity of the state. Finally, in
Sec. IV, we perform numerical simulations of a cluster state
subject to different noise sources, demonstrating that the
entanglement witness is capable of detecting those errors.

II. EXPERIMENTAL GENERATION
OF STABILIZER STATES

The original method for creating graph states with neutral
atoms [17] was based on filling state-dependent lattices with
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one atomic species and using controlled collisions [18,19].
In contrast, we will develop our ideas by building on the
experimental setup from Refs. [16,20], which traps two
different species of atoms in two coexisting optical lattices, one
of which can be moved. This setup combines a diffraction mask
with a powerful microscope objective, which projects two
similar triangular lattice patterns on its focal plane. By using
two light beams with different frequencies, the experiment
may trap lithum and cesium atoms in two independent lattices
that can be moved at will along the plane that confines the
atoms. As shown in Fig. 1(a), we can contemplate the Cs
and Li arrangements as the triangular sublattices of a larger
honeycomb lattice in which each Cs atom is surrounded
by three Li atoms (and vice versa), and each atom acts
as one qubit. Since our lattice is bipartite by construction,
entanglement can be created by using a small number of steps,
equal to the coordination number of the full lattice. Continuing
with this example, one has to move one sublattice three times so
that each Cs atom approaches each of its neighboring lithium
atoms [Fig. 1(b)], suffering a controlled collision [18] or an
engineered interaction [16]. A fundamental difference with
previous setups [17—19] is that the sublattice now moves as
a whole, regardless of the internal states of the atoms. If the
lattices are very deep and the atom-atom interaction is strong
enough, this can be done with great precision.

To fix ideas, we will assume that the entangling oper-
ation between atoms in different sublattices is a CZ gate,
Uc; = exp(—i 7 o,07;). After three parallel sets of operations,
beginning with a product state (|0) 4+ [1)®V, we will arrive at
a graph state

1Go) ~ [T [T U&"q0) + 11y)@Naths, ()

i€A jeN(i)

where A and B denote the Cs and Li sublattices and N'(i) C B
is the set of nearest neighbors to the potential well i. Note
that, if instead of using the control phase one implements a
control-NOT, Uenor = (1 4 o7) — (1 — of;)o,, where the Cs
absorbs the parity of its neighbors, we obtain what we call a
“parity” multipartite entangled state

1Po) ~ T TT U0y + 11yy@naene, 2)

i€A jeN(i)
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FIG. 1. (Color online) Bipartite lattice scheme. (a) We work with
two species of atoms, Cs and Li, trapped in two independent triangular
sublattices, which together form a honeycomb lattice. (b) A graph
state can be generated by moving one of the sublattices along three
different directions. (c) In this work we analyze the properties of
localizable multipartite entanglement in small sets of 2 («), 4 (B),
6 (y), or more spins. Each of these regions €2 is connected with its
boundary 92 by two-qubit unitaries.

III. ENTANGLEMENT WITNESSES
A. Global fidelity of graph states

All of the states that we can create by using the previous
operations belong to the family of stabilizer states. In both
cases we have a complete set of N4 + N local observables,
the stabilizing operators g;, that may take values {—1, + 1},
and for which the states G, and P, are eigenstates with
eigenvalue 41 on all sites.! For instance, in the case of the
graph state we have

gilGo)=+1|Gy), Vie AUB 3)

with the stabilizing operators g; = o [ | JeNG) af. In general,
given a set of lattice sites 2, we can construct a projector onto
a stabilizer state containing those sites,

1
Po =[]0 +g. )
ieQ

In theory we can use this projector to compute the fidelity of
our experimentally realized state p, which is probably mixed,
with respect to the objective G, or P,

Faup = tr(Paup), (&)

The g; operators are the generators of the so-called stabilizer group
[21].
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where the region under study now encloses the A and B
sublattices. However, in practice this is already impossible
for a few qubits, since the evaluation of Fg requires us
to measure 2V4*Vz different observables coming from all
possible products of the g; operators. The difficulty of this
task seems to be tantamount to performing a full tomography
of the mixed state p.

B. Localizable fidelity

Instead of following this very complicated route, we will
focus on two simpler questions, which are intimately related:
(1) a notion of local fidelity to the stabilizer state and (ii) the
existence and detection of genuine multipartite entanglement
[22,23] in the lattice. In both cases we can extract a number, for
example a fidelity or the expectation value of an entanglement
witness, F'(i) or W(i), which is distributed over the 2D lattice
of sites. With those numbers we can study the distribution of
entanglement and how much our state has been affected by
noise or decoherence.

Our notion of “localizable fidelity” builds on the fact that,
given a simply connected set of sites €2 and a perfect graph
state |G ), we can extract another perfect graph state in that
region. One way to achieve this is by measuring the boundary
qubits €2 [see Fig. 1(c)] and, depending on the outcome of
those measurements, performing phase gates on the qubits
that were immediately connected to them. An alternative but
completely equivalent way is to disentangle the boundary with
the same two-qubit unitaries we used to build the state,

pa=t|] [T v&"pavs |- (©)

i€dQ jeN(i)

The most important idea is that this procedure still can be
applied if the initial state of the atomic ensemble is mixed,
paup, due to decoherence. In this case the fidelity of the final
state is related to the same observable that we found before,
that is

Fo = (Gal pa|Ga) = tr (Papaus) . @)

and the fidelity of the final state only depends on how close
paug 1s to the eigenstates of the stabilizing operators that cover
the region and the boundary, Q2 U 92. The final observation
is that the fidelity Fg not only gives us local information
about how close our state is to the graph state, but also is a
witness for genuine multipartite entanglement in that region,
Wo = 11— Pq [24].

C. Optimized witnesses

However, even if (W) < 0 detects entanglement, the eval-
uation of this quantity seems to require a number of measure-
ments that increases exponentially with the number of qubits.
We thus need another ingredient, which is obtained by writing
the fidelity as a product of two operators constructed from
stabilizing operators corresponding to different sublattices,
Pq = Pona Pang, and by introducing a new operator [25]

Pq = Pona + Porp — 1 < Pg. 3
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This equation can be readily verified in the basis that
diagonalizes both Pon4 and Pgonp, where the eigenvalues of
the projectors can only be O or +1.

This observable provides a lower bound for the fidelity

Fo > (Pq), ©)
and can be used to construct an entanglement witness
Wo = 11— Po. (10)

The advantage is that now the quantities (Pon4) and (Ponp)
can be extracted from just two settings of measurements. In
particular, for the graph state one such expectation value

I

ieQNA

(Pana) = L+o! [] o (11)

JEN@)

is obtained by measuring o* inall Csatoms (i € 2N A)ando*®
inthe Liatoms [j € N(i)], while the other expectation value is
obtained with the opposite measurement basis. Note also that,
by postprocessing the same set of measurement results, we
can compute the values (Pg) for any region 2, which allows
us to produce two-dimensional displays of the distribution of
localizable fidelity or the multipartite entanglement witness.

IV. SIMULATIONS

This section features a numerical simulation of a realization
of our method in an experiment, taking possible practical
sources of error into account. We have studied the degra-
dation of the expectation value of the witness W, given in
Eq. (10). In general it is not possible to compute the change
of (Pg) easily, but we will take advantage of the facts that the
witness is the sum of two functions of stabilizing operators
corresponding to different sublattices and that for our sources
of noise these expectation values have simple expressions,such
as (Pana.B) = [licqna. s(1 + (gi))/2, in which only the
expectation values of isolated stabilizers appear, (g;). As
explained in the Appendix, we have considered various types
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of noise [26] using the quantum channel formalism to compute
the changes in (g;):

(i) Dephasing, which is due to fluctuations in the
energy levels of the atoms due to external fields,
€j(p) = [ db; exp(—io<6;)pexp(ic*0;)p(;). This map is
repeated on all sites, with site-dependent uniformly distributed
random phases in [—¢;,€;], degrading the stabilizing operator
(8i) = (&) [[icq sin(2€;)/2¢;.

(i) Imperfections in the gates that entangle pairs of sites,
Ud - U™ expli 0jx0o;), where 6 are again random
variables, uniformly distributed in [—e€j,€;¢]. This error
introduces a factor in the expectation value of the stabiliz-
ing operators, (g;) = (2:) [T;en) 1[1 + sin(2€;;)/2¢;;1, plus
other terms that do not contribute to the witness (10).

(iii)) Atom loss (AL), which introduces a new state in the
lattice, the hole | /). In practice, it can be described by €1 (p) =
(I=p)p+pl0){0f.

(iv) Spontaneous emission (SE),
r10) (0] .

(v) The completely depolarizing (DP) channel, epp(p) =
(1—pp+ 51
The last three sources of error have the same effect, (g;) —
(1= p)gi)-

With these types of noise and decoherence, we studied the
evolution of our witness operators and the overall description
of a potential experiment that uses them. The results are shown
in Figs. 2(a)-2(c), where we plot the values of W,,Ws, and
Wy, interpolated using smooth functions that are centered
and cover the affected regions, «, B, and y, of two, four,
and six qubits, respectively. The result is a two-dimensional
map of the entanglement content, where the value of the
witness is color coded either (a) on the link between two
atoms, «, (b) on the central atom and the star surrounding
it, B, or (c) on the center of the six-atom plaquette, y. In these
particular plots we have combined all sources of decoherence,
making some of them more relevant in different regions of
the lattice. We have introduced a region of atoms subject to
strong dephasing induced by a focused laser, covering the area
marked by a circle. We have also emptied two sites, surrounded

ese(p) = (1 — p)p +

05

0.3

101
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FIG. 2. (Color online) Two-dimensional distribution of the entanglement witnesses for (a) two, (b) four, and (c) six particle arrangements,
o, B, and y from Fig. 1(c), respectively. The value of the witness is color coded on the (a) links, (b) atoms, or (c) center of the plaquette. A
negative value of the witness (red) denotes the existence of bi- or multipartite entanglement. All graphs present the same defects, consisting of
two empty sites (triangles), atoms subject to strong dephasing (circle), and an increase of phase gate errors toward the edges of the trap.
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by a triangle. These empty holes are numerically equivalent to
having spontaneous emission with 100% probability. Finally,
we have assumed that the phase gate is 100% accurate in the
center of the lattice and acquires a 10% error at the boundary
of the lattice.

We already appreciate interesting features in these simple
simulations. The first one is that bipartite entanglement is less
affected by noise than multiqubit arrangements. While we can
reconstruct a Bell state close to the boundary with an 80%
error, the four- and six-qubit states only have an appreciable
value of the witness when the CZ gate is above 90% fidelity. The
second feature is that the effect of local errors remains local.
The sites, bonds, and plaquettes that share one or more qubits
with the regions affected by atom loss or strong decoherence
(circle and triangle in the plot) have positive values of the
witness and do not have significant entanglement. However,
one site or plaquette away from the region of influence of those
defects, the witnesses recover their large negative value.

V. CONCLUSIONS

In summary, we have presented a simple scheme for detect-
ing bipartite and multipartite entanglement in two-dimensional
lattices with ultracold atoms. The present study admits a
straightforward generalization not only to other bipartite lattice
setups, such as square lattices, but also to other interaction
schemes (Ucyor), Or to displacing each Cs atom not three, but
one or two times. First of all, if the Cs atoms move along
two directions, the result is an array of linear cluster states,
with an entanglement witness that is a generalization of the
previous ones, and that again relies only on two-measurement
settings [24]. If instead we move each Cs atom only once, then
the Cs-Li interact in pairs forming a macroscopic number of
disconnected two-qubit singlets. In this case we do not need
a witness but can rather compute the expectation value of the
projector

P = % (]l + Gésalfi + Ué)safi + Gésgﬁyi) ’ (12)

using three experimental settings.

We must remark that our scheme only uses the facts that
the lattice is bipartite and that it is possible to simultaneously
measure the state of all lattice sites in each sublattice
independently. In particular, while we have focused on a
two-species setup [16,20], exactly the same protocols and
measurement schemes can be used with the state-dependent
optical lattices in previous experiments [18], combined with
the new optics that allows imaging individual lattice sites [27].
The only difference is that, since we do not have different
atoms on different sublattices, the measurement protocol has
to be preceded by a global and local rotation of one sublattice
to change its measurement basis. This is not too complicated
and can be done by using two counterpropagating laser beams
in an optical lattice configuration, such that their maxima of
intensity coincide with just one sublattice.

Our proposal represents one of the first experimentally
realizable schemes for mapping out the entanglement dis-
tribution and fidelity of a very large many-body correlated
state. It also opens the path for the experimental detection
of very large cluster states, a task which so far was not
achievable using ultracold atoms in optical lattices, but which
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becomes possible for ongoing experiments using two species
of atoms and holographically generated trapping potentials
[16]. In particular, we want to remark that the family of
graph states in honeycomb lattices is a universal resource
for measurement-based quantum computation, and that our
scheme can be used to isolate regions of high fidelity in such
resources.
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APPENDIX: POSITIVE MAPS AND NOISE SOURCES

Any physical operation on a quantum state must be a trace-
preserving positive map, which maps density matrices into
density matrices. Furthermore, such operators admit a unique
decomposition using a set of operators

e(0) = ) AwpAj.
k

with the property e(1) = 1.

This description admits a generalization to expectation
values. In other words, we also have a positive map description
in the Heisenberg picture, where operators and observables,
and not states, are changed. Using the definition (®) = tr{®p},
the change in the expectation value can be expressed as

(O)e(p) = tr (@ > AwA,i) = ((©)),
k

where #©) = Y, ALOA,.

We now want to estimate the effect of different positive
maps on our entanglement witnesses. We will first focus on
local error sources. It is important to observe that the expected
values we want to calculate are of the general form

P = f(gioéA’aiiB)’ a,p e {x,z},

that is, they are functions of the same observables on each
sublattice. This means that under local error sources the
following relation applies:

’ = =(~P
P' = f(&(0fta)E(0/cs))-
Therefore, it suffices to compute how the operators change
under the different local error sources. In each case, the
decoherence channel will change the effective value of the
stabilizer expectation value.

1. Dephasing

In this noise source, we have an average over random phases

80" = /ef""’”:axe""b”:p((b) do.
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If the distribution p(¢) is symmetric, then
E0") = /[COS(2¢) +isin(2¢)o°lo” p(¢p)d¢ = (1 — €;)o™,

with some error factor ¢;. Since the o° operators are not
affected, it is legitimate to say that the map induces a global
change in the expected value g; — (1 — €;)g;.

2. Particle loss

This positive map has the form

€(p) = (1 = p)p + pl0)(0I.
which we can also write in Kraus form using the operators
Ag=(1—p), Ay =pl0){0], A= plO)1].
This means that the operators transform as
E©)=(1—-p)O+ p(0|®|0)1.
Thus the stabilizer operators are modified as
gi—>A=pVo; [] oi+4g
JEN@)
where N is the number of qubits in the stabilizer operator (4 in
our case for the honeycomb lattice) and the g;- contain terms
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that are going to vanish because they can be written in the form
8o} ]_[jeN,(i) oj or g; ]_[jeN,(i) af with N'(i) € N(i), so that
their expectation values are zero.

3. Errors in the gates

We can proceed similarly, although some subtleties are
to be taken into account. First of all we realize that instead
of transforming the state, we can transform the stabilizer
operators that appear in the expectation value

) —iy k0 07 o LY keni) €kTTO
gj — e keN(j) SIKkTj kgje keN(j) “IKkY j k,

It can be seen that this is equivalent to performing the same
transformation only on the aj.‘ operator

o} — l_[ [ cos2eju) + i sin(26jk)crfa,f]a;‘.
k

Note that since we only have ¢* operators in one sublattice and
o* on the other, the phases that we have here are uncorrelated
among different o~ operators. Furthermore, any term that con-
tains a o’ operator vanishes once we take expectation values,
which means that we can replace o7 — (1 —¢€;)o;, where
€; =11, fej!(pjk(ejk)dejk: This shows that the outcome is a
global reduction of the stabilizer expectation value.
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