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We present a method for measuring magnetic field gradients with macroscopic singlet states realized with
ensembles of spin-j particles. While the singlet state is completely insensitive to homogeneous magnetic fields,
the variance of its collective spin components is highly sensitive to field gradients. We compute the dynamics
of this variance analytically for a chain of spins and also for an ensemble of particles with a given density
distribution. We find an upper bound on how precisely the field gradient can be estimated from the measured
data. Based on our calculations, differential magnetometry can be carried out with cold atomic ensembles using
a multipartite singlet state obtained via spin squeezing. On the other hand, comparing the metrological properties
of the experimentally prepared state to that of the ideal singlet can be used as further evidence that a singlet state
has indeed been created.
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I. INTRODUCTION

Realization of large coherent quantum systems is at the
center of attention in quantum experiments with cold atoms
[1,2] and trapped ions [3]. Besides creating large-scale entan-
glement, it is also important to look for quantum information
processing applications of the states created. Recently, a
series of experiments has been carried out with cold atomic
ensembles using spin squeezing [4]. This approach makes
it possible to entangle 106–1012 atoms with each other by
making them interact with a light field and then measuring
the light, realizing in this way a quantum nondemolition
(QND) measurement of one of the collective spin components
[5,6]. Spin squeezed states are useful for continuous variable
quantum teleportation [7] and magnetometry [8–13]. In these
experiments, the atomic ensembles were almost completely
polarized, which makes it possible to map the quantum state
of these ensembles to the state of bosonic modes [14] and
model, with few variables even, realistic dynamics including
noise [15–18].

A basic scheme for magnetometry with an almost com-
pletely polarized spin squeezed state works as follows. The
total spin of the ensemble is rotated by a magnetic field
perpendicular to it. The larger the field, the larger the rotation,
which allows one to obtain the field strength by measuring a
spin component perpendicular to the mean spin. So far, it looks
as if the mean spin behaves like a clock arm and its position
will tell us the value of the magnetic field exactly. However, at
this point, one has to remember that we have an ensemble of
particles governed by quantum mechanics, and the uncertainty
of the spin component perpendicular to the mean spin is never
zero. Spin squeezing [19–22] can decrease the uncertainty of
one of the perpendicular components and this can be used to
increase the precision of the magnetometry [6].
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Often the interesting quantity is not the absolute strength
of the magnetic field but its gradient, and the effect of
the homogenous field must be suppressed. For example,
the magnetic field of Earth must be suppressed when the
much smaller magnetic field around an electric device or
magnetic structure is measured [23]. The field gradient can
be determined by differential magnetometry, which can be
carried out when two completely polarized atomic ensembles
are used. In fact, the same light beam can pass through the two
atomic ensembles, which can be used both for simultaneous
spin squeezing of the two atomic ensembles and to carry out
the differential measurement [8,9]. In general, singlet states
of two large spins also offer the possibility for differential
magnetometry [24].

It has recently been shown that interesting quantum states
can be obtained even in unpolarized ensembles. In particular,
if the uncertainties of the three collective angular momentum
components are squeezed one after the other, then a multiparti-
cle singlet state can be obtained [25,26]. (For other approaches
creating singlet states of cold atoms, see Refs. [27–29].)
Singlets, as ground states of antiferromagnetic Heisenberg
spin systems, have attracted considerable attention [30–34].
Such states are invariant under the action of homogenous
magnetic fields. On the other hand, a magnetic field gradient
rotates the spins at different locations differently, which leads
to the gradual destruction of the singlet state. During this
process, the variance of the collective spin components is
increasing and this fact can be used to measure the field
gradient. The advantage of this method is that only a single
ensemble is used for differential magnetometry, rather than
two ensembles, which leads to a better resolution and also
eases the experimental requirements of the method. The basic
scheme for differential magnetometry with singlets is depicted
in Fig. 1. (Other methods for measuring the field gradient can
be found, for example, in Refs. [35–39].)

Besides demonstrating the usefulness of multiparticle
singlets for metrology, our findings are interesting also to
make singlets “visible” in an experiment. An insensitivity to
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FIG. 1. (Color online) Multiqubit singlet in a field gradient.
(a) Equidistant chain of N particles. (b) Atomic ensemble with a
Gaussian density profile.

homogenous fields and a growing angular momentum variance
due to a field gradient can be strong evidence that a singlet state
has indeed been created. If we change the sign of the gradient,
then the variances should start to decrease. Such a gradient
echo experiment can be another way to analyze singlets. The
accuracy of the magnetic field gradient measurement achieved
in an experiment can also be compared to our calculations,
and such a comparison could be used as further evidence that
a singlet has been created.

Finally, our calculations are interesting from the theoretical
point of view since we succeed in modeling the quantum
dynamics of large atomic ensembles analytically. This is a
surprise as quantum systems with millions of particles are
typically difficult to model.

While we mainly discuss spin- 1
2 particles, the spin squeez-

ing procedure creating singlets and the differential metrology
presented in our paper work also for spin-j particles for
j > 1

2 . This is very important as looking for applications of
ensembles of spin-j particles without restricting the dynamics
to the spin- 1

2 subspace is at the center of attention recently
from the point of view of experiments and experimental
proposals [11,25,40–47], and also from the point of view of
spin squeezing entanglement criteria [48–54].

Our paper is organized as follows. In Sec. II, we describe
the multiparticle singlet state of spin- 1

2 particles and analyze
its properties. In Sec. III, we calculate the dynamics of the
variance of collective angular momentum components for such
states under a magnetic field gradient for a singlet realized
with a spin chain, shown in Fig. 1(a). We also compute bounds
on the precision of the gradient measurements. In Sec. IV,
we present calculations for an atomic ensemble with a given
density profile, depicted in Fig. 1(b). In Sec. V, we consider the
case of the singlet state mixed with noise and present results

for particles with a spin larger than 1
2 . Finally, we conclude the

article in Sec. VI.

II. Multiparticle singlet states

In this section, we present an efficient description of
multiparticle singlet states of N spin- 1

2 particles.
Pure multiparticle singlet states are eigenstates of Jl with a

0 eigenvalue for l = x,y,z. Here, the collective operators are
defined as

Jl =
N∑

n=1

j
(n)
l , (1)

where jl = h̄
2σl with the Pauli spin matrices σl for l = x,y,z.

Due to this, pure multiparticle singlet states are invariant under
the unitary transformations

U�n(θ ) = exp

(
−i

J�n
h̄

θ

)
, (2)

where the angular momentum component along the �n direction
is

J�n = nxJx + nyJy + nzJz. (3)

Such unitary transformations can be written as U�n(θ ) = u⊗N,

where u = exp(− i
h̄

∑
l nljlθ ).

Mixed multiparticle singlet states are mixtures of pure
multiparticle singlets. Hence, multiparticle singlets give zero
for the expectation values of all moments of all collective
angular momentum components,〈

Jm
l

〉 = 0, (4)

where l = x,y,z and m = 1,2, . . . ,N. Mixed multipartite
singlets are also invariant under the transformations of the
type given by Eq. (2).

In summary, singlet states are the states within the zero
subspace of the Hamiltonian

Hs = κ
(
J 2

x + J 2
y + J 2

z

)
, (5)

where κ > 0 is a constant. The dimension of this space is
growing rapidly with N [55]. We have to identify the singlet
created in the spin squeezing procedure in this space.

A. Determining the singlet obtained in spin
squeezing experiments

In this section, we determine the multiparticle singlet
created by spin squeezing procedures. Due to symmetries of
the setup, the state created is permutationally invariant. There
are very many multiparticle singlets. We will now show that,
on the other hand, there is a unique permutationally invariant
singlet.

Permutational invariance means that the quantum state �

equals its permutationally invariant part,

(�)PI = 1

N !

N!∑
k=1

�k��
†
k, (6)

where �k is a permutation operator and the summation is over
all permutations. The singlet state realized by the squeezing
procedure in an atomic ensemble is permutationally invariant
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for the following reasons. First, it is created starting from the
completely mixed state, which is permutationally invariant.
Second, the measurement-feedback procedure to squeeze the
collective variables involves only collective, not individual,
variables. Hence, the dynamics is completely symmetric under
exchange of particles [25].

Hence, we can state the following.
Observation 1. For a given even number of particles N ,

there is a unique permutationally invariant singlet state. It can
be expressed as

�s = lim
T →0

e− Hs
T

Tr(e− Hs
T )

(7)

and

�s = (|�−〉〈�−| ⊗ · · · ⊗ |�−〉〈�−|)PI, (8)

where the operation (X)PI is defined in Eq. (6) and the two-
particle singlet is

|�−〉 = 1√
2

(∣∣∣∣+1

2
, − 1

2

〉
z

−
∣∣∣∣−1

2
, + 1

2

〉
z

)
, (9)

where |± 1
2 〉z are the eigenstates of jz.

Proof. First we will show that there is a unique permuta-
tionally invariant singlet state. Such states have the following
properties: (i) they are permutationally invariant and (ii) they
are the eigenstates of Jl for l = x,y,z with eigenvalues 0.

All permutationally invariant multiparticle states are uniquely
characterized by the expectation values 〈A⊗(N−n) ⊗ 1⊗n〉,
where n = 0,1,2, . . . ,N − 1 and A is a traceless single-
particle operator [56]. Moreover, as discussed before, all
states for which Jl = 0 for l = x,y,z are invariant under the
transformations of the type u⊗N, where u are unitary matrices
acting on a single spin. Since any traceless A can be obtained
from σz by unitaries, such a state can be uniquely characterized
by the N expectation values 〈σ⊗(N−n)

z ⊗ 1⊗n〉, where n =
0,1,2, . . . ,N − 1. Knowing these expectation values is the
same as knowing the expectation values of the powers J n

z , for
n = 1,2, . . . ,N . However, these expectation values are zero
for all singlets, as can be seen in Eq. (4). Thus, there is a single
permutationally invariant singlet state, and Eqs. (7) and (8) are
indeed equal [57]. �

Let us interpret first the Eq. (7) formula. It denotes a
state that is a completely mixed state within the

∑
l〈J 2

l 〉 = 0
subspace. It can also be written as

�s = 1

d0

d0∑
α=1

|0,0,α〉〈0,0,α|, (10)

where |j,jz,α〉 denotes a state for which
∑

l J
2
l |j,jz,α〉 =

j (j + 1)|j,jz,α〉,Jz|j,jz,α〉 = jz|j,jz,α〉, α is used to label
the degenerate eigenstates, and d0 is the degeneracy of the
j = jz = 0 eigenstate [55].

An alternative expression for the permutationally invariant
singlet is given in Eq. (8). It shows that the multiparticle
singlet is an equal mixture of all tensor products of two-particle
singlets [58]. One can even find that for an even N, the number
of different permutations of such a singlet chain is [59]

f (N ) = (N − 1)!! = (N − 1)(N − 3)(N − 5) · · · . (11)

This fact has very important consequences for modeling
quantum systems in such a state. While storing the density
matrix for a general quantum state of many particles is
impossible, storing a representation of a product state or
a state that is a product of few-particle units can be done
efficiently. In the next sections, we will explain how to compute
quantum dynamics starting from the permutationally invariant
multiparticle singlet state.

B. Calculating the reduced states of the singlet

In this section, we will calculate �red
1 ,�red

12 , and �red
1234, which

are, respectively, the reduced one-particle, two-particle, and
four-particle density matrices of the singlet state �s. Later, this
will be needed when computing the time evolution of certain
operators for the singlet state.

We have to start from the decomposition given by Eq. (8).
From that, we obtain the form

ρred
1234 = (

α 1
16 + β|�−

12〉〈�−
12| ⊗ |�−

34〉〈�−
34|

+ γ |�−
12〉〈�−

12| ⊗ 1
4 + permutations

)
, (12)

where the second term has altogether three different permu-
tations, while the third term has six different permutations
[including those appearing in Eq. (12)]. The term multiplied
by β is obtained when the particles 1 to 4 are in a product
of two singlet states. The number of times that this special
order is reached is given by the number of ways to distribute
the remaining (N − 4) particles in (N − 4)/2 pairs, that is,
(N − 4 − 1)!!. This has to be divided by the number of all
distributions, that is, (N − 1)!!. Hence, we obtain

β = (N − 4 − 1)!!

(N − 1)!!
= 1

(N − 1)(N − 3)
. (13)

The term multiplied by γ is obtained when the particles 1
and 2 are in a singlet state, but particles 3 and 4 are not. As
above, the number of times the remaining N − 2 particles can
be distributed in pairs is (N − 2 − 1)!!. However, we have to
subtract here the number of distributions where particles 3 and
4 are in a singlet state as well, that is, (N − 4 − 1)!!, as shown
above. Again, we have to divide this by the total number of
distributions, (N − 1)!!, arriving at

γ = (N − 2 − 1)!!

(N − 1)!!
− (N − 4 − 1)!!

(N − 1)!!

= 1

(N − 1)
− 1

(N − 1)(N − 3)
. (14)

Finally, for the coefficient of the completely mixed component,
we have

α = 1 − 3β − 6γ. (15)

This occurs when all four particles are in a singlet state with
particles outside this set.

The two-spin reduced density matrix can be obtained from
Eq. (12) by tracing out particles 3 and 4 as

ρred
12 = Tr34

(
ρred

1234

) = ps|�−
12〉〈�−

12| + (1 − ps)14 , (16)

where

ps = β + γ = 1

N − 1
, (17)
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which can also be obtained from combinatorial calculations
similar to the ones carried out for β as (N − 3)!!/(N − 1)!!.
Finally, this leads to the trivial single-spin reduced state

ρred
1 = 1

2
. (18)

III. Gradient magnetometry with a multiparticle spin chain

In this section, we consider N spin- 1
2 particles in a

permutationally invariant singlet state of Eq. (8), where the
particles are confined to a one-dimensional array. This could
be prepared, for instance, with a Bose-Einstein condensate
in an optical lattice driven to the so-called Mott-insulator
state [60,61].

We will calculate the effect of the magnetic field gradient on
the singlet. In particular, we will calculate how the variance of
the collective angular momentum components increases with
the application of the field gradient. We will also calculate how
precisely the field gradient can be estimated from the measured
data.

In our calculations, we consider a one-dimensional array
along the z direction, such that the positions of the particles
are given by

(xn,yn,zn) = (
0,0,zc

n

)
, (19)

where n = 1,2, . . . ,N . A particular example is the equidistant
chain where

zce
n = (n − 1)d + z0, (20)

d is the distance between the particles, and z0 is an offset. This
situation is depicted in Fig. 1. We collect the positions on the
z axis in the vector �z c

N .
We can write the field at the atoms, situated along x =y = 0,

as

B(0,0,z) = B0 + zB1 + O(z2), (21)

where we will neglect the terms of order two or higher. We
will consider B0 = B0(0,0,1) and B1 = B1(0,0,1). For this
configuration, due to the Maxwell equations, for the case of
no currents or changing electric fields, we have

div B = 0, curl B = 0.

This implies
∑

l=x,y,z ∂Bl/∂l = 0 and ∂Bl/∂m − ∂Bm/∂l = 0
for l �= m. Thus, the spatial derivatives of the field components
are not independent of each other. However, in the case of a
linear chain only, the derivative along the chain has an influence
on the quantum dynamics of the atoms. A similar statement
holds for a quasi-one-dimensional atomic ensemble, which is
typically the case if we consider an elongated trap.

The Hamiltonian corresponding to the effect of a homoge-
nous magnetic field in the z direction is

Hẑ = γB0

N∑
n=1

j (n)
z , (23)

where γ is the gyromagnetic ratio. It gives rise to a time
evolution given in Eq. (2) with �n = ẑ, where ẑ is the unit
vector pointing in the z direction. As we have discussed before,
multiparticle singlets are invariant under the transformations

of the type given by Eq. (2). On the other hand, the singlet
is not invariant under the quantum dynamics generated by a
magnetic field gradient B1 described by the Hamiltonian

HG = γB1

N∑
n=1

zc
nj

(n)
z , (24)

where zc
n is the position on the z axis of the spin n and B1 is the

field gradient along the z direction. Introducing a characteristic
length L, the Hamiltonian (24) can be rewritten as

HG = ωL

N∑
n=1

(
zc
n

L

)
j (n)
z , (25)

where ωL = γB1L.
For instance, one may choose L = d in the case of the

equidistant chain described by Eq. (20). Introducing the
normalized Hamiltonian H ′

G = HG
ωL

and

� = ωLt, (26)

the time evolution operator becomes

UG(�) = exp

[
− i

H ′
G

h̄
�

]
. (27)

This formalism expresses the fact that our setup measures the
field gradient times the time.

In order to use the singlet for differential magnetometry, we
need to find an observable that changes with �. We investigate
powers of collective operators Jm

l since these are relatively
easy to measure experimentally. It is clear that l = z is not a
good choice because [Jz,H

′
G] = 0, so this observable does not

change with �. Therefore, we start by investigating whether
the first or second moment of Jx might be a suitable candidate.

A. Calculating 〈Jx〉 and 〈J2
x 〉

We compute the dynamics of 〈Jx〉 and 〈J 2
x 〉 starting from

a multipartite singlet taking advantage of the fact that it is
the mixture of all the permutations of tensor products of two-
particle singlets, as can be seen in Eq. (8). We will work in
the Heisenberg picture; thus all operators will be given as a
function of �, while expectation values will be computed for
the initial state �s. Hence the time evolution of the operator Jx

is given with the time-dependent single-spin operators as

Jx(�) =
∑

n

j (n)
x (�). (28)

1. Chain of particles at arbitrary positions

In this part, we will carry out calculations for a chain of
particles at arbitrary positions. In the next part, we will present
results for the equidistant chain.

In the Heisenberg picture, the time dependence of an
operator A is given as

A(�) = exp

(
i
H ′

G

h̄
�

)
A exp

(
− i

H ′
G

h̄
�

)
. (29)

Hence, for the time dependence of the single-particle operator
j (n)
z , we obtain

j (n)
x (�) = cnj

(n)
x − snj

(n)
y ≡ X

(n)
� , (30)
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where we introduced the notation

cn = cos

(
zc
n

L
�

)
and sn = sin

(
zc
n

L
�

)
. (31)

The quantities cn and sn are the cosine and sine of the phases
picked up by the nth particle. The expectation value of Jx is
therefore given by

〈Jx〉�z c
N

s (�) =
∑

n

(
cn

〈
j (n)
x

〉
ρred

1
− sn

〈
j (n)
y

〉
ρred

1

) = 0 (32)

because the single-particle reduced state of the singlet �s is the
completely mixed state; cf. Eq. (18). Note that the reduced state
ρred

1 is the same for any n since �s is permutationally invariant.

In analogy, it can be shown that 〈Jy〉�z c
N

s (�) = 0. Therefore,
a measurement of Jl is not suitable for estimating � for l =
x,y,z. We continue by investigating whether a measurement
of J 2

x is useful.
We can write J 2

x in the Heisenberg picture [cf. Eqs. (28)
and (29)] as a sum over two variables. Knowing that
(X(n)

� )2 = 1
4 , we can write the expectation value of the second

moment of Jx as a sum of a constant and two-body correlations
as 〈

J 2
x

〉�z c
N

s (�) = N

4
h̄2 +

∑
n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
�s

. (33)

In the following, we will partly drop the index �z c
N and

sometimes also � from 〈J 2
x 〉�z c

N
s (�) when there is no risk of

confusion. Since the singlet state is permutationally invariant,
the correlation term on the right-hand side of Eq. (33) can be
rewritten with the two-particle reduced state of the singlet as∑

n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
�s

=
∑
n�=m

〈(
cnj

(1)
x − snj

(1)
y

)(
cmj (2)

x − smj (2)
y

)〉
�red

12
. (34)

In Sec. II B, we obtained �red
12 , the reduced two-spin state of

the singlet [cf. Eq. (16)]. Direct calculation shows that

〈jk ⊗ jl〉�red
12

= − h̄2

4(N − 1)
δkl, (35)

where k,l = x,y,z and δkl is 1 if the two indices are equal,
otherwise it is 0. Substituting Eq. (35) into Eq. (34), we obtain
the sum of the two-body correlations as∑

n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
�s

= − h̄2

4(N − 1)
I2, (36)

where

I2 ≡
∑
n�=m

(cncm + snsm), (37)

and therefore〈
J 2

x

〉�z c
N

s (�) = Nh̄2

4

[
1 − 1

N (N − 1)
I2

]
. (38)

Since this is a nontrivial function of �, a measurement of J 2
x

can be used to estimate the magnetic field gradient.
Note that Eq. (38) contains a sum over two variables such

that the two variables are not allowed to be equal. For practical

purposes, it is more useful to rewrite this with independent
sums that require less computational effort as

I2 =
∑
n,m

(cncm + snsm) −
∑

n

(
c2
n + s2

n

) ≡ (C2 + S2 − N ),

(39)

where we define the sums

C =
∑

n

cos

(
zc
n

L
�

)
, S =

∑
n

sin

(
zc
n

L
�

)
, (40)

and use that c2
n + s2

n = 1. A similar subtraction procedure can
be used in a more complicated calculation for the fourth
moment of an angular momentum component below [62].
Inserting Eq. (39) into Eq. (38), we can state the following.

Observation 2. The time dependence of the expectation
value of the second moment of Jx, starting from a singlet of a
chain of N particles with the z coordinates �z c

N , is given by

〈
J 2

x

〉�z c
N

s (�) = Nh̄2

4

{
1 + 1

N (N − 1)
[N − C2 − S2]

}
, (41)

where C and S are defined in Eq. (40).
Due to the symmetries of the setup, the dynamics of the

variance of the y component of the angular momentum is the
same as the dynamics of the variance of the x component,〈

J 2
y

〉
s(�) = 〈

J 2
x

〉
s(�), (42)

while 〈J 2
z 〉s(�) = 0 as mentioned before.

From Sec. II, we know that the singlet at t = 0 is invariant
under the influence of any homogenous magnetic fields. For
t > 0, this is not true any more. However, the singlet evolving
under the influence of HG given in Eq. (25) still remains
invariant under the transformation Uẑ(θ ) = exp(−i

Jz

h̄
θ ) since

[HG,Jz] = 0. Because of that, 〈J 2
z 〉s(�) = 0 for all �.

2. Equidistant chain

For the particular example of the equidistant chain, it is
convenient to rewrite 〈J 2

x 〉s using the identity

cncm + snsm = cos

(
zc
n − zc

m

L
�

)
, (43)

which, from Eqs. (38) and (39) and with the z coordinates zce
n

given in Eq. (20), leads to〈
J 2

x

〉
s(�)

= Nh̄2

4

(
1 − 1

N (N − 1)

{∑
n,m

cos[(n − m)�] − N

})
,

(44)

with the choice L = d.
The variance of Jx starts from zero as follows from the

properties of the singlet state. It can also be seen from Eq. (44)
because each of the N2 terms in the sum is equal to 1 at
� = 0. Then the variance grows up to around the level of the
completely mixed state (white noise) 1

2N ,

〈
J 2

x

〉
wn = N

4
h̄2. (45)
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FIG. 2. (Color online) The dynamics of 〈J 2
x 〉s/〈J 2

x 〉wn (solid line)
and (��)−1

s (dashed line) as the function of � for an equidistant
chain of N = 8 particles. The angular momentum variance for the
white noise, 〈J 2

x 〉wn, is defined in Eq. (45).

To be more precise, for even N ,

〈
J 2

x

〉
s(� = π ) = Nh̄2

4

[
1 + 1

N − 1

]
, (46)

which is very close to 〈J 2
x 〉wn for large N. The reason for

this is that
∑

n,m cos[(n − m)π ] = 0 because when N is even,
the number of terms where n − m is even (such that cos[(n −
m)π ] = +1) is equal to the number of terms where n − m

is odd (such that cos[(n − m)π ] = −1). At � = 2π, 〈J 2
x 〉s

returns to 0 because again cos[(n − m)2π ] = 1 for all n and m

since n − m is an integer. Obviously, for the equidistant chain,
〈J 2

x 〉s(�) is a periodic function with a period time

T = 2π

ωL=d

= 2π

γB1d
. (47)

If there is not a complete revival, then the particles are not
arranged in an array such that the interparticle distance is
uniform over the chain. This phenomenon can be used to
characterize chains of atoms from the point of view of the
uniformity of the distribution of the atoms.

In Fig. 2, we plot the dynamics of 〈J 2
x 〉s(�) for N = 8 spin-

1
2 particles. Note that the increase of 〈J 2

x 〉s is not monotonic
for � < π, but, rather, is oscillating. This is due to the fact that
the atoms are arranged in a lattice. In the case of a continuous
density distribution, there is no such oscillation, as will be
shown in Sec. IV.

B. Calculating the precision of estimating �

From the calculation of 〈J 2
x 〉s(�), it is clear that a measure-

ment of J 2
x gives information about �; hence, it can be used

to estimate an unknown value of �. In this section, we will
calculate the precision �� of the estimation, for the singlet
state realized with a chain of spins with the z coordinates
�z c
N undergoing a quantum dynamics due to a magnetic field

gradient.
The finite precision in reconstructing � comes from the

fact that J 2
x can only be measured with some uncertainty. The

precision of the reconstruction of � based on measuring J 2
x

can be obtained as

(��)2
s = (�J 2

x )2
s∣∣∂�

〈
J 2

x

〉
s

∣∣2 , (48)

where (�A)2 = 〈A2〉 − 〈A〉2 for an observable A. In order
to calculate the expression (48), we need to know 〈J 2

x 〉s(�),
which we have just obtained, and 〈J 4

x 〉s(�), which we are
going to calculate now.

Let us consider again the one-dimensional chain of par-
ticles. For this, the Hamiltonian is given in Eq. (25). As in
Sec. III A, we will work again in the Heisenberg picture. The
time evolution of the operator J 4

x is

J 4
x (�) =

[ ∑
n

j (n)
x (�)

]4

. (49)

The expectation value of this can be rewritten as a sum over
four variables as〈

J 4
x

〉
s =

∑
n1,n2,n3,n4

〈
X

(n1)
� X

(n2)
� X

(n3)
� X

(n4)
�

〉
�s

. (50)

Again, we leave out the indices �z c
N and � for simplicity at

the moment. We can rewrite Eq. (50) with sums in which the
variables of the summation are not allowed to be equal as〈

J 4
x

〉
s =

∑
n1

〈(
X

(n1)
�

)4〉�s + 3
∑

n1 �=n2

〈(
X

(n1)
�

)2
(X(n2)

� )2〉
�s

+ 4
∑

n1 �=n2

〈(
X

(n1)
�

)3(
X

(n2)
�

)〉
�s

+ 6
∑

�=(n1,n2,n3)

〈(
X

(n1)
�

)2(
X

(n2)
�

)(
X

(n3)
�

)〉
�s

+
∑

�=(n1,n2,n3,n4)

〈
X

(n1)
� X

(n2)
� X

(n3)
� X

(n4)
�

〉
�s

, (51)

where
∑

�=(i,j,k) denotes summation over the indices j,k,l such
that none of them is equal to another one. Based on Eq. (51)
and by making use of the fact that (X(n)

� )2 = 1
4 h̄

2, we arrive at

〈
J 4

x

〉
s = h̄4

16
[N + 3N (N − 1)]

+ h̄2

[
1 + 3(N − 2)

2

] ∑
n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
�s

+
∑

�=(n1,n2,n3,n4)

〈
X

(n1)
� X

(n2)
� X

(n3)
� X

(n4)
�

〉
�s

. (52)

The expectation value of the sum of the two-body correlations
is given in Eq. (36). Next, we calculate the expectation values
for the four-body correlations. For that, we use the reduced
four-particle density matrix presented in Eq. (12). For the
reduced four-particle matrix, we obtain

〈
j (1)
x j (2)

x j (3)
x j (4)

x

〉
�red

1234
= h̄4

16

3

(N − 1)(N − 3)
,

〈
j (1)
y j (2)

y j (3)
y j (4)

y

〉
�red

1234
= h̄4

16

3

(N − 1)(N − 3)
, (53)

and 〈
j (1)
x j (2)

x j (3)
y j (4)

y

〉
�red

1234
= h̄4

16

1

(N − 1)(N − 3)
. (54)

The singlet state is invariant under U⊗N for any local unitary
U . This leads to 〈j (1)

x j (2)
y j (3)

y j (4)
y 〉�red

1234
= 〈j (1)

x j (2)
x j (3)

x j (4)
y 〉�red

1234
=

0 [63]. Since the singlet is permutationally invariant, all the
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expectation values with four-body correlations with jx and
jy follow. Taking everything into account, we arrive at the
expression

〈
J 4

x

〉
s = h̄4

16

{
3N2 − 2N − 6N − 8

N − 1
I2 + 3

(N − 1)(N − 3)
I4

}
,

(55)

where we defined

I4 ≡
∑

�=(k,l,m,n)

[ckclcncm + skslsnsm + 2ckclsnsm]. (56)

The term I4 involves a sum over four variables, which implies
a large computational effort for large systems. Similarly to
what has been done with I2 in Eq. (39), we can write I4 as

I4 =
∑

k,l,n,m

[ckclcncm + skslsnsm + 2ckclsnsm] − P. (57)

In P , we will write all the terms that appear in
∑

k,l,n,m but
do not appear in

∑
�=(k,l,m,n). Let us study the first term of the

right-hand side of Eq. (57). We can rewrite it as∑
k,l,n,m

[ckclcncm + skslsnsm + 2ckclsnsm] = C4 + S4 + 2C2S2,

(58)

where C and S are defined in Eq. (40). Next, we have to
determine P. After determining it, we have to eliminate the
sums containing conditions that multiple indices are unequal
in a similar manner by replacing the sum with another
one without such a condition and subtracting the difference.
Finally, we arrive at an expression with single-index sums only.
Using these results, we obtain the following [62].

Observation 3. The time dependence of the expectation
value of the fourth moment of Jx, starting from a singlet of a
chain of N particles with the z coordinates �z c

N , is given by

〈
J 4

x

〉�z c
N

s (�) = h̄4

16

{
3N2 − 2N − 6N − 8

N − 1
I2

+ 3

(N − 1)(N − 3)
I4

}
, (59)

where I2 and I4 are defined in Eqs. (37) and (56) and can be
rewritten as

I2 = X2
1,0 + X2

0,1 − N,

I4 = X4
1,0 + X4

0,1 + 2X2
1,0X

2
0,1 − 6X4,0 − 6X0,4 − 12X2,2

+ 3X2
2,0 + 3X2

0,2 + 8X3,0X1,0 + 8X0,3X0,1 + 4X2
1,1

+ 8X2,1X0,1 + 8X1,2X1,0 + 2X2,0X0,2 − 6X2,0X
2
1,0

− 6X0,2X
2
0,1− 2X2,0X

2
0,1− 2X0,2X

2
1,0− 8X1,1X1,0X0,1,

(60)

where

Xk,l =
N∑

n=1

ck
ns

l
n, (61)

with cn and sn as defined in Eq. (31).

Alternatively, it is possible to write the term I4 in a more
compact form as [62]

I4 = N
{
2(N − 3) − 4N (N − 2)|f̂1(α)|2 + N3|f̂1(α)|4

+N |f̂1(2α)|2 − 2N2Re
[
f̂ 2

1 (α)f̂1(2α)∗
]}

, (62)

where

f̂1(α) = 1

N

∑
k

eiαzc
k and α = �

L
, (63)

which is also easier to compute.
Observations 2 and 3 make it possible to calculate the

precision of the estimation �� based on Eq. (48). It is possible
to calculate analytically the precision for � = 0. For that,
we determined the zeroth- and first-order terms of the Taylor
expansion of Eq. (48) using the expansion of sine and cosine
up to second order. Hence, we can state the following.

Observation 4. The maximal precision of estimating ��

for an equidistant chain of N spin- 1
2 particles is characterized

by

(��)−2
s (� = 0) = N2 + N3

12
=

[
N

σ 2

L2

]
N

N − 1
, (64)

where σ = L
√

(N2 − 1)/12 is the standard deviation of the
equidistant chain, and L = d.

A more general result on the precision at � = 0 will be
presented in Observation 7 below.

In Fig. 2, we plot the dynamics of (��)−1
s for N = 8 for

the equidistant chain. As can be seen, the precision is maximal
at � = 0. Then, it decreases; however, this decrease is not
monotonic and the precision is oscillating. In particular, based
on Eq. (48), one can see that the precision is zero when the
tangent of 〈J 2

x 〉s(�) is horizontal, i.e., ∂�〈J 2
x 〉s(�) = 0.

IV. CONTINUOUS DENSITY PROFILE

In this section, we work out the formulas describing the
case of a one-dimensional continuous density profile. We
present the dynamics of the second and fourth moments of
the collective angular momentum components for this case.

In the case of a spin chain, the particles were placed in the
fixed positions �z c

N . Now, while we still consider the case when
the particles are localized in certain positions, the distribution
of N particles is given by a distribution function fN, where

fN (z1,z2, . . . ,zN )dz1dz2 · · · dzN ≡ fN (�zN )d�zN (65)

is the probability that particle 1 is between z1 and z1 + dz1,

particle 2 is between z2 and z2 + dz2, etc. Without loss
of generality, fN can be considered invariant under the
permutation of any two particles. As before, we compute the
average 〈J 2

x 〉s in order to estimate the magnetic field gradient
and also 〈J 4

x 〉s in order to estimate the uncertainty ��. For a
general distribution function fN (�zN ), they are given by

〈
J 2

x

〉fN

s (�) =
∫

d�zNfN (�zN )
〈
J 2

x

〉�zN

s (�), (66)

with 〈J 2
x 〉�zN

s (�) from Eq. (41), and

〈
J 4

x

〉fN

s (�) =
∫

d�zNfN (�zN )〈J 4
x 〉�zN

s (�), (67)
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with 〈J 4
x 〉�zN

s (�) from Eq. (59). Here and in the following,
we substitute �z c

N with �zN in the expressions for fixed particle
positions.

In order to compute particular examples, we need some
properties of the reduced M-particle distribution functions fM

(M � N ). These can be obtained from fN as

fM (�zM ) =
∫

dzM+1 · · · dzNfN (�zN ), (68)

where we used the shorthand notation �zM = (z1,z2, . . . ,zM )T

as above. Note that due to the invariance under permutations
of fN , it does not matter which of the N − M particles are
integrated over. Further, fM is permutationally invariant as
well.

A. Distributions with Dirac δ functions

For example, the distribution function of the chain consid-
ered in the previous section can be written as [62]

f
�z c
N

N (�zN ) = 1

N !

∑
�=(k1,k2,...,kN )

N∏
j=1

δ
(
zj − zc

kj

)
. (69)

Its reduced distribution functions are given by

f
�z c
N

M (�zM ) = (N − M)!

N !

∑
�=(k1,k2,...,kM )

M∏
j=1

δ
(
zj − zc

kj

)
. (70)

The permutational invariance of fM simplifies many cal-
culations. For instance, the average of I2 from Eq. (37) for a
distribution fN (�zN ) becomes

〈I2〉fN =
∫

d�zNI2(�zN ) =
∑
n�=m

∫
d�zNfN (�zN )[cncm + snsm]

=
∑
n�=m

∫
dzndzmf2(zn,zm)[cncm + snsm]

= N (N − 1)
∫

d�z2f2(�z2)[c1c2 + s1s2]. (71)

In analogy, we obtain the average of I4 from Eq. (56) for
fN (�zN ),

〈I4〉fN =
∫

d�zNfN (�zN )I4(�zN ) = N !

(N − 4)!

∫
d�z4f4(�z4)

× [c1c2c3c4 + s1s2s3s4 + 2c1c2s3s4]. (72)

With these, it is possible to recover all of our previous results
for spin chains.

B. Independently and smoothly distributed particles

In the following, we will make the assumption that the
system is a gas of particles that are uncorrelated in space,
which means that the distribution function can be written as a
product of single-particle distribution functions,

f
p
N (�zN ) = �N

n=1f1(zn). (73)

Further, we will assume that f1 is a smooth function which
does not contain Dirac δ functions, i.e., points with infinitely
high density.

Let us compute the expectation values of J 2
x and J 4

x , as we
did in the previous section, for a product distribution function
of the form given in Eq. (73). Considering Eqs. (38) and (55),
it becomes clear that we only need to compute 〈I2〉fN and
〈I4〉fN . Since f

p
2 (�z2) = f1(z1)f1(z2) in the uncorrelated case,

we obtain from Eq. (71) that

〈I2〉f
p
N = N (N − 1)(C̃2 + S̃2), (74)

where

C̃ =
∫

dz1f1(z1) cos

(
z1

L
�

)
(75)

and

S̃ =
∫

dz1f1(z1) sin

(
z1

L
�

)
. (76)

Here the averaging is over the density distribution f1(z1). With
these, we have all of the ingredients to determine the dynamics
of 〈J 2

x 〉s for the gas from Eq. (38).
Observation 5. For an ensemble of particles with a product

distribution function f
p
N from Eq. (73), we obtain the following

dynamics for the expectation value of the second moment
of Jx :

〈
J 2

x

〉f p
N

s (�) = Nh̄2

4
[1 − C̃2 − S̃2], (77)

where C̃ and S̃ are defined in Eqs. (75) and (76).
In analogy, we obtain from Eq. (72) that

〈I4〉f
p
N = N !

(N − 4)!
(C̃2 + S̃2)2. (78)

Inserting 〈I2〉f
p
N and 〈I4〉f

p
N into Eq. (55), we obtain the

dynamics of 〈J 4
x 〉s.

Observation 6. For an ensemble of particles with a product
distribution function f

p
N from Eq. (73), we obtain the following

dynamics for the expectation value for the fourth moment
of Jx :

〈
J 4

x

〉f p
N

s = Nh̄4

16
{3N − 2 − (6N − 8)(C̃2 + S̃2)

+ 3(N − 2)(C̃2 + S̃2)2}, (79)

where C̃ and S̃ are defined in Eqs. (75) and (76).
Note that due to the product structure of f

p
N , this expression

is much simpler than the expression for the chain given in
Eq. (59). These formulas make it possible already to calculate
the precision of the phase estimation.

1. Gaussian density profile

One of the most common density profiles is the Gaussian
profile. As an example, we will now calculate the dynamics
for this case explicitly. The Gaussian density profile is given
as

f Gauss
1 (z1) = 1√

2πσ 2
e
− (z1−z0)2

2σ2 , (80)

where z0 is the coordinate of the point with the highest density
and σ is the width of the profile. Substituting it into Eq. (77),
we obtain

C̃2 + S̃2 = e
− σ2

L2 �2

, (81)
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FIG. 3. (Color online) The dynamics of 〈J 2
x 〉s/〈J 2

x 〉wn (solid line)
and (��)−1

s (dashed line) as the function of � for N = 105 particles
with a Gaussian density distribution [Eq. (80)] for σ = L. We also
present (��)−1

s calculated based on the Gaussianity assumption
given by Eq. (111) discussed in Sec. V B (dotted line). The angular
momentum variance for the white noise, 〈J 2

x 〉wn, is defined in Eq. (45).

and hence

〈
J 2

x

〉f p
N

s (�) = Nh̄2

4

(
1 − e

− σ2

L2 �2)
. (82)

Note that the maximum of 〈J 2
x 〉s(�) is exactly the value

for white noise; cf. Eq. (45). Thus, in this case, there is no
overshooting, and the noise does not become larger than that
of the white noise, as was the case with the equidistant chain
in Eq. (41).

In Fig. 3, we plot the dynamics of 〈J 2
x 〉s for N = 105 spin- 1

2
particles. The density profile is a product distribution function
of Gaussian profiles with σ = L.

2. Analytic formula for the maximum precision for any particle
distribution, including correlated particle distributions

We will now give an analytic formula for the maximum
precision at � = 0 for the case of any particle distribution.

Observation 7. The maximal precision of estimating �� is
characterized by

(��)−2
s (� = 0) = N

[
σ 2

L2
− cov(z1,z2)

L2

]
, (83)

where

σ 2 =
∫

dzf1(z)(z − 〈z〉)2, 〈z〉 =
∫

dzf1(z)z,

cov(z1,z2) =
∫

dz1z2f2(z1,z2)(z1 − 〈z1〉)(z2 − 〈z2〉). (84)

For the derivation, see the Supplemental Material [62]. For
any product distribution function f

p
N , (��)−2

s (� = 0) = N σ 2

L2 ,
since cov(z1,z2) = 0 in this case. Hence, the maximal sensitiv-
ity is a simple function of N and σ . Correlations can increase
or decrease the sensitivity compared to the uncorrelated case.
For instance, the correlations present in the equidistant chain
increase (��)−2

s (� = 0) by a factor N
N−1 ; cf. Eq. (64).

V. FURTHER CONSIDERATIONS

A. The influence of noise

So far, we considered only perfect singlet states. In practice,
the multipartite singlet state cannot be realized perfectly [64].
In this section, we will consider the case of starting from
imperfect singlet states. First, we will discuss the case, when
we measure 〈J 2

x 〉, as before. Then, we will show that a higher
accuracy can be achieved in the noisy case, if other operators
are measured.

1. Measuring the variance of an angular momentum component

A realistic method to model the imperfections is by
introducing local decoherence channels for each qubit as

ε(wn)
q (�) = (1 − q)� + q 1

2 , (85)

where 0 � q � 1. Each spin is mixed with a certain amount
of white noise locally. The above single-qubit decoherence
is given by the Kraus operators as ε(wn)

q (�) = (1 − q)� +
q

∑
i Ki�K

†
i , where K = {1,σx,σy,σz}/2.

We assume that all these decoherence channels act in par-
allel for all spins. Thus, we obtain the multispin decoherence,

E (wn)
q (�) = ε(wn,1)

q (�) ◦ ε(wn,2)
q (�) ◦ · · · ◦ ε(wn,N)

q (�). (86)

In Eq. (86), ◦ indicates function composition (f ◦ g)(x) =
f (g(x)) and the number in the superscript indicates to which
qubit the function is applied. We consider an atomic ensemble
with a continuous distribution. Next we outline briefly the
derivation of the noisy dynamics for this case.

The moments 〈J 2
x 〉 and 〈J 4

x 〉 given in Eqs. (33) and (52),
respectively, are affected through the two-body and four-body
correlations via the formulas∑

n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
�s,wn

= (1 − q)2
∑

n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
�s

(87)

and ∑
�=(n1,n2,n3,n4)

〈
X

(n1)
� X

(n2)
� X

(n3)
� X

(n4)
�

〉
�s,wn

= (1 − q)4
∑

�=(n1,n2,n3,n4)

〈
X

(n1)
� X

(n2)
� X

(n3)
� X

(n4)
�

〉
�s

. (88)

Hence, for the atomic cloud, we obtain (cf. Observations 5
and 6)

〈
J 2

x

〉f p
N

s,wn(q) = Nh̄2

4
[1 − (1 − q)2(C̃2 + S̃2)] (89)

and〈
J 4

x

〉f p
N

s,wn(q) = Nh̄4

16
{3N − 2 − (1 − q)2(6N − 8)(C̃2 + S̃2)

+ (1 − q)43(N − 2)(C̃2 + S̃2)2}. (90)

Note that for q = 1, Eqs. (89) and (90) reduce to the values
corresponding to a global white noise. Equation (89) can be
rewritten as〈

J 2
x

〉
s,wn(q) = (1 − q)2

〈
J 2

x

〉
s + [1 − (1 − q)2]

〈
J 2

x

〉
wn. (91)

Let us consider a Gaussian density profile described in
Sec. IV B1 for which we have C̃2 + S̃2 given in Eq. (81).
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Substituting Eq. (81) into Eqs. (89) and (90), we can compute
the influence of the noise for the second and fourth moments
of the angular momentum components. The precision of the
reconstruction of � based on measuring J 2

x can be obtained as

(��)2
s,wn =

〈
J 4

x

〉
s,wn(�) − 〈

J 2
x

〉
s,wn(�)2

(1 − q)4
∣∣∂�

〈
J 2

x

〉
s

∣∣2 . (92)

Let us see now the behavior of the precision given by
Eq. (92) under noise in the limiting cases, for q > 0.

(i) At � = 0, the denominator of the right-hand side of
Eq. (92) is zero. This can be seen from Eq. (44), from which it
follows that ∂�〈J 2

x 〉s is a sum of sine expressions, which vanish
at � = 0. In contrast, the numerator is a positive number.
Hence, even for very small amount of noise, we have

(��)−2
s,wn(� = 0) = 0. (93)

Note that this is due to the fact that we chose a noise state
which is invariant under the �-dependent transformation UG

from Eq. (27). The precision remains close to zero until the
noise of the singlet becomes comparable to the added noise.

(ii) The other limit is the case of the large �. Let us define
�wn such that for � > �wn the singlet evolved into a state
that, based on the second and fourth moments of the angular
momentum coordinates, is like the completely mixed state.
That is, for � > �wn, we have〈

J 2
x

〉
s(�) ≈ 〈

J 2
x

〉
wn,

〈
J 4

x

〉
s(�) ≈ 〈

J 4
x

〉
wn. (94)

The reason for this is that for large enough �, the quantity
C̃2 + S̃2 as given in Eq. (81) is close to zero, and in Eqs. (89)
and (90) only the constant terms corresponding to the moments
of the white noise remain. Hence, based on Eq. (92) for � >

�wn, we have

(��)−2
s,wn(�) ≈ (1 − q)4(��)−2

s (�). (95)

In Fig. 4, we calculated the precision (��)s,wn(�)
as a function of the noise for q = 0.01,0.05, and 0.1
for a Gaussian ensemble. For these values, for large �,
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FIG. 4. (Color online) The dynamics of 〈J 2
x 〉s/〈J 2

x 〉wn (solid line)
and the precision (��)−1

s for the noiseless case (dashed line) and
(��)−1

s,wn for a noise with q = 0.01,0.05 and 0.1 (from top to bottom,
dotted line) as the function of � for N = 105 particles. 〈J 2

x 〉wn is
defined in Eq. (45). The density profile is Gaussian and σ = L.

we have (��)−2
s (�)/(��)−2

s,wn(�) = 1.04,1.23, and 1.52,

respectively.

2. Measuring operators different from the angular
momentum components

We will show a simple example that even in the noisy case,
a higher accuracy of the gradient estimation can be achieved
if quantities other than 〈J 2

x 〉 are measured. Let us consider a
noisy singlet of the type

�ns = pn
1

2N
+ (1 − pn)�s. (96)

Let us now look at the projector to the Jx = 0 subspace. For
the completely mixed state, the expectation value of the
projector is

〈PJx=0〉n = 2−N

(
N
N
2

)
≈

√
2

π

1√
N

, (97)

while for the singlet, we have 〈PJx=0〉s(� = 0) = 1. Hence,
for the noisy state, we obtain

〈PJx=0〉ns ≈ pn

√
2

π

1√
N

+ (1 − pn)〈PJx=0〉s. (98)

During the dynamics, based on Eq. (98), the expectation value
of the projector 〈PJx=0〉s decreases from 1 to a value close to
zero, while the noise in the expectation value of the projector
〈PJx=0〉n is proportional to N− 1

2 , i.e., it is O(N− 1
2 ). In contrast,

if the second moment 〈J 2
x 〉 is measured, then

〈J 2
x 〉ns = pn

Nh̄2

4
+ (1 − pn)

〈
J 2

x

〉
s. (99)

Based on Eq. (99), 〈J 2
x 〉s changes from 0 to a value close to

O(N ), while the noise in the expectation value of the second
moment 〈J 2

x 〉n is of the same order, O(N ). It can be seen
that the effect of the noise is much smaller in the expectation
value of the projector (98) than in the second moment (99).
An analogous calculation can be carried out for local noise
channels for operators of the type PJx=const.

B. Spin- j particles

So far we have discussed the case of singlet states of j = 1
2

particles. In this section, we will study the singlet of spin-j
particles. We will find that the dynamics of 〈J 2

x 〉 for N spin-j
particles is the same as the dynamics of 〈J 2

x 〉 for N spin- 1
2

particles, when in both cases we normalize the variance with
that of the white noise. Moreover, we find that by using a
certain Gaussian assumption in order to estimate 〈J 4

x 〉s, we
obtain the same dynamics even for the precision.

When considering the spin-j case, one could think about us-
ing the ideas of Observation 1 to obtain the multiparticle singlet
of spin-j particles as an equal mixture of all the permutations of
tensor products of two-particle singlets. However, the state ob-
tained this way does not equal Eq. (7). This is due to the fact that
for j > 1

2 , there are several permutationally invariant SU(2)
singlets [65]. Hence, for j > 1

2 , another method is needed.
For the dynamics of the variance of the collective angular

momentum components, we need again the variance for the
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completely mixed state (white noise), which is obtained for N

spin-j particles as

〈
J 2

x

〉
wn,j

= Nj (j + 1)

3
h̄2. (100)

Note that 〈J 2
x 〉wn, 1

2
= 〈J 2

x 〉wn, where 〈J 2
x 〉wn is defined in

Eq. (45). As we will see, the dynamics of the variance of
the singlet will be similar to the dynamics for the j = 1

2 case,
apart from a factor of

κj =
〈
J 2

x

〉
wn,j〈

J 2
x

〉
wn

= 4

3
j (j + 1), (101)

and hence, for large �, we will have 〈J 2
x 〉s,j (�) ≈ 〈J 2

x 〉wn,j .

Let us denote by jl the angular momentum components
of a single spin-j particle. Since for each spin the dynamics
is invariant under a coordinate transformation, from (j (n)

x )2 +
(j (n)

y )2 + (j (n)
z )2 = j (j + 1)h̄2, we obtain〈∑

n

(
j

(n)
l

)2

〉
(�) = 〈

J 2
x

〉
wn,j

, (102)

for l = x,y,z and for all �. Moreover, from the requirement
that 〈J 2

l 〉s,j = 0, we obtain

〈
J 2

x

〉 =
〈∑

n

(j (n)
z )2

〉
s,j

+ N (N − 1)
〈
j

(1)
l j

(2)
l

〉
s,j = 0. (103)

Note that 〈j (1)
l j

(2)
l 〉s,j = 〈j (n)

l j
(n′)
l 〉s,j for n �= n′ due to the

permutational invariance of the state. Hence, we arrive at

〈
j

(n)
l j

(n′)
l

〉
s,j = −

〈
J 2

x

〉
wn,j

N (N − 1)
, (104)

and we can rewrite Eq. (35) for particles with j > 1
2 as

〈jk ⊗ jl〉�red,j

12
= −

〈
J 2

x

〉
wn,j

N (N − 1)
δkl, (105)

where �
red,j

12 is now the reduced state of the spin-j singlet [63].
The time-evolved single-particle operators jx(�) ≡ X(�)

have the same form as in the j = 1
2 case, given in Eq. (30).

Therefore, we can perform the calculation for any j in analogy
to the derivation for the spin- 1

2 case of Sec. III A. Starting from〈
J 2

x (�)
〉
s,j = 〈

J 2
x

〉
wn,j

+
∑

n1 �=n2

〈
X

(n1)
� X

(n2)
�

〉
s,j , (106)

we arrive at [〈
J 2

x

〉
(�)

]
s,j = κj

[〈
J 2

x

〉
(�)

]
s. (107)

Therefore, Observation 2 generalizes to spin-j particles as
follows.

Observation 8. The dynamics of the variance of Jx for a
chain of spin-j particles with the z coordinates �z c

N is

〈
J 2

x

〉�z c
N

s,j (�) = κj

h̄2N

4

{
1 + 1

N (N − 1)
[N − C2 − S2]

}
,

(108)

where C and S are defined in Eq. (40).

For an ensemble of particles with a density profile λ(z), we
can in analogy generalize Observation 5 to any j as follows.

Observation 9. For an ensemble of spin-j particles with a
product distribution function f

p
N from Eq. (73), we obtain the

following dynamics for the expectation value of the second
moment of Jx :

〈
J 2

x

〉f p
N

s (�) = κj

Nh̄2

4
[1 − C̃2 − S̃2], (109)

where C̃ and S̃ are defined in Eqs. (75) and (76). Here the
averaging is over the density distribution f1(z1).

For the Gaussian density profile (80), we arrive at〈
J 2

x

〉
(�) = κj

N

4
h̄2

(
1 − e

− σ2

L2 �2)
. (110)

The calculation of 〈J 4
x 〉(�) for the singlet of spin-j particles

seems to be much more complicated than for spin- 1
2 particles.

It is possible to avoid calculating the fourth-order moment by
using the assumption that when Jx is measured, the probability
of the measurement outcomes follows a Gaussian curve, with
the zero outcome being the most probable. For such Gaussian
probability distributions, the higher-order moments can be ob-
tained from second-order ones [66]. In particular, for our case,〈

J 4
x

〉 ≈ 3
〈
J 2

x

〉2
. (111)

Equation (111) leads to (�J 2
x )2 ≈ 2〈J 2

x 〉2, keeping in mind
that 〈Jx〉 = 0. Such a Gaussianity assumption is expected
to work for later times, as at � = 0 the variance of Jx is
zero, and in the beginning only a few of the eigenstates of
Jx are populated. Later, however, many eigenstates of Jx are
populated and a continuous approximation of the discrete
spectrum is appropriate. Note that the Gaussianity of the
probability distribution is a notion completely independent
from the Gaussianity of the density profile of the cold gas.

One can substitute the Gaussian assumption (111) into the
formula for (��)2

s given in Eq. (48), which can be used for any
j . This clearly simplifies the calculations. For the accuracy of
gradient metrology for N spin-j particles, we obtain the same
result as for N spin- 1

2 particles,

(��)s,j (�) = (��)s, 1
2
(�). (112)

In Fig. 3, besides the exact result, we also plot the dynamics
based on the approximation using the Gaussian assumption on
the correlations given by Eq. (111) for the j = 1

2 case as an
illustration. The bound obtained this way diverges at t = 0;
however, it is very close to the true value for � > 0.025. We
also carried out a calculation for j > 1

2 . In Fig. 5, one can see
the comparison for the case of a chain of six spin-1 particles.
The precision based on the Gaussian assumption diverges at
t = 0; however, it later fits the exact dynamics very well.

VI. Discussion and Conclusion

We presented calculations for a many-particle singlet in
a magnetic field gradient for an ensemble of distinguish-
able, well-localized spin- 1

2 particles. We have shown that
multiparticle singlets created in cold atomic ensembles can
be used for differential magnetometry. The magnetic field
gradient can be estimated by measuring the variance of one
of the components of the collective angular momentum. We
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FIG. 5. (Color online) The dynamics of 〈J 2
x 〉s/〈J 2

x 〉wn (solid line)
and (��)−1
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based on the Gaussianity assumption given by Eq. (111) discussed in
Sec. V B (dotted line).

calculated the dependence of this variance on the field gradient
and the measurement time. We also calculated the precision of
the estimation of the field gradient. We have also considered
admixtures of white noise and discussed the extension of the
results for general spin-j particles. Our work opens up the
possibilities for experiments with unpolarized ensembles.

In the future, it would be interesting to find bounds for
the precision of the field gradient measurements using the
theory of the quantum Fisher information [67]. It is an

interesting question as to whether the accuracy of parameter
estimation in our calculations saturates the accuracy bound
determined by the quantum Fisher information. It would also
be important to consider the case of particles that are not
well localized, in which case the spatial degree of freedom
cannot be easily separated from the internal degrees of freedom
for the quantum dynamics we considered [67]. For room-
temperature experiments with atomic ensembles, the atoms
must be well localized; however, singlets can also be realized
with Bose-Einstein condensates, for which all particles are
delocalized. For such systems, the noise is very different from
the case of distinguishable particles. Finally, the effect of a field
gradient could be used to examine symmetric Dicke states with
〈Jz〉 = 0 rather than singlets [41,42]. Our calculations could
be generalized to that case.

ACKNOWLEDGMENTS

We thank J. Calsamiglia, G. Colangelo, O. Gühne, M.
Modugno, L. Santos, R. J. Sewell, and Z. Zimborás for discus-
sions. We thank the European Union (ERC Starting Grants
GEDENTQOPT and AQUMET, CHIST-ERA QUASAR),
the Spanish MINECO (Projects No. FIS2009-12773-C02-02,
No. FIS2012-36673-C03-03 and No. FIS2011-23520),
the Basque Government (Projects No. IT4720-10 and No.
IT559-10), and the support of the National Research Fund of
Hungary OTKA (Contract No. K83858). I.U.L. acknowledges
the support of a Ph.D. grant of the Basque Government.

[1] J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik, Phys. Rev.
Lett. 83, 1319 (1999).

[2] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature (London)
413, 400 (2001).

[3] V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M.
Itano, C. Monroe, and D. J. Wineland, Phys. Rev. Lett. 86, 5870
(2001).

[4] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys.
82, 1041 (2010).

[5] L. M. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev.
Lett. 85, 5643 (2000).

[6] A. Kuzmich, N. P. Bigelow, and L. Mandel, Europhys. Lett. 42,
481 (1998).

[7] J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K.
Hammerer, I. Cirac, and E. S. Polzik, Nature (London) 443,
557 (2006).

[8] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V.
Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).

[9] K. Eckert, P. Hyllus, D. Bruss, U. V. Poulsen, M. Lewenstein,
C. Jentsch, T. Muller, E. M. Rasel, and W. Ertmer, Phys. Rev. A
73, 013814 (2006).
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