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Detection of entanglement in bipartite states is a fundamental task in quantum information. The first method to
verify entanglement in mixed states was the partial-transpose criterion. Subsequently, numerous quantifiers for
bipartite entanglement were introduced, among them concurrence and negativity. Surprisingly, these quantities
are often treated as distinct or independent of each other. The aim of this contribution is to highlight the close
relations between these concepts, to show the connections between seemingly independent results, and to present
various estimates for the mixed-state concurrence within the same framework.
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I. INTRODUCTION

In quantitative entanglement theory, considerable effort
has been spent in developing many different entanglement
measures [1–3], while much less is known regarding the
relations between these measures and, in particular, their
connection to the resources they quantify. This has led to a
situation in which parts of quantitative entanglement theory
have the reputation of a certain arbitrariness, if not a lack
of meaning. As opposed to this, we believe that—given
a well-defined entanglement measure—there is a physical
resource (defined through a protocol) that is quantified by
this measure.

At present, there are only a few well-established links
between entanglement-related resources and their quantifiers
[4–10]. However, many more mathematical ways of charac-
terizing and quantifying entanglement are known than the
corresponding protocols using that entanglement. Therefore,
we think it is important to investigate and reveal the relations
between different concepts, i.e., their possible common origins
and essential differences, in order to introduce more structure
in the world of entanglement measures where it is possible.

The subject of this article exemplifies the coexistence and
apparent independence of different concepts in entanglement
characterization. The partial-transpose criterion [11,12] pro-
vided the first possibility to detect entanglement in arbitrary
mixed states. Later, numerous tools based on the partial
transpose were developed, such as decomposable entangle-
ment witnesses [13], negativity (and logarithmic negativity)
as an entanglement measure [14–17], combinations of the
latter in the detection of multipartite entanglement [18,19],
and others. On the other hand, the concurrence was first
introduced by Bennett et al. [5] as an auxiliary tool to compute
the entanglement of formation for Bell-diagonal two-qubit
states and then developed further by Wootters and co-workers
[20–22] who established concurrence as an entanglement

measure in its own right. Subsequently, generalizations to
the higher-dimensional case d × d (d > 2) as well as for
multipartite systems (e.g., Refs. [23–30]) were proposed.

There have been comparative studies of concurrence and
negativity (e.g., Refs. [15,31–35]); however, as far as we can
see, they continue to exist in separate research lines. Therefore,
we find it useful to present a discussion showing that both
negativity and concurrence can be directly related to the partial
transpose, and that both essentially determine the same type of
entanglement deriving from the Schmidt rank of a Bell state,
which results in various mathematical relations linking all of
these quantities.

Our paper is organized as follows. In Sec. II, we introduce
the most important concepts and notation. In Sec. III, we
discuss the links between partial transpose, concurrence, and
negativity for pure states. Finally, in Sec. IV, we extend
this discussion to mixed states. In particular, we study a
family of symmetric bipartite mixed states—the axisymmetric
states—for which the quantitative concepts of interest can be
derived exactly, thus providing both an illuminating illustration
as well as a powerful tool for further investigation.

II. DEFINITIONS

Throughout this article, we study bipartite quantum systems
with d-dimensional local parties (often termed d × d systems).
For their pure states, ψ ∈ H = HA ⊗ HB = Cd ⊗ Cd . Given
orthonormal bases {|j 〉A}, {|k〉B} for the two parties, a state ψ

can be written as

|ψ〉 =
d∑

j,k=1

ψjk|j 〉A ⊗ |k〉B ≡
d∑

j,k=1

ψjk|jk〉. (1)

The mixed states ρ are bounded positive operators acting on H
and can be represented as convex combinations of pure-state
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projectors πψ ≡ |ψ〉〈ψ | (with tr πψ = 1),

ρ =
∑

j

pjπψ, (2)

where pj � 0,
∑

j pj = 1. Importantly, such decomposition
of a mixed state is not unique, that is, there are infinitely many
pure-state ensembles representing a given state [36].

For each pure state ψ , there is a so-called Schmidt
decomposition (see, e.g., Ref. [37]),

|ψ〉 =
r(ψ)∑
j=1

√
λj |αjβj 〉, (3)

with λj � 0 and r(ψ) � d. The local Schmidt bases {|αj 〉A},
{|βj 〉B} can be obtained by suitable local unitary transfor-
mations from given local bases {|k〉A}, {|l〉B}. The Schmidt
rank r(ψ) is the number of nonvanishing Schmidt coeffi-
cients λj .

For mixed states, the generalization of the Schmidt rank is
the Schmidt number [38], defined as the smallest maximum
Schmidt rank occurring in any decomposition {(pj ,ψj )} of ρ,

r(ρ) = min
{(pj ,ψj )}

max
j

r(ψj ). (4)

Given a state ρ, we may trace out one of the parties
and obtain the reduced state of the other party ρA ≡ trB ρ

(and analogously for ρB). A well-known quantifier for the
entanglement of the pure state ψ is the concurrence

C(ψ) =
√

2
(
1 − tr ρ2

A

) =
√

2
(
1 − tr ρ2

B

)
. (5)

Note that sometimes the factor 2 is replaced by d/(d − 1);
however, this difference in normalization is not essential.
Interestingly, it was shown [24,25] that

C(ψ) =
√∑

jklm

|ψjmψlk − ψjkψlm|2

=
√

4
∑

j<l,k<m

|ψjmψlk − ψjkψlm|2, (6)

where cjklm ≡ ψjkψlm − ψjmψlk are the concurrence vector
components [25,31].

For mixed states ρ, the concurrence is given by the
minimum average concurrence taken over all decompositions
of ρ, the so-called convex roof [39],

C(ρ) = min
{(pj ,ψj )}

∑
j

pjC(ψj ). (7)

The convex roof is notoriously hard to evaluate, therefore it
is difficult to determine whether or not an arbitrary state is
entangled.

The partial transpose of a bipartite state ρ (with respect to
party B) is given by

ρTB =
⎡
⎣∑

jklm

ρjk,lm |jk〉〈lm|
⎤
⎦

TB

≡
∑
jklm

ρjk,lm |jm〉〈lk| . (8)

The partial transpose indicates entanglement of ρ if ρTB

has negative eigenvalues. The corresponding quantifier is the

negativity [14–17],

N (ρ) = 1
2 (||ρTB ||1 − 1), (9)

where ||M||1 ≡ tr
√

M†M is the trace norm of the matrix M .
The huge advantage of the negativity is that it can easily
be computed for any mixed state, however, at the price that
entanglement in states with a positive partial transpose (PPT)
is not detected.

A related quantity which does detect PPT entanglement but,
again, is hard to compute is the convex-roof extended negativity
(CREN) [40,41],

N CREN(ρ) = min
{(pj ,ψj )}

∑
j

pjN (ψj ). (10)

It is the largest convex function that coincides with N (ψ) on
the pure states, that is, N CREN(ρ) � N (ρ).

An important property of concurrence and negativity is that
they are both invariant under local unitary transformations.
The Schmidt rank does not change under arbitrary invertible
local operations.

III. PURE STATES

The relation between pure-state concurrence and the partial
transpose was studied before (e.g., [31,35]), but we find it
important to make it very explicit here because this will directly
connect to the negativity and show what is actually quantified
by these measures. Moreover, we discuss how concurrence
and negativity can be viewed as �p norms of the concurrence
vector.

A. Partial transpose and concurrence

Assume the pure state φ is a tensor product,

|φ〉 =
∑
jk

φjk |jk〉

= |a〉 ⊗ |b〉 =
∑
jk

ajbk |jk〉 , (11)

so that the corresponding projector can be written as

πφ =
∑
jklm

φjkφ
∗
lm |jk〉〈lm|

=
∑
jklm

ajbka
∗
l b

∗
m |jk〉〈lm| . (12)

The matrix elements of the partial transpose of πφ instead read(
π

TB

φ

)
jk,lm

= φjmφ∗
lk = ajb

∗
ka

∗
l bm. (13)

Therefore, for any product state φ, we have∣∣(πTB

φ

)
jk,lm

∣∣2 − (
π

TB

φ

)
jk,jk

(
π

TB

φ

)
lm,lm

= |φjmφlk|2 − |φjkφkm|2 = |φjmφlk − φjkφlm|2 = 0.

(14)

A state that does not fulfill condition (14) cannot be a
product state. Since violation of Eq. (14) may occur for any
combination of level pairs (j,l) for party A and (k,m) for B,
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we define

C̃(ψ)2 ≡
∑
jklm

|ψjmψlk − ψjkψlm|2 (15)

as a quantifier for the violation of the product-state condition
for the state ψ . By comparing Eqs. (6) and (15), we see that
C̃(ψ) coincides with the d × d concurrence C(ψ). That is, for
a pure state ψ , the squared concurrence is simply a measure
for the total violation of the PPT-type condition (14).

Because of the local unitary invariance of C(ψ) (see
Sec. III C), it suffices to compute the concurrence for the
Schmidt decomposition |ψ〉 = ∑√

λj |αjβj 〉 of ψ , and one
obtains

C(ψ) =
√

2
∑
jk

|√λjλkδjk − √
λjλk|2

= 2
√∑

j<k

λjλk. (16)

That is, the concurrence is identical to the case k = 2 of the
concurrence monotones Ck defined by Gour [42], i.e., the kth
elementary symmetric function of the Schmidt coefficients
taken to a power so that it is homogeneous of degree 2 in the
state coefficients (note the different normalization of C2(ψ)
in Ref. [42]).

Consider now the (maximally entangled) Bell state of
rank r ,

|�r〉 = 1√
r

r∑
j=1

|jj 〉 . (17)

The corresponding concurrence equals

C(�r ) =
√

2(r − 1)

r
. (18)

We see that the concurrence grows monotonically with the
Schmidt rank of �r . For rank-r states which are not maximally
entangled, the concurrence clearly is smaller than C(�r ); in a
sense, it attributes an “effective rank” reff = 1

1− 1
2 C2 < r to the

state.

B. Negativity

Again, because of the local unitary invariance, we can
compute the negativityN (ψ) from the Schmidt decomposition
|ψ〉 = ∑√

λj |αjβj 〉,
N (ψ) =

∑
j<k

√
λjλk. (19)

In particular, for the Bell states �r , we find

N (�r ) = 1

2

[
2
r(r − 1)

2

1

r

]
= r − 1

2
. (20)

That is, in analogy with the concurrence, the negativity
“counts” the Schmidt rank, if the state is maximally entangled.
The word “counting” can be taken literally here due to the
linear dependence of N (�r ) on r (cf. Ref. [43]).

Thus, we see that both concurrence and negativity quantify
the Schmidt rank, albeit in a mathematically different manner.

If a state ψ is not maximally entangled, both measures
attribute a kind of effective rank to it, which is smaller than
that of the maximally entangled state locally equivalent to
ψ [that is, equivalent under stochastic local operations and
communication (SLOCC)].

From Eqs. (18) and (20), it is evident that the negativity
gives equal weight to each Schmidt rank increment, while
the concurrence favors increments at lower Schmidt ranks.
It is not difficult to track down the origin of this difference
by comparing the squared equations (16) and (19). The
squared concurrence contains only the products of two
different Schmidt coefficients, while the squared negativity
has contributions also from products of up to four Schmidt
coefficients.

Moreover, the negativity keeps increasing linearly with the
Schmidt rank, while the concurrence converges to a finite
value. This means that adding more dimensions to a state which
already has high Schmidt rank practically does not augment
the concurrence. This hints at the fact that concurrence and
negativity, both being related to the Schmidt rank of the
state, quantify qualitatively different resources: The resource
quantified by the concurrence is already present to a high
degree in a state with relatively low Schmidt rank, and can be
improved beyond that only marginally. On the other hand, the
negativity can grow without a limit on increasing the Schmidt
rank, and this should also apply to the corresponding resource.

C. Concurrence, negativity, and � p norms

From Eq. (6) and also from the derivation of condition (14)
leading to the total violation of the PPT condition, we see that
the concurrence formally looks like the length of a Euclidean
vector, i.e., it can be regarded as the �2 norm of the concurrence
vector. However, in our derivation of condition (14), it was by
no means necessary to use the square of |ψjmψlk − ψjkψlm|.
The last line of Eq. (14) is correct also without squaring it.
Hence, we could have introduced a total violation of the PPT
condition also as

Ñ (ψ) ≡ 1

4

∑
jklm

|ψjmψlk − ψjkψlm|. (21)

Now, comparing Eq. (21) with the negativity calculated from
the Schmidt decomposition, given by Eq. (19), it is tempting
to conclude that the pure-state negativity actually equals the
�1 norm of the concurrence vector [44], i.e., N (ψ) = Ñ (ψ).
Unfortunately, this is not correct in general. The reason is
that the right-hand side in Eq. (21) may increase under
local unitaries, and thus cannot represent an entanglement
monotone.

To put it in different words, the negativity of a pure state
ψ equals the �1 norm (21) of the concurrence vector cjklm =
(ψjkψlm − ψjmψlk) if ψ is given in the Schmidt basis. Then,
this �1 norm assumes its minimum,

N (ψ) = min
local bases

Ñ (ψ), (22)

while for other local bases, it is larger. Clearly, since the
minimum of the �1 norm (22) equals the negativity, it is an
entanglement monotone; however, the �1 norm written in a
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different basis is not (it is not even invariant under local
unitaries).

Now we will prove that Ñ (ψ) is minimized for ψ given
in the Schmidt basis (3). To this end, consider local unitaries
U and V applied to the parties of ψ written in the Schmidt
basis,

ψ̃ab =
∑
mn

UamVbnψmn ≡
∑
mn

UamVbn

√
λmδmn, (23)

and use this in Eq. (21) to express Ñ (ψ̃) as

Ñ (ψ̃) = 1

4

∑
aa′bb′

|ψ̃abψ̃a′b′ − ψ̃ab′ψ̃a′b|

= 1

4

∑
aa′bb′

∣∣∣∣∣
∑
mn

UamUa′n (VbmVb′n − VbnVb′m)
√

λmλn

∣∣∣∣∣ .
In order to proceed, we note that

∑
aa′bb′

∣∣∣∣∣
∑
mn

UamUa′n (VbmVb′n − VbnVb′m) xmn

∣∣∣∣∣
2

= 2
∑
mn

|xmn|2 , (24)

which is easily seen by expanding |y|2 = yy∗. This relation
also implies local unitary invariance of the concurrence.

By substituting xmn = (
√

λmλn − 1) in Eq. (24) and apply-
ing the triangle inequalities |a − b| � ||a| − |b|| � |a| − |b|,
we obtain

2
∑
m
=n

√
λmλn

�
∑
aa′bb′

∣∣∣∣∣
∑
mn

|UamUa′n (VbmVb′n − VbnVb′m)
√

λmλn

∣∣∣∣∣
×

∣∣∣∣∣
∑
mn

|UamUa′n (VbmVb′n − VbnVb′m)

∣∣∣∣∣ . (25)

The last factor on the right-hand side is �1, by virtue of the
Cauchy-Schwarz inequality and the normalization of columns
of unitary matrices. Hence, we have

N (ψ) = N (ψ̃) =
∑
m>n

√
λmλn � Ñ (ψ̃), (26)

where, as defined above, ψ is a state given in the Schmidt
basis, while ψ̃ is obtained from ψ by applying local
unitaries.

Finally, it is easy to construct an example showing that,
indeed, Ñ can increase under local unitaries; consider, e.g.,
�3 and apply a Hadamard transform in the subspace {|1〉 , |2〉}.
This concludes the proof.

D. Inequalities for concurrence and negativity

By using the results of the previous section, a number
of interesting inequalities connecting concurrence, negativity,
and Schmidt rank can be proven.
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FIG. 1. (Color online) Concurrence vs negativity for 1000 ran-
dom pure states [45] (blue dots) with d = 4 and r � 3. The green
lines represent the upper and lower bounds in Eq. (27).

We have already mentioned that for a pure state ψ ∈ Cd ⊗
Cd of Schmidt rank r ,

C(ψ) �
√

2(r − 1)

r
,

N (ψ) � r − 1

2
.

Furthermore, we see that

2N (ψ) � C(ψ) � 2

√
2

r(r − 1)
N (ψ). (27)

The first of these inequalities can be readily deduced from
Eqs. (16) and (19), while the second is a consequence of
the fact that the quadratic is larger than the arithmetic mean.
Obviously, for pure states of two qubits, the negativity equals
the concurrence divided by two.

In Fig. 1, we illustrate the bounds of Eq. (27) by plotting the
concurrence and negativity for many randomly chosen pure
states. Clearly, those linear estimates are not the best ones
possible. In fact, the evident (curved) boundaries for the con-
currence values can be obtained by analytically maximizing
or minimizing the concurrence for given negativity and rank
of the state.

IV. MIXED STATES

The estimation of the Schmidt number and the concurrence
for arbitrary mixed states is an important problem, both for
theory and experiment. By combining the results for pure
states and some recent ideas [29,43], one obtains an interesting
toolbox for practical applications.

A. Concurrence, negativity, and Schmidt number

The great advantage of the negativity is that it can also
be evaluated for arbitrary mixed states, as opposed to the
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Schmidt number or the concurrence. We will now discuss some
relations connecting the negativity to the other two quantities.

It has been shown only recently [43] that the negativity can
actually be used as a lower bound on the Schmidt number. Let
us assume that we are given a mixed state ρ of a d × d system
and a decomposition {(pj ,ψj )} that optimizes the Schmidt
number r(ρ). Then we have

N (ρ) �
∑

j

pjN (ψj ) �
∑

j

pj

r(ρ) − 1

2
� r(ρ) − 1

2
,

from which follows

r(ρ) � 2N (ρ) + 1. (28)

Here we have used Eq. (20) and the convexity of negativity.
An analogous inequality can be derived for the concurrence

C(ρ) �
∑

j

pjC(ψj ) �
√

2[r(ρ) − 1]

r(ρ)
, (29)

from which we arrive at

r(ρ) � 1

1 − 1
2C(ρ)2

. (30)

This relation is essentially different from Eq. (28). On the one
hand, finding a useful lower bound for the concurrence might
be more difficult than calculating the negativity. On the other
hand, for PPT-entangled states, Eq. (28) is not useful.

We can also find inequalities for the concurrence and the
negativity. From the first inequality in Eq. (27), it follows that

2N CREN(ρ) � C(ρ), (31)

while from the second inequality of Eq. (27), for an optimal
decomposition {(pj ,ψj )} of the concurrence (cf. [31,35]), we
get

C(ρ) =
∑

j

pjC(ψj ) � 2
∑

j

pj

√
2

rj (rj − 1)
N (ψj )

� 2

√
2

r(r − 1)
N CREN(ρ)

� 2

√
2

r(r − 1)
N (ρ), (32)

where rj = r(ψj ) and r = max rj . If r is not known, it can be
replaced by the dimension d.

We mention that the two-qubit concurrence divided by
two equals the convex-roof extended negativity N CREN [cf.
Eq. (27)], and the negativity N is a lower bound to the latter.
Therefore, the 2 × 2 negativity never exceeds the concurrence
divided by two, as noted in Ref. [31]. In contrast, for higher
local dimension d > 2, the negativity may be larger than half
the concurrence (e.g., Bell states), but it may also be smaller
(e.g., PPT-entangled states).

B. Systematic lower bounds for concurrence

Already from the discussion in the preceding section, it
can be seen that it is desirable to have systematic ways for
estimating the mixed-state concurrence. However, this has

proven difficult over the years. Only recently, an elegant
method was devised by Huber and co-workers (based on earlier
ideas [46,47]) to lower bound concurrence-type entanglement
measures; see, e.g., Refs. [29,30]. While in those references the
focus is on multipartite states, we apply it here in the simpler
case of bipartite states.

The method proceeds in two steps. First, we estimate the
pure-state concurrence directly from Eq. (6). Subsequently, we
show that the resulting inequality applies to mixed states. We
select a set M of μ pairs {jk,lm}(j < l,k < m) and estimate
the corresponding terms in Eq. (6) using the triangle inequality
and the inequality between the arithmetic and quadratic mean,

C(ψ) � 2√
μ

∑
jklm∈M

|ψjkψlm − ψjmψlk|

� 2√
μ

∑
jklm∈M

|ψjkψlm| −
√

|ψjm|2|ψlk|2. (33)

The convex-roof construction for the concurrence and the
convexity of the functions on the right-hand side of Eq. (33)
guarantee that we can replace all state components by the
corresponding density matrix elements so that

C(ρ) � 2√
μ

∑
jklm∈M

|ρjk,lm| − √
ρjm,jmρlk,lk. (34)

Because of the local unitary invariance of the concurrence,
one can maximize this lower bound simply by changing local
bases.

A nice application of this inequality results if we choose M
such that it specifies the off-diagonal matrix elements ρjj,kk

(j < k) of the Bell-state projector π�d
, i.e., μ = 1

2d(d − 1).
For simplicity, we replace the square-root terms by 1

2 (ρjk,jk +
ρkj,kj ) � √

ρjk,jkρkj,kj and obtain

C(ρ) �
√

2

d(d − 1)

∑
j<k

(ρjj,kk + ρkk,jj − ρjk,jk − ρkj,kj )

�
√

2

d(d − 1)

⎡
⎣−1+

∑
j<k

(ρjj,kk + ρkk,jj )+
∑

j

ρjj,jj

⎤
⎦

�
√

2d

d − 1

[
〈�d |ρ|�d〉 − 1

d

]
(35a)

�
√

2d

d − 1
tr

(
ρ

[
|�d〉〈�d | − 1

d
1ld2

])
, (35b)

which is a concurrence estimate from the optimal Schmidt
number witness [48] (for Schmidt number 2).

We can even improve this bound by optimization over
local unitaries. In this way, we encounter another well-known
quantity, namely, the fully entangled fraction F [5],

F(ρ) = max
UA,UB

〈�d | (UA ⊗ UB)ρ(UA ⊗ UB)† |�d〉 , (36)

and Eq. (35a) then reads

C(ρ) � max

(
0,

√
2d

d − 1

[
F(ρ) − 1

d

] )
, (37)

which is a result found in Ref. [49].
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C. Axisymmetric states

We conclude our survey by considering a nontrivial family
of mixed states for which the quantitative concepts we have
discussed can be evaluated exactly for all finite dimensions d.
This family is called axisymmetric states [43]. In d dimensions,
it includes all of those states that have the same symmetries as
the Bell state �d , given by Eq. (17), namely,

(i) permutation symmetry of the two qudits,
(ii) symmetry with respect to simultaneously exchanging

two levels for both qudits, e.g., |1〉A ↔ |2〉A and |1〉B ↔ |2〉B ,
(iii) simultaneous (local) phase rotations of the form

V (ϕ1,ϕ2, . . . ,ϕn−1) = ei
∑

ϕj gj ⊗ e−i
∑

ϕj gj , (38)

where gj are the (d − 1) diagonal generators of SU(d).
Note that the period of the phase angles ϕj depends on the
normalization of the generators gj . For axisymmetric states,
qubit permutation symmetry is implied by the requirements
(ii) and (iii).

After discussing the symmetries of axisymmetric states,
we will show how to parametrize them. In any dimension d,
the d × d axisymmetric states are parametrized by two real
numbers. This can be seen as follows. The phase rotation
symmetry eliminates all off-diagonal components which are
not of the form ρjj,kk . Qudit permutation and simultaneous
level exchange symmetry are possible only if all off-diagonal
elements are real and equal (one parameter) and there are
only two different types of diagonal elements (ρjk,jk for
j = k and j 
= k) which give one more parameter, due to the
normalization constraint tr ρ = 1. Based on the ideas above,
we have the following parametrization:

ρaxi
jj,jj = 1

d2
+ a, ρaxi

jk,jk = 1

d2
− a

d − 1
(j 
= k) (39)

(j,k = 1, . . . ,d), and off-diagonal entries

ρaxi
j l,km =

{
b for l = j, m = k

0 otherwise. (40)

Let us now determine the limits for the parameters for
physical states. We are free to choose the length scales of
a and b in such a way that in a graphical representation,
the lengths are the same as in state space, and hence
geometrical intuition can be directly applied to the figures.
Here the length in state space DHS(A,B) is defined via
the Hilbert-Schmidt scalar product D2

HS(A,B) = tr(A − B)
(A − B)†. The appropriate scaling factors for the coordinates
x and y are

a = y

√
d − 1

d
, b = x√

d(d − 1)
, (41)

from which we can compute the boundary of the axisymmetric
states,

− 1

d
√

d − 1
� y �

√
d − 1

d
, (42a)

− 1√
d(d − 1)

� x �
√

d − 1

d
, (42b)

1

25

5

2
3

4
52

1

2 5

1

5

2

5

x
1

10

2

5

y

FIG. 2. (Color online) The family of d × d axisymmetric states
ρaxi for d = 5. It is characterized by two real parameters x and
y describing the off-diagonal matrix elements and the asymmetry
between the two types of diagonal elements, respectively [see
Eqs. (39)–(41)]. The upper right corner corresponds to the �d , the
only pure state in the family. The completely mixed state 1

d2 1ld2 is
located at the origin so that the isotropic states lie on the solid green
line connecting the origin with the upper right corner. Note that this
line is divided by the Schmidt number regions in d parts of equal
length. Hence the relative area of the separable states (compared to
the total area of the triangle) tends to zero for d → ∞ so that for
axisymmetric states of large local dimension d , separability is the
peculiar feature, rather than entanglement, in agreement with the
conclusion for the entire state space in Ref. [14].

as well as

− 1√
d

(
y + 1

d
√

d − 1

)
� x � d − 1√

d

(
y + 1

d
√

d − 1

)
,

(43)

i.e., we find a triangular shape for this family (cf. Fig. 2). In this
parametrization, the completely mixed state 1

d2 1ld2 is located
at the origin, while the Bell state �d (the only pure state in the
family) appears in the upper right corner.

Based on the considerations above, we can conclude that
the important isotropic states [50],

ρ iso = p |�d〉〈�d | + 1 − p

d2
1ld2 , (44)

form a subfamily of the axisymmetric states. This is not a
surprise because the symmetry group of the isotropic states is
U ⊗ U ∗, where U is an arbitrary local unitary and U ∗ is its
complex conjugate. The simultaneous phase rotations given
by Eq. (38) form a subgroup of U ⊗ U ∗ (and isotropic states
obey permutation and level exchange symmetry), and hence
the isotropic states must be a subset of the axisymmetric family.

A particular advantage of state families defined via sym-
metries is that it is possible to project an arbitrary state into
the families by averaging over the given symmetries [51].
Correspondingly, isotropic states can be obtained by averaging
(often termed twirling) over local unitaries U ,

Piso(ρ) =
∫

dU (U ⊗ U ∗)ρ(U ⊗ U ∗)†, (45)

while axisymmetric states arise from twirling over the oper-
ations V including permutations and the local unitaries V in
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Eq. (38),

Paxi(ρ) =
∫

dVVρV†. (46)

In these expressions, the integral
∫

dX denotes the average
over the corresponding symmetry group including the discrete
symmetries. We mention already at this point that these
averages do not increase the entanglement in the projection
Paxi : ρ → ρaxi (and analogously for isotropic states) because
neither permutations nor local unitaries or mixing can increase
entanglement.

The procedure for performing the average in Eq. (46) in
practice is easy: Given an arbitrary d × d state ρ, the matrix
elements of its projection ρaxi(ρ) are

ρaxi
jj,jj = 1

d

∑
m

ρmm,mm, (47a)

ρaxi
jk,jk = 1

d(d − 1)

∑
m
=n

ρmn,mn(j 
= k), (47b)

with j,k = 1, . . . ,d, and off-diagonal elements

ρaxi
jj,kk = 1

d(d − 1)

∑
m>n

(ρmm,nn + ρnn,mm), (48a)

ρaxi
jk,lm = 0 for k 
= j or l 
= m. (48b)

D. Entanglement of axisymmetric states

The optimal Schmidt number witness [48]

W = k − 1

d
1ld2 − |�d〉〈�d | (49)

for Schmidt number k can be used to detect the exact
boundaries of the different SLOCC classes (for x > 0), that
is, the regions of different Schmidt number (see Fig. 2). While
for x < 0 the witness cannot be applied, one can check that
the projection Paxi(ψ0) of the product state |ψ0〉 = 1

2 (|1〉 +
|2〉) ⊗ (|1〉 − |2〉) is the endpoint of the border for separable
states. It is also easy to verify that above the line connecting

this point with the separable state at (x = 0,y =
√

d−1
d

), the
negativity becomes nonzero, but does not exceed 1. The state
at the upper left corner is a state of, at most, r = 2 since it is
the projection of 1√

2
(|11〉 − |22〉), and therefore the entangled

states for x < 0 must have r = 2.
The states with Schmidt number �k belong to convex sets

Sk and form a hierarchy S1 ⊂ S2 ⊂ . . . ⊂ Sd . Schmidt number
k = 1 corresponds to separable states (see Fig. 2). Notably, all
of the boundaries are represented by straight lines. In fact,
this is a hint that the bipartite case—even for large d—is
more treatable than the multipartite case, where also for highly
symmetric families of states the borders between entanglement
classes are complicated (cf. [52]).

Let us now consider the entanglement quantitatively. The
formula for the negativity (9) is readily applied to ρaxi and

FIG. 3. (Color online) Negativity for the axisymmetric states
with d = 5 according to Eq. (50). The results for the concurrence
C(ρaxi) are qualitatively identical; the only difference is a scaling

factor 1
2

√
2d

d−1 . The solid red lines indicate the borders between

entanglement classes. Note that these are lines of constant fidelity,
thus providing a nice illustration for the estimate in Eq. (37).

gives

N (ρaxi(x,y)) = max

{
0,

1

2

[√
d(d − 1)|x|

+ √
d − 1y − d − 1

d

]}
. (50)

On the other hand, by using the lower bound (34) for the
concurrence, we obtain

C(ρaxi(x,y)) � max

{
0,

√
2

d(d − 1)

[√
d(d − 1)|x|

+ √
d − 1y − d − 1

d

]}
. (51)

These results (see Fig. 3) are remarkable for several reasons.
Both concurrence and fidelity estimates depend linearly on
|x| and y coordinates. Since Eqs. (50) and (51) include the
exact values for the pure state �d , and their graphs are planes,
there cannot be a larger convex function containing N (�d )
and C(�d ) than these graphs. Hence, the formulas (50) and
(51) represent the exact solutions for the convex-roof extended
negativity and the concurrence of axisymmetric states, respec-
tively. Moreover, it follows that all PPT axisymmetric states are
separable. We mention that the concurrence result restricted to
the isotropic states was found in Ref. [26].

Another immediate consequence is that the integer part
of [2N (ρaxi) + 1] changes by 1 whenever a border between
SLOCC classes, i.e., Schmidt numbers for ρaxi, is crossed.
That is, for axisymmetric states, Eq. (28) can be written as

r(ρaxi) = �2N (ρaxi)� + 1, (52)

with the ceiling function �x� denoting the smallest integer
greater than or equal to x.

Concluding this section, we discuss yet another procedure
to determine a lower bound for the convex-roof extended
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negativity and the concurrence of arbitrary d × d states ρ.
As we have mentioned before, the symmetrization given by
Eqs. (46)–(48b) does not increase the entanglement,

N CREN(Paxi(ρ)) � N CREN(ρ),

C(Paxi(ρ)) � C(ρ), (53)

so that after symmetrizing ρ, we can simply read off the value
for N CREN(Paxi(ρ)) or C(Paxi(ρ)) from Fig. 3. As discussed in
Sec. IV B, we can maximize the state ρ over local unitaries
before projecting it and thus obtain an optimized lower bound.

It is interesting to note that for the concurrence, this bound
coincides with the one obtained from Eq. (37). The latter can
be regarded as the result of a projection of the optimized
state onto the isotropic states. Thus we see that one does
not lose entanglement information projecting directly onto the
isotropic rather than the axisymmetric states. This is a direct
consequence of the fact that essential entanglement-related in-
formation of a bipartite state is contained in its fidelity with the
maximally entangled state �d , i.e., the fully entangled fraction.

V. CONCLUSION

We have pointed out and made explicit that not only
negativity but also concurrence is closely related to the partial
transposition of a d × d density matrix. In fact, both measures
may be understood and derived as quantifiers for the violation
of the PPT criterion in pure states. We have discussed that
both negativity and concurrence quantify the Schmidt rank of

a pure state, however, in different mathematical ways, which
hints at the fact that they quantify different resources. Finally,
we have shown that while the concurrence equals the �2 norm
of the concurrence vector of a pure state, the negativity is in
general larger than the �1 norm of the concurrence vector. The
negativity equals that �1 norm if the pure state is written in the
Schmidt decomposition.

These relations between negativity and concurrence lead
to various estimates for those measures (as well as for the
Schmidt number) in mixed states. A particularly nice result
is that the negativity represents a direct lower bound to the
Schmidt number of a state, given by Eq. (28). In the last section,
we have provided an extensive discussion of the axisymmetric
states, i.e., a nontrivial family of highly symmetric d × d states
for which all of the entanglement properties studied in this
article can be calculated exactly.
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[8] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401

(2009).
[9] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W.

Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Phys. Rev.
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