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Optimized parameter estimation in the presence of collective phase noise
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We investigate phase and frequency estimation with different measurement strategies under the effect of
collective phase noise. First, we consider the standard linear estimation scheme and present an experimentally
realizable optimization of the initial probe states by collective rotations. We identify the optimal rotation angle for
different measurement times. Second, we show that subshot noise sensitivity—up to the Heisenberg limit—can
be reached in presence of collective phase noise by using differential interferometry, where one part of the system
is used to monitor the noise. For this, not only Greenberger-Horne-Zeilinger states but also symmetric Dicke
states are suitable. We investigate the optimal splitting for a general symmetric Dicke state at both inputs and
discuss possible experimental realizations of differential interferometry.
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I. INTRODUCTION

Quantum metrology offers the promise to measure certain
parameters with a higher precision than using classical
resources only. More precisely, given a physical process �(ϕ)
depending on a parameter ϕ, one can estimate ϕ with higher
accuracy, if the process is applied to an entangled state of
N particles instead of N separate particles in individual
states. In the typical case, ϕ is a phase acquired by a unitary
evolution, which can, using entanglement, be determined with
an accuracy of (�ϕ)2 ∝ 1/N2, the so-called Heisenberg limit
(HL). Contrary to that, with separable states the standard
quantum limit (SQL) (�ϕ)2 ∝ 1/N is an upper bound on the
precision [1–8].

In any real application, however, errors are unavoidable and
one has to ask whether quantum metrology offers an advantage
even in the presence of noise and decoherence. Here, it was
realized that noise can have a detrimental effect [9,10]. In
fact, for generic noise models and estimation schemes, where
the same unitary evolution is applied to all particles, it was
shown that the Heisenberg scaling cannot be retained. This
does not necessarily mean that quantum effects do not offer
any advantage anymore, but it shows that one has to consider
specific situations and noise models in detail, in order to find
the best quantum mechanical estimation scheme. In fact, it
has been shown that for very specific models the Heisenberg
scaling can still be achieved [11] and also ideas from quantum
error correction can be used to fight against noise [12–14].
Finally, for specific noise models the optimal states for large
numbers of particles have been determined [15].

In this paper, we investigate phase and frequency estimation
under the effect of collective phase noise, which is a typical
noise model for ion trap experiments [16]. In the first
part, we consider the standard linear estimation scheme and
optimize the initial probe states under collective rotations. It
turns out that even with this optimization the states do not
provide a significant advantage over separable states, hence
new concepts are needed. In the second part, we consider
differential interferometry (DI) as such an alternative concept.
In DI the time evolution is only applied to a subset of the

particles, while the other particles are used to monitor the noise
only. This means that the known negative results [9,10] do not
apply. We use the scenario of DI as introduced in Ref. [17],
where it was shown already that DI can sometimes be useful
for suppressing decoherence. For our noise model, we present
a detailed study of which states are optimal and how many
particles should be used for applying the time evolution and
how many particles should be used for monitoring the noise
only. It turns out that a Heisenberg scaling can be reached
again. Finally, we briefly discuss possible implementations of
DI using trapped ions.

This paper is organized as follows: In Sec. II we describe
the metrology scheme and the noise model that we are using.
In Sec. III we determine the optimized states for standard
interferometry using our noise model. Section IV deals with
differential interferometry. We explain the scheme and discuss
the optimal states. We also comment on possible experimental
implementations. Finally, we conclude and discuss further
open problems. In the Appendices we present detailed cal-
culations and derivations.

II. THE SET-UP AND THE NOISE MODEL

In standard metrological schemes [see Fig. 1(a)], N

particles are in an initial state �0. A time evolution depending
on the parameter ϕ acts on each particle individually. The
goal is to estimate this parameter ϕ by measurements. In
classical schemes, the particles are only classically correlated
and therefore initially in a separable state. The variance for
measuring ϕ is bounded by the so-called standard quantum
limit (SQL) (�ϕ)2 ∝ 1/N . In quantum metrology the particles
can be entangled. With such states the Heisenberg limit
(HL) (�ϕ)2 ∝ 1/N2 can be reached theoretically [3–6]. As a
consequence, there is an enhancement in precision by a factor
of 1/N by using entangled states.

However, in realistic experiments, noise affects the particles
and reduces the entanglement and thereby the enhancement
of using entangled states. These noise effects arise because
the probe system cannot be perfectly separated from their
environment. A possible effect is that the energy splitting
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(a) (b)

FIG. 1. Measurement schemes in quantum metrology. A map �ϕ is acting on each particle individually. The linear map �ϕ depends on the
parameter ϕ. This parameter will be estimated by a measurement. (a) All particles are initially in a separable or entangled state. (b) Differential
Interferometry. The initial state is a bipartite state with N1 particles in the first partition and N − N1 in the second partition. The linear map �ϕ

acts on the particles of the second partition only.

of the two-level system depends on the noise influenced by
the environment. This causes the level splitting to fluctuate
in time. An example of such noise effects are magnetic field
fluctuations in systems with magnetic field-dependent energy
splitting. In the simplest noise model, all qubits receive the
same fluctuations, this is also called collective phase noise.

Collective phase noise is, besides micromotion, the main
source of noise in experiments with ions as described in
Ref. [16]. In experiments with atoms, the trapping potential
is fluctuating in time. Those fluctuations also cause collective
phase noise, which is besides particle loss the main source of
noise in experiments with atoms. Without loss of generality
we assume magnetic field fluctuations in time as noise
source in this paper. However, noise due to trapping potential
fluctuations can be described with the same noise model.

In a realistic experiment, the Hamiltonian for N particles
with the atomic transition frequency ω0 and the additional
Zeeman splitting due to the magnetic offset field B0 and the
magnetic field fluctuations �B(t) is given by

H = �(ω0 + γB0︸ ︷︷ ︸
=ω

)SN
z + �γ�B(t)SN

z , (1)

with the transition frequency ω. Here SN
l = ∑N

i=1 σ
(i)
l /2 is the

collective spin operator acting on N particles with l ∈ {x,y,z}
and the Pauli matrices σ

(i)
l acting on the ith ion. The free

evolution time τ ∈ [0,T ] of the initial state �0 can be described
by the unitary operator:

U = exp

[
−i

(
ωT + γ

∫ T

0
dτ�B(τ )

)
SN

z

]
. (2)

Here, the magnetic field fluctuations cause phase fluctuations
such that the overall phase at a fixed time T is 
 = ωT +
γ

∫ T

0 dτ�B(τ ) = ωT + δϕ. We decompose this unitary into
two commuting parts as U = Uz(ωT )Uz(δϕ), where Uz(ωT )
describes the signal and Uz(δϕ) the noise, with Ul(α) =
exp[−iαSN

l ]. The state evolution due to the noise can be
described by

�̄T = 〈Uz(δϕ)�0U
†
z (δϕ)〉δϕ, (3)

with 〈.〉δϕ denoting the average over all phase fluctuations δϕ.
The final state � at a fixed time T is determined by

� = Uz(ωT )〈Uz(δϕ)�0U
†
z (δϕ)〉δϕU †

z (ωT ) (4)

= Uz(ωT )�̄T U †
z (ωT ). (5)

In the following, we make three well-justified assumptions,
following Ref. [16]: First of all, we assume Gaussian phase
fluctuations with 〈δϕ〉δϕ = 0. This means that there is no
systematic time-dependent bias due to phase fluctuations.
Second we assume the time correlation 〈�B(t)�B(0)〉 =
�B2exp[−t/τc] to decay exponentially with the correlation
time τc and the fluctuation strength �B. Third, the noise
process can be regarded as stationary 〈B(t + τ )B(t)〉 =
〈B(τ )B(0)〉.

The uncertainty achievable with the help of the time-
dependent probe state �(T ) is lower bounded by the quantum
Fisher information (QFI) FQ via the Cramér-Rao bound
[2,18–21]

(�ϕ)2 � 1

FQ

. (6)

The QFI FQ[�0,�ϕ] is defined as

FQ[�0,�ϕ] = 2
∑
α,β

|〈α|∂ϕ�|β〉|2
λα + λβ

, (7)

with the eigenvalues {λα} and the eigenvectors {|α〉} of the
initial state �0. The QFI does only depend on the initial state
and the change of the state ∂ϕ� due to the linear map � =
�ϕ(�0) and optimizes over all possible measurements. For the
time evolution given by Eq. (2), the QFI for the parameter
ϕ = ωT is given by

F
ϕ

Q

[
�̄T ,SN

z

] = 4
∑
α<β

(λα − λβ)2

λα + λβ

∣∣〈α|SN
z |β〉∣∣2

, (8)

with the eigenvalues {λi} and the eigenvectors {|vi〉} of the
averaged state �̄T given in Eq. (3). For the estimation of the
frequency ω we find Fω

Q[�̄T ,T SN
z ] = T 2F

ϕ

Q[�̄T ,SN
z ].

In the following, we investigate the performance of different
probe states depending on time. For this estimate, we assume
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typical field fluctuations on the order of γ�B = 2π · 50 Hz
and correlation time τc = 1 s (see, e.g., Ref. [22]).

III. PHASE AND FREQUENCY ESTIMATION WITH
ROTATED GHZ AND SYMMETRIC DICKE STATES

In the noiseless case, Greenberger-Horne-Zeilinger (GHZ)
states [23] are known to be best for phase estimation in
order to reach the HL. Under collective phase noise, they
are optimal for frequency estimation, if the measurement
time can be optimized [15], which is not always possible.
They have been realized in several experiments with photons
[24,25] and trapped cold ions [16,26,27]. It is known that GHZ
states are highly sensitive to particle loss. Losing a particle
transforms the state to a separable state, which is useless
from a metrological perspective. Dicke states [28] are much
more robust to particle loss, which makes them interesting for
quantum metrology and quantum information processing with
BEC’s [29], photons [30], and trapped cold ions [31]. A simple
way to enhance the robustness of GHZ and symmetric Dicke
states are collective rotations. Therefore, we will investigate
for both, phase and frequency estimation, probe states over
collective rotations and test their enhancement in comparison
to product states in experiments with collective phase noise.

A. GHZ states

The QFI for the GHZ state |GHZ〉 = (|0〉⊗N + |1〉⊗N )/
√

2
under collective phase noise is given by

F
ϕ

Q

[
�̄T ,SN

z

] = N2e−N2C(T ), (9)

with C(T ) = (γ�Bτc)2[exp(−T/τc) + T/τc − 1] (see Ap-
pendix A for a detailed calculation). The same result can be
obtained by solving the master equations for collective phase
noise as has be done in Ref. [15] with (�B)2 = 2/(γ τc)2.
This result shows that in the noiseless case, when T = 0, the
HL F

ϕ

Q = N2 can be reached. For T > 0, the QFI decreases,
because the state evolves into a mixed state. The larger N , the
faster the QFI decreases. For frequency estimation, the QFI
increases with T 2 for small T and decreases exponentially
in time for larger T . As a result, there exists an optimal
measurement time.

A simple experimentally realizable optimization over the
input state are collective rotations:

Uy(α) = exp
[−iαSN

y

]
. (10)

These rotations can be realized with a short laser pulse on
all qubits. Due to the symmetry of the state, this rotation can
be realized around any axis in the x-y plane. Without loss of
generality, we choose the y axis, so that the initial state �0 in
Eq. (3) changes to

�0 → Uy(α)�0U
†
y (α). (11)

We define the rotated GHZ state with |GHZ(α)〉 =
Uy(α)|GHZ〉. The QFI for phase estimation with |GHZ(α)〉
over the rotation angle α is plotted in Fig. 2(a). It shows the
QFI for an N = 8 GHZ state in comparison to an N = 8 not
rotated product state |�〉 (dashed lines) for different times T .
For product states |�〉 = |+〉⊗N with |+〉 = (|0〉 + |1〉)/√2,
we find the optimal rotation angle αopt = 0 for all T . The QFI

is symmetric around α = π/2 because of the symmetry of
the state. For different times T there exists different optimal
rotation angles αopt � 0 as shown in Fig. 2(a). The reason is
that the state is rotated into a state that is less sensitive to the
magnetic field but also less sensitive to collective phase noise.

The QFI over time T for the optimal rotation angle αopt is
plotted in Fig. 3(a). Our numerical results show that the QFI for
the optimal rotated GHZ state (red solid line) decreases slower
than the not-rotated one (red dashed line) and approaches the
QFI for product states (black dashed line) for larger times T .

For frequency estimation there exists a global maximum
and an optimal measurement time for all tested states as shown
in Fig. 3(b). Similar to Ref. [32], we find that product states
(dashed black line) perform better then GHZ states (dashed
red line) for larger T . However, the measurement time in
real experiments is often constrained by external parameters.
Therefore, in experiments limited to small measurement times,
optimal rotated GHZ states perform better than product
states.

B. Symmetric Dicke states

Symmetric Dicke states with k excitations are defined as

∣∣Dk
N

〉 = 1

N
∑

j

Pj {|0〉⊗N−k ⊗ |1〉⊗k}, (12)

with N being a normalization constant and
∑

j Pj {.} denoting
the sum over all possible permutations. In experiments with
BEC’s symmetric Dicke states |DN/2

N 〉 with k = N
2 excitations

are often used for quantum metrology, because they are less
sensitive to losses (which often appear in such experiments)
and still have a good scaling FQ ∝ N (N + 2)/2 in the noise-
less case. In the following, we investigate their performance in
the presence of collective phase noise. In general, symmetric
Dicke states are insensitive to rotations around the z axis.
Therefore, they need to be rotated |D〉 ≡ Uy(π/2)|DN/2

N 〉, such
that the scaling F ∝ N (N + 2)/2 can be achieved in the
noiseless case. There are other symmetric Dicke states, which
could be metrologically useful as long as k ∝ N . However, the
QFI in the noiseless case is maximal for k = N/2. Therefore,
we focus on symmetric Dicke states with k = N/2 excitations.

Similar to GHZ states, the state evolves due to collective
phase noise, into a mixed state and the QFI decreases in
time. Again, the performance can be enhanced by global
rotations |D(α)〉 ≡ Uy(π/2 + α)|DN/2

N 〉. The optimal rotation
angles depending on time can be found in Fig. 2(b).

The QFI for phase estimation with optimal rotated Dicke
states |D(αopt)〉 (solid yellow or light gray line) is plotted in
Fig. 3(a). There is a small enhancement between the QFI for
optimal rotated Dicke states |D(αopt)〉 and not rotated Dicke
states |D〉 (dashed yellow or light grey line) for larger T .
We find a small time interval, where optimal rotated Dicke
states |D(αopt)〉 perform best, that is, also better than optimal
rotated GHZ states. For frequency estimation [see Fig. 3(b)],
not rotated Dicke states |D〉 (dashed yellow or light gray line)
perform better than not rotated GHZ states |GHZ(0)〉 (dashed
red or dark gray line) and product states (black dashed line)
perform best. However, there is an enhancement by rotating
Dicke states |D(αopt)〉 optimal (solid yellow or light gray line).
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FIG. 2. QFI for phase estimation with N = 8 qubits for different rotated states over rotation angle α. Different colors represent different
measurement times T . (a) QFI for phase estimation with rotated GHZ states |GHZ(α)〉. (b) QFI for phase estimation with rotated symmetric
Dicke states |D(α)〉. The upper pictures visualize rotated symmetric Dicke states in the Bloch representation.
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FIG. 3. QFI for phase and frequency estimation with N = 8 qubits. The solid lines are the QFI optimized over the rotation angle α and
dashed lines are the QFI of the origin states. (a) QFI for phase estimation over the time T for different states. (b) The upper plot shows the QFI
for frequency ω estimation. The lower plot shows the optimal rotation angle αopt over the time for the tested states.
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However, even after optimizing GHZ states and symmetric
Dicke states with N/2 excitations over rotation angle, product
states (black dashed lines) are still the best for frequency
estimation if it is possible to tune the measurement time to
the optimal one.

In general, the frequency measurement has to be repeated
several times and the variance is limited by

(�ω)−2 � kFω
Q = toT F

ϕ

Q (13)

for k repetitions and the total measurement time to = kT . If to
is fixed, GHZ states are optimal for frequency estimation also
in presence of collective phase noise, when T can be tuned to
its optimum [15]. In this case, we found the optimal rotated
states reach the identical maximum and optimal measurement
time Topt as the not-rotated states and former, after some
time T > Topt they perform better then the not rotated states.
Furthermore, both symmetric Dicke states and GHZ states
perform better than product states, when T can be tuned
optimal. However, in experiments with fixed repetition rates
k/to, measurement times T are fixed. For such experiments
our results in Fig. 3 become important. From those results,
the optimal state at a fixed measurement time can be read out.
And we find that there is a time interval, where |D(αopt)〉 are
optimal, a time interval where |GHZ(αopt)〉 are optimal and for
large T product states are optimal. This behavior holds also
for large N as shown for N = 50 in Appendix B.

In total, we have found that the GHZ state optimized over
the rotation angle has the highest QFI for small times. If it is
not possible to measure at small times, another state should
be used. Furthermore, for frequency estimation we find that
there is no enhancement in precision by rotating Dicke or GHZ
states, if it is possible to measure at the optimal time. However,
for smaller measurement times T , there is an enhancement
by using one of the optimal rotated states. Though, for long
measurement times T , the QFI for both phase and frequency
estimation decreases to zero for all tested states. Therefore, it
is important to investigate other metrological schemes.

IV. DIFFERENTIAL INTERFEROMETRY

In Refs. [9,10], it has been shown for a linear interferometer
that the enhancement by using entangled states in the presence
of noise is only a constant factor and not Heisenberg-like.
However, in Ref. [17] it has been shown that with differential
interferometry (DI) it is possible to reach the HL even in the
presence of phase noise, the main mechanism being noise
cancellation [33]. DI is a nonlinear interferometer for which
the results from Ref. [9,10] do not apply. DI has been used in
many areas of physics, such as measurement of rotations [34],
gradients [35], and fundamental constants [36]. So far, DI has
been investigated by considering classical Fisher information
with a set of bipartite GHZ states (|GHZ〉 ⊗ |GHZ〉). We will
investigate DI for those states by considering QFI and extend
this analysis with the class of bipartite symmetric Dicke states.

In DI, the system is split in two parts. Both parts will receive
the same noise, but only one part will collect the phase ϕ

due to a collective rotation around the quantisation axis. This
scheme could be interpreted as a measurement of the noise
at one part and a measurement of the signal and noise at the
other part, such that the noise can be subtracted. It could also

be interpreted as a measurement of a phase-difference. The
Hamiltonian for this scheme is given by

H = �ω
(
1N1 ⊗ SN−N1

z

) + �γ�B(t)SN
z , (14)

with 1N1 being the identity acting on N1 particles. The last
term of Eq. (14) describes the noise acting on all particles and
the first term is the actual signal. In the noiseless case, the
maximal QFI is given by [5]

FQ = 4(λmax − λmin)2 = (N − N1)2, (15)

with λmax (λmin) being the maximal (minimal) eigenvalue
of the generator 1N1 ⊗ SN−N1

z . This maximal QFI can be
reached with the state |�〉 = (|vmax〉 + |vmin〉)/

√
2, where

|vmax〉 and |vmin〉 are eigenvectors of the generator 1N1 ⊗
SN−N1

z corresponding to the maximal and respectively minimal
eigenvalues. Optimizing the maximal QFI over the splitting N1

leads to the standard metrological scheme N1 = 0, discussed
in Sec. III. Here, GHZ states are optimal. However, this state
suffers massively from collective phase noise, which leads to
FQ = 0 for long measurement times leading to the steady-state
regime. Due to noise the state evolves into a mixed state until
it becomes a mixture of states from the decoherence free
subspace (DFS). This mixed state does not change due to
collective phase noise and is called steady state. For the
steady-state regime the state with maximal QFI is given by
(see Appendix C),

|�opt〉 = 1√
2

⎛
⎝| 0 . . . 0︸ ︷︷ ︸

N/2

1 . . . 1︸ ︷︷ ︸
N/2

〉 + | 1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

〉
⎞
⎠, (16)

with N1 = N/2 being optimal. This state is decoherence free
with respect to collective phase noise, such that the QFI for
this state is constant in time F

ϕ

Q = N2/4 and reaches the HL.
However, for equal splitting N1 = N/2, it also has been

shown that the state |GHZ〉 ⊗ |GHZ〉 performs good in the
presence of correlated phase noise, such that the HL can
be reached up to a constant factor. This state contains only
N/2 particle entanglement, whereas the decoherence free state
from Eq. (16) is a genuine multiparticle entangled state. In
experiments with ions like in Ref. [16], the more particle
entanglement a state contains the harder the preparation of
the state with high fidelity. Therefore, we will focus on initial
states of the form

|�N 〉 = ∣∣�̃N1

〉 ⊗ ∣∣�̃N−N1

〉
, (17)

where |�N 〉 denotes an N particle state, as described in
Fig. 1(b). We will compare the class of states |�̃N/2〉 = |GHZ〉
with equal splitting N1 = N/2 investigated in Ref. [17] with
the class of states given by∣∣Dk1

N1
,Dk2

N−N1

〉
x

= Uy

(
π

2

)∣∣Dk1
N1

〉 ⊗ Uy

(
π

2

)∣∣Dk2
N−N1

〉
, (18)

which are bipartite symmetric Dicke (BSD) states in the x

basis at both inputs.

A. Phase and frequency estimation

In the following, we will first analyze the scaling behavior
of the here mentioned initial states in DI, that is also the
decoherence free case. Then, we will investigate the change of
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FIG. 4. Phase and frequency estimation with equal splitting N1 = N/2, by using the ideal DI scheme (solid lines) and DI realized with
spin-echo-like experiments (dashed lines), described in Sec. IV B, with N = 8 qubits. (a) QFI for phase estimation over the time T for the
tested states. (b) QFI for frequency ω estimation over the time T .

the QFI by adding noise. Finally, we will examine the scaling
behavior in the steady-state regime.

For phase estimation with the initial states and equal
splitting N1 = N/2, we find that the QFI scales with F

ϕ

Q =
N/2 for |�̃N/2〉 being product states. For GHZ states |�̃N/2〉 =
|GHZ〉 we find F

ϕ

Q = N2/4 and for the BSD state |�̃N/2〉 =
Uy(π/2)|DN/4

N/2〉 we find F
ϕ

Q = N (N + 4)/8.
In the presence of collective phase noise as mentioned in

Sec. II the QFI decreases with the time T due to noise as shown
in Fig. 4(a) for N = 8. Nevertheless, the optimal rotation angle
α for bipartite GHZ and BSD states is αopt = 0 for all T in
DI with equal splitting N1 = N/2. However, in comparison to
the results without DI, for all tested states, the QFI does not
decrease to zero. It decreases to a constant value F

ϕ

Q[�f] −→
const > 0, with �f being the steady state of the system. For
frequency estimation we find no maximum for all probe states,
such that there is no optimal measurement time. When the QFI
for phase estimation becomes constant, that is the steady-state
regime, the QFI for frequency estimation scales with Fω

Q ∝ T 2;
The larger the measurement time T the better. The QFI for
frequency estimation for bipartite GHZ and BSD states, both
with N1 = N/2, is plotted in Fig. 4(b), and we can see that
there is an enhancement by using one of the tested entangled
states.

In the steady-state regime, for large T , the QFI for phase
estimation becomes constant. For product states and equal
splitting, this constant can be calculated analytically (see
Appendix E 1) to

F
ϕ

Q[�f ] = N/4. (19)

For bipartite GHZ states (|GHZ〉 ⊗ |GHZ〉) and equal split-
ting, this constant can also be calculated analytically (see
Appendix E 2) to

F
ϕ

Q[�f ] = N2/8. (20)

For both, the QFI of the initial state is by a constant factor of
two greater than for the steady state. For the BSD states, we

find (see Appendix E 3)

F
ϕ

Q[�f ] = 4
N∑

k′=0

{
b∑

q=a

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)2

−
[ ∑b

q=a

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2(
k′ − q − N−N1

2

)]2

∑b
q=a

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2

}
,

(21)

with a = max{N − N1 − k′,0} and b = min{k′,N1}. Here,
dN

k′,k(π
2 ) = 〈Dk′

N |UN
y (π

2 )|Dk
N 〉 := dN

k′,k is the “small” Wigner D

matrix [37] for a rotation angle of π/2, these are essentially
binomial coefficients such that Eq. (21) can directly be
evaluated. For k1 = k2 = 0 the state in Eq. (18) leads to a
product state with splitting N1 and N − N1. We can simplify
Eq. (21) for that case (see Appendix F) and find

F
ϕ

Q[�f ] = N1(N − N1)

N
, (22)

which is maximal for N1 = �N/2� with the maximum
F

ϕ

Q[�f ] = N/4, which we also found in Eq. (19). For all other
possible combinations of k1, k = k1 + k2, N1, and N − N1,
we plotted the QFI in Fig. 5 for N = 50. In Fig. 5(c) we
plotted the maximal QFI over the total number of excitations
k, which is proportional to the total energy in the state. For
even k (yellow or lighter grey), there is only one maximum
for the QFI, whereas for odd k (red or darker gray), there are
more than one possible combination of k1 and N1 for maximal
QFI. Both the number of atoms in the first partition N1 and
the maximal QFI are symmetric around k = N/2. For the
number of excitations in the first partition k1 and k being odd,
there is no such symmetry at first sight. The reason for this
asymmetry is the asymmetric splitting for k < 10 and k > 40.
However, there is a symmetry when comparing the number
of excitations in the first partition k1 for k � N/2 with the
number of not-excited qubits in the first partition N1 − k1 for
k � N/2. Such that k1 = �k/2� is optimal for k � N/2 and
N1 − k1 = �(N − k)/2� is optimal for k � N/2. The QFI is
maximal for k = �N/2�, N1 = �N/2�, and k1 = �N/4�. For
N = 4j and j being an integer, this leads to the BSD state
|DN/4

N/2,D
N/4
N/2〉x . For that initial state the QFI of the steady state
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FIG. 5. QFI [calculated from Eq. (21)] of the steady state for an input state |Dk1
N1

Dk−k1
N−N1

〉x by using the metrological scheme described in
Fig. 1(b). Here N = 50 and is the total number of qubits and k is the total number of excitations. In panels (a), (b), (d), and (e), the QFI as a
function of k1 and N1 in shown. In (a) k = 20, in (b) k = 25, in (d) k = 30, and in (e) k = 40. The white solid lines mark N/2 and k/2. The red
(gray) solid lines margin the area of allowed combinations of N1 and k1. In (c), the maximal QFI is plotted over the total number of excitations
k, red (dark gray) for odd k and yellow (light gray) for even k. The corresponding values for k1 and N1 are shown as a function of k. For odd k,
there are more than one possible combination of k1 and N1 for maximal QFI.

is (see Appendix E 3)

F
ϕ

Q[�f ] = N (N + 4)

16
. (23)

Here again, the QFI of the initial state is by a constant factor of
2 greater than for the steady state. However, with this steady
state, Heisenberg-like scaling can be reached.

We find that bipartite GHZ states with equal splitting
are the best for all measurement times T . The splitting
N1 = N − N1 = N/2 is optimal for bipartite GHZ states. If
the splitting differs N1 − N − N1 = N − 2N1 
= 0, the steady
state is a mixed state, where all coherences vanish, for which
F

ϕ

Q[�f ]=0.
We find that indeed it is possible to reach the HL with

collective phase noise by using DI and from the tested states,
bipartite GHZ states are the best for phase and frequency
estimation with this metrological scheme. We investigated the
scaling behavior for the steady states and found the optimal
splitting for bipartite GHZ states to be N1 = �N/2�. We also
found the optimal probe state out of the set of BSD states that is
given by N1 = �N/2� and k = �N/2� and k1 = �N/4�. Now,
we will discuss possible experimental realizations.

B. Experimental realization

An obvious way to realize the operator 1N/2 ⊗ S
N/2
z seems

to be a spin-echo-like experiment on the first N/2 particles
and a Ramsey-like experiment on the rest of the particles. In

a spin-echo-like experiment a π -pulse flips the spins after the
half of the evolution time T/2. This flip of the spins induces a
rephasing process

exp

[
−iωT SN/2

z − iγ

∫ T

0
dt ω(t)SN/2

z

]

−→ exp

[
−i1N/2 − iγ

(∫ T/2

0
dt ω(t) −

∫ T

T/2
dt ω(t)

)
SN/2

z

]
(24)

with ω(t) = ω + �B(t). According to the rephasing pro-
cess, the signal Hamiltonian changes Hsignal = �ωSN

z −→
�ω(1N/2 ⊗ S

N/2
z ). However, the noise on the second part of

the particles does not change, but the noise of the first N/2
particles changes. It flips its sign after half of the measurement
time. The calculated QFI for phase and frequency estimation
is shown in Figs. 4(a) and 4(b), respectively. The red or
dark gray dashed line shows the behavior in time T , for
a bipartite GHZ state, the yellow or light gray dashed line
for optimal BSD states |DN/4

N/2,D
N/4
N/2〉x and the black dashed

line for product states. The QFI starts at the same values
as with the ideal DI from the previous section. However, it
decreases to zero for larger T for both phase and frequency
estimation. This means that the advantage of DI gets lost by
doing spin-echo-like experiments on one half of the particles.
The reason is that the two parts receive different noise, where as
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in the ideal DI both parts receive the same noise. For frequency
estimation, we again find an optimal measurement time for all
investigated states as shown in Fig. 4(b). We also find that
the QFI for frequency estimation with all tested probe states
decreases to zero after reaching its maximum. Furthermore,
for all measurement times, there is no enhancement by the
presented scheme in comparison to the usual metrologic
scheme, discussed in Sec. III. This means that the presented
scheme is insufficient for realizing DI.

Another idea, which will turn out to be wrong, to realize
the metrological scheme from Fig. 1(b) would be to repeat the
experiment: one time with noise and signal and one time with
noise only. For this method the desired signal Hamiltonian can
be realized, but the averaged state changes:

〈. ⊗ .〉δϕ −→ 〈.〉δϕ ⊗ 〈.〉δϕ. (25)

In this case, the steady state has no coherences, with respect
to the bipartition of the Hamiltonian, left. This means that for
all probe states the QFI for phase estimation will decrease to
zero. Therefore, this method is also insufficient for realizing
DI.

V. CONCLUSIONS

We investigated the usual metrological scheme and differ-
ential interferometry with a set of prominent probe states in
the presence of collective phase noise. For standard metrology
schemes we determined the optimized states. Then we showed
that with differential interferometry it is possible to reach
a good scaling—up to the Heisenberg limit—even in the
presence of collective phase noise. Here, from the tested set
of bipartite probe states, bipartite GHZ states are optimal for
both phase and frequency estimation. However, GHZ states are
highly sensitive to particle losses. Therefore, in experiments
where particle losses appear frequently, symmetric Dicke
states are often used. We found that with bipartite symmetric
Dicke states it is also possible to reach a good scaling up to
Heisenberg scaling.

As we have seen, however, differential interferometry may
be hard to realize in experiments. Therefore, it would be useful
to design experimentally feasible schemes for implementing
these ideas. In addition, an extension of the differential
method to other metrology schemes, e.g., the measurement
of oscillating fields [22] is highly desirable.
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APPENDIX A: GHZ STATE UNDER COLLECTIVE
PHASE NOISE

As described in Sec. II, the N particle GHZ state evolves,
due to the collective phase noise, at a certain time t into the
(over phase fluctuations) averaged state,

�̄(t) = 1

4
|0⊗N 〉〈0⊗N | + 1

4
|1⊗N 〉〈1⊗N | + d(t)

4
|0⊗N 〉〈1⊗N |

+d(t)

4
|1⊗N 〉〈0⊗N |, (A1)

with d(t) = exp{− 1
2 (Nγ�Bτc)2[exp(−t/τc) + t/τc − 1]}.

The mixed state has nonzero eigenvalues λ± = 1±d(t)
2 and

corresponding eigenvectors |±〉 = 1√
2
(|0⊗N 〉 ± |1⊗N 〉). We

denote all other eigenvalues with λi = 0 and the corresponding
eigenvectors |vi〉 such that we can rewrite the state as

�̄(t) = 1 + d(t)

2
|+〉〈+| + 1 − d(t)

2
|−〉〈−|. (A2)

With that state, we can calculate the QFI for phase estimation
by using the metrological scheme from Fig. 1. Therefore, we
use the fact that SN

z |+〉 = N
2 |−〉 such that 〈vi |SN

z |±〉 = 0 to
calculate the QFI and arrive at

F
ϕ

Q = 4
∑
α<β

(λα − λβ)2

λα + λβ

∣∣〈α|SN
z |β〉∣∣2

= 4
(λ+ − λ−)2

λ+ + λ−

∣∣〈+|SN
z |−〉∣∣2 = N2d(t)2. (A3)

For frequency estimation we find

Fω
Q = t2N2d(t)2. (A4)

These results for the QFI are similar to the ones in Ref. [15].

APPENDIX B: OPTIMAL ROTATION ANGLE
FOR N = 50 QUBITS

In this section we show that also for larger N an opti-
mization of the input states over the rotation angle α could
lead to a higher precision. In Fig. 6 the QFI for phase
and frequency estimation with N = 50 qubits by using the
not-rotated (dashed lines) and optimal-rotated (solid lines)
probe states is shown. The QFI for phase estimation decreases
for all probe states faster than in Fig. 3. Also the optimal
rotation angle αopt changes in a smaller time scale at the
beginning. For frequency estimation we find that the maximal
QFI by using product states does not substantially change when
comparing the estimation with N = 8 and N = 50 qubits.
However, the QFI by using the optimal rotated GHZ state
approaches the QFI by using a product state faster than in
Fig. 3.

APPENDIX C: OPTIMAL STATES FOR DI
IN THE STEADY-STATE REGIME

In the noiseless case, the maximal QFI is given by [5]

FQ = 4(λmax − λmin)2, (C1)

with λmax (λmin) being the maximal (minimal) eigenvalue
of the generator, here 1N1 ⊗ SN−N1

z . This maximal QFI can
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FIG. 6. QFI for phase and frequency estimation with N = 50 qubits. The solid lines are the QFI optimized over the rotation angle α and
dashed lines are the QFI of the original states. (a) QFI for phase estimation over the time T for different states. (b) The upper plot shows the
QFI for frequency ω estimation. The lower plot shows the optimal rotation angle αopt over the time for the tested states.

be reached with the state |�〉 = (|vmax〉 + |vmin〉)/
√

2, where
|vmax〉 and |vmin〉 are eigenvectors of the generator 1N1 ⊗
SN−N1

z corresponding to the maximal and minimal eigenvalue,
respectively. However, in the presence of noise the initial state
ρ0 evolves, due to collective phase noise, into a mixed state
until it becomes a mixture of states from the decoherence
free subspace (DFS). This mixed state does not change due to
collective phase noise and is called steady state. Now, we want
to optimize the QFI in the steady-state regime. Since the QFI
is convex, that is

FQ[p�1 + (1 − p)�2] � pFQ[�1] + (1 − p)FQ[�2], (C2)

the QFI is maximal for pure states. Therefore, we have to
maximize Eq. (C1) over all pure states |�〉 lying in the DFS.
In the DFS |vmax〉 and |vmin〉 need to have the same total number
of excitations k [38] and are given by

|vmin〉 =
{|1⊗N1〉 ⊗ |1⊗N1−k0⊗N−k〉 for k > N1,

|1⊗k0⊗N1−k〉 ⊗ |0⊗N−N1〉 for k � N1,
(C3)

and

|vmax〉=
{|0⊗N−k1⊗k−(N−N1)〉 ⊗ |1⊗N−N1〉 for k > N − N1,

|0⊗N1〉 ⊗ |0⊗N−N1−k1⊗k〉 for k � N − N1.

(C4)

With these states, the QFI is given by

FQ =

⎧⎪⎪⎨
⎪⎪⎩

k2 for k � min{N1,N − N1},
N2

1 for N1 < k � N − N1,

(N − N1)2 for N − N1 < k � N1,

(N − k)2 for k > max{N1,N − N1},
(C5)

which is maximal FQ = N2/4 for k = N1 = N − N1 = N/2
and the optimal state from the DFS is given by

|�opt〉 = 1√
2

⎛
⎝| 0 . . . 0︸ ︷︷ ︸

N/2

1 . . . 1︸ ︷︷ ︸
N/2

〉 + | 1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

〉
⎞
⎠. (C6)

APPENDIX D: SCALING BEHAVIOR IN THE NOISELESS
CASE BY USING DI

For phase estimation by using the metrological scheme
from Fig. 1(b), the QFI for a pure initial state |�〉 can be
calculated analytically for the noiseless case by using the fact
the QFI is additive under tensoring:

FQ[�(1) ⊗ �(2),A(1) ⊗ 1 + 1 ⊗ A(2)]

= F
ϕ

Q[�(1),A(1)] + FQ[�(2),A(2)]. (D1)

For a product state |�〉 = |+〉⊗N/2 ⊗ |+〉⊗N/2 with |+〉 =
(|0〉 + |1〉)/√2 we find

F
ϕ

Q = N

2
. (D2)

For a GHZ state |�〉 = |GHZ〉 ⊗ |GHZ〉 we find

F
ϕ

Q =
(

N

2

)2

. (D3)

For the rotated BSD state |DN/4
N/2〉y ⊗ |DN/4

N/2〉y =
Ux(π/2)|DN/4

N/2〉 ⊗ |DN/4
N/2〉 the QFI is given by

F
ϕ

Q = N (N + 4)

8
. (D4)
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APPENDIX E: SCALING BEHAVIOR AFTER DEPHASING BY USING DI

In Fig. 4 we see that the QFI decreases with time to a constant greater than zero by using DI. In this section, we calculate this
constant and investigate its scaling behavior for the probe states. The initial probe states evolve, due to collective phase noise,
into a mixed state. The steady state is a mixture in the decoherence free subspace and has therefore still some coherences.

1. Product state

The steady state for the product state |+〉⊗N as an initial state is a mixture of symmetric Dicke states. The nonzero eigenvalues

are given by λk′ = Ck′
N

2N , where Ck′
N = (Nk′) are binomial coefficients. The corresponding eigenvectors are given by |Dk′

N 〉. We can
rewrite the symmetric Dicke states as

∣∣Dk′
N

〉 = 1√
Ck′

N

k′∑
q=0

√
C

q

N/2

∣∣Dq

N/2

〉 ⊗
√

C
k′−q

N/2

∣∣Dk′−q

N/2

〉
. (E1)

With that formulation one finds that

〈
Ds

N

∣∣1 ⊗ Sz

∣∣Dt
N

〉 = 1√
Cs

NCt
N

∑
q,q ′

√
C

q

N/2C
q ′
N/2C

s−q

N/2C
t−q ′
N/2 (t − q ′ − N/4) · 〈

Dq

N/2

∣∣Dq ′
N/2

〉〈
Ds−q

N/2

∣∣Dt−q ′
N/2

〉

= 1√
Cs

NCt
N

∑
q

C
q

N/2

√
C

s−q

N/2C
t−q

N/2(t − q − N/4)
〈
Ds−q

N/2

∣∣Dt−q

N/2

〉 = δs,t

Cs
N

∑
q

C
q

N/2C
s−q

N/2 (s − q − N/4). (E2)

Based on these, we can rewrite the QFI by

FQ = 4
N∑

k′=0

λk′
∑

k

〈
Dk′

N

∣∣1N/2 ⊗ SN/2
z |k〉〈k|1N/2 ⊗ SN/2

z

∣∣Dk′
N

〉
, (E3)

with |k〉 being eigenstates of � with λk = 0 and 〈k|Dl
N 〉 = 0 for all l. We can replace

∑
k |k〉〈k| = 1 − ∑

l |Dl
N 〉〈Dl

N |, such that
the QFI reduces to

FQ = 4
N∑

k′=0

λk′
〈
Dk′

N

∣∣1N/2 ⊗ SN/2
z

∣∣∣∣∣
(
1 −

∑
l

∣∣Dl
N

〉〈
Dl

N

∣∣)∣∣∣∣∣1N/2 ⊗ SN/2
z

∣∣Dk′
N

〉

= 4
N∑

k′=0

λk′

⎡
⎣〈

Dk′
N

∣∣(1N/2 ⊗ SN/2
z

)2∣∣Dk′
N

〉 −
(∑

l

〈
Dl

N

∣∣1N/2 ⊗ SN/2
z

∣∣Dk′
N

〉)2
⎤
⎦. (E4)

And with Eq. (E2) and because of the symmetry of the state we can express the expectation value

〈
Dk

N

∣∣1N/2 ⊗ SN/2
z

∣∣Dk
N

〉 = 〈
Dk

N

∣∣SN/2
z ⊗ 1N/2

∣∣Dk
N

〉 = 1

2

〈
Dk

N

∣∣SN
z

∣∣Dk
N

〉 = k − N/2

2
. (E5)

Replacing the second term leads to

FQ = 4
N∑

k′=0

λk′

[〈
Dk′

N

∣∣(1N/2 ⊗ SN/2
z

)2∣∣Dk′
N

〉 −
(

k′ − N/2

2

)2
]

= 1

2N−2

N∑
k′=0

⎡
⎣ k′∑

q=0

C
q

N/2C
k′−q

N/2

(
k′ − q − N

4

)2

− Ck′
N

(
k′ − N/2

2

)2
⎤
⎦

= 1

2N−2

N∑
k′=0

⎡
⎣ k′∑

q=0

C
q

N/2C
k′−q

N/2

(
k′ − q − N

4

)2

−
k′∑

q=0

C
q

N/2C
k′−q

N/2

(
k′ − N/2

2

)2
⎤
⎦

= 1

2N−2

N∑
k′=0

k′∑
q=0

C
q

N/2C
k′−q

N/2

(k′ − 2q)(3k′ − N − 2q)

4
= 1

2N−2
N2N−4 = N/4. (E6)
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2. GHZ state

The steady state for a GHZ state as an initial state is given by

(�GHZ ⊗ �GHZ)steady state = 1

4
(| 0 . . . 0︸ ︷︷ ︸

N

〉〈0 . . . 0︸ ︷︷ ︸
N

| + | 1 . . . 1︸ ︷︷ ︸
N

〉〈1 . . . 1︸ ︷︷ ︸
N

| + | 0 . . . 0︸ ︷︷ ︸
N/2

1 . . . 1︸ ︷︷ ︸
N/2

〉〈0 . . . 0︸ ︷︷ ︸
N/2

1 . . . 1︸ ︷︷ ︸
N/2

|

+ | 1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

〉〈1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

| + | 1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

〉〈0 . . . 0︸ ︷︷ ︸
N/2

1 . . . 1︸ ︷︷ ︸
N/2

|

+ | 0 . . . 0︸ ︷︷ ︸
N/2

1 . . . 1︸ ︷︷ ︸
N/2

〉〈1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

|). (E7)

There are four remarkable eigenvectors:

|v1〉 = | 0 . . . 0︸ ︷︷ ︸
N

〉, |v2〉 = | 1 . . . 1︸ ︷︷ ︸
N

〉, |v3〉 = 1/
√

2(| 0 . . . 0︸ ︷︷ ︸
N/2

1 . . . 1︸ ︷︷ ︸
N/2

〉 + | 1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

〉),

|v4〉 = 1/
√

2(−| 0 . . . 0︸ ︷︷ ︸
N/2

1 . . . 1︸ ︷︷ ︸
N/2

〉 + | 1 . . . 1︸ ︷︷ ︸
N/2

0 . . . 0︸ ︷︷ ︸
N/2

〉), (E8)

with eigenvalues λ1 = λ2 = 1/4, λ3 = 1/2, and λ4 = 0. All other eigenvalues λ5...2N = 0 and we denote the eigenvectors
corresponding to these eigenvalues with |v5...2N 〉. It is easy to show that

〈v1|1N/2 ⊗ SN/2
z |v3〉 = 〈v1|1N/2 ⊗ SN/2

z |v4〉 = 0,

〈v2|1N/2 ⊗ SN/2
z |v3〉 = 〈v2|1N/2 ⊗ SN/2

z |v4〉 = 0, (E9)

〈v1...4|1N/2 ⊗ SN/2
z |v5...2N 〉 = 0,

and all terms with the same eigenvalues also vanish, so that the sum in the QFI reduces to

FQ = 4 · (λ3 − λ4)2

λ3 + λ4

∣∣〈v3|1N/2 ⊗ SN/2
z |v4〉

∣∣2 = N2

8
, (E10)

with 1N/2 ⊗ S
N/2
z |v3〉 = N/4|v4〉.

3. Bipartite symmetric Dicke state in the x basis

We start with an arbitrary symmetric Dicke state in the x basis for both inputs. We can express this BSD state in the basis of
symmetric Dicke states in the z basis by∣∣Dk1

N1
,Dk2

N−N1

〉
x

=
∑
k′

1,k
′
2

〈
D

k′
1

N1

∣∣UN1
y

(
π

2

)∣∣Dk1
N1

〉〈
D

k′
2

N−N1

∣∣UN−N1
y

(
π

2

)∣∣Dk2
N−N1

〉∣∣Dk′
1

N1
,D

k′
2

N−N1

〉
. (E11)

For simplicity we choose here a rotation around the y axis. Where dN
k′,k(π

2 ) = 〈Dk′
N |UN

y (π
2 )|Dk

N 〉 := dN
k′,k is the “small” Wigner D

matrix [37] for a rotation angle of π/2:

dN
k′,k =

√
Ck

N

Ck′
N 2N

min{N−k,k′}∑
s=max{0,k′−k}

(−1)k
′−k+s

Cs
N−k

Ck′−s
k

. (E12)

Now we can rewrite the state as ∣∣Dk1
N1

,Dk2
N−N1

〉
x

=
∑
k′

1,k
′
2

d
N1

k′
1,k1

d
N−N1

k′
2,k2

∣∣Dk′
1

N1
,D

k′
2

N−N1

〉
. (E13)

For a fixed number of excitations k′ = k′
1 + k′

2 we have

∣∣Dk1
N1

,Dk2
N−N1

〉
x

=
N∑

k′=0

min{k′,N1}∑
q=max{k′−N1,0}

d
N1
q,k1

d
N−N1
k′−q,k2

∣∣Dq

N1
,Dk′−q

N−N1

〉 =
N∑

k′=0

|lk′ 〉 =
N∑

k′=0

√
pk′ |vk′ 〉, (E14)

with the not normalized states |lk′ 〉 and the normalized states 〈vk′ |vk′ 〉 = 1. We can calculate the probability pk′ for being in the
state |vk′ 〉 by

pk′ = 〈lk′ |lk′ 〉 =
min{k′,N1}∑

q=max{k′−N1,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
. (E15)
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With those we find the normalized states

|vk′ 〉 = 1√
pk′

min{k′,N1}∑
q=max{k′−N1,0}

d
N1
q,k1

d
N−N1
k′−q,k2

∣∣Dq

N1
,Dk′−q

N−N1

〉
. (E16)

With the probabilities pk′ and the states |vk′ 〉, we can write the rotated state in the z basis as

� =
∑
m,n

√
pmpn|vm〉〈vn|. (E17)

After dephasing, only the elements with m = n remain [38] such that the steady state is given by �f = ∑
m pm|vm〉〈vm|. The

nonzero eigenvalues of this state are λk′ = pk′ with the corresponding eigenvectors |vk′ 〉. Now we can show that

〈vs |1N1 ⊗ SN−N1
z |vk′ 〉 = 1√

pk′ps

min{k′,N1}∑
q=max{k′−N1,0}

min{s,N1}∑
q ′=max{N−N1−s,0}

d
N1
q,k1

d
N−N1
k′−q,k2

d
N1
q ′,k1

d
N−N1
s−q ′,k2

〈
Dq ′

N1

∣∣Dq

N1

〉︸ ︷︷ ︸
δq,q′

〈
Ds−q ′

N−N1

∣∣SN−N1
z

∣∣Dk′−q

N−N1

〉︸ ︷︷ ︸
(k′−q−N−N1/2)〈Ds−q′

N−N1
|Dk′−q

N−N1
〉

∝ δs,k′ . (E18)

Such that the QFI reduces to

FQ = 4
N∑

k′=0

λk′
∑

k

〈vk′ |1N1 ⊗ SN−N1
z |k〉〈k|1N1 ⊗ SN−N1

z |vk′ 〉, (E19)

with |k〉 
= |vk〉 being an eigenvector with a zero eigenvalue. Now we repeat the same steps as for product states as initial states
to rewrite the QFI as

FQ = 4
N∑

k′=0

λk′
[
�vk′

(
1N1 ⊗ SN−N1

z

)]2
, (E20)

where [�vk′ (1N1 ⊗ SN−N1
z )]

2
denotes the variance and is given by

[
�vk′

(
1N1 ⊗ SN−N1

z

)]2 = 1

λk′

min{k′,N1}∑
q=max{k′−N1,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)2

− 1

λ2
k′

⎡
⎣ min{k′,N1}∑

q=max{N−N1−k′,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)⎤
⎦2

. (E21)

Together the QFI is given by

F
ϕ

Q[�f] = 4
N∑

k′=0

⎧⎪⎨
⎪⎩

min{k′,N1}∑
q=max{N−N1−k′,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)2

−
[ ∑min{k′,N1}

q=max{N−N1−k′,0}
(
d

N1
q,k1

d
N−N1
k′−q,k2

)2(
k′ − q − N−N1

2

)]2

∑min{k′,N1}
q=max{N−N1−k′,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2

}
. (E22)

This is a general formula for the QFI after dephasing for an initial state of the form |Dk1
N1

,Dk2
N−N1

〉x . From Fig. 5, we see that
Eq. (E22) is maximal for the probe state with N1 = N − N1 = N/2 and k1 = k2 = N/4, where N = 4j , with j being an integer.
For this simple case and N � 1000 we have verified that the formula in Eq. (E22) is equivalent to

FQ = N (N + 4)

16
. (E23)

It is very likely to hold also in general but has not been proven yet.

APPENDIX F: OPTIMIZATION FOR PRODUCT STATES

We want to investigate Eq. (E22) for the case of k1 = k2 = 0. This means that the input probe state is a product state. For this
case we optimize the splitting N1 and N − N1.

052306-12



OPTIMIZED PARAMETER ESTIMATION IN THE . . . PHYSICAL REVIEW A 94, 052306 (2016)

For k1 = k2 = 0 we find that (dN1
q,0)

2 = C
q

N1
2−N1 , such that(

d
N1
q,0d

N−N1
k′−q,0

)2 = C
q

N1
C

k′−q

N−N1
2−N . (F1)

Then the eigenvalues are given by

λk′ = 2−N

min{k′,N1}∑
q=max{k′−N1,0}

C
q

N1
C

k′−q

N−N1
. (F2)

We can split the sum for k′ � N1 and k′ � N1,

λk′ =
{

2−N
∑k′

q=0 C
q

N1
C

k′−q

N−N1
for k′ � N1,

2−N
∑N1

q=k′−N1
C

q

N1
C

k′−q

N−N1
for k′ � N1.

(F3)

This expression can be simplified by using
∑k′

q=0 C
q

N1
C

k′−q

N−N1
= Ck′

N and shifting the summation q = j + (k′ − N1) for the case

k′ � N1, such that
∑N1

q=k′−N1
C

q

N1
C

k′−q

N−N1
= ∑N−k′

j=0 C
(N−k′)−j

N1
C

j

N−N1
= CN−k′

N = Ck′
N . For both cases the eigenvalues are given by

λk′ = 2−NCk′
N . (F4)

Next, we can simplify the second term in Eq. (E21) by

〈1 ⊗ Sz〉2 = 1

λ2
k′

⎡
⎣ min{k′,N1}∑

q=max{N−N1−k′,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)⎤
⎦2

= 1

λ2
k′

⎡
⎣ min{k′,N1}∑

q=max{N−N1−k′,0}
2−NC

q

N1
C

k′−q

N−N1

(
k′ − q − N − N1

2

)⎤
⎦2

. (F5)

We again split the sum in two cases k′ � N1 and k′ � N1. For k′ � N1 we find

〈Sz〉2 = 1

λ2
k′

⎡
⎣ k′∑

q=0

2−NC
q

N1
C

k′−q

N−N1

(
k′ − q − N − N1

2

)⎤
⎦2

=
[

(−1)1+k′
(2k′ − N )(N − N1)(−1 + k′ − N )!

2Ck′
N (k′)!(−N )!

]2

=
[

(2k′ − N )(N − N1)

2N

]2

, (F6)

with (−N )! = �(−N + 1). For the case k′ � N1, shifting the summation with q = j + (k′ − N1) like for the eigenvalues and
simplifying in the same way leads to the same result. Now we can simplify the expression for the QFI in Eq. (E22) by

FQ = 4
N∑

k′=0

⎧⎪⎨
⎪⎩

min{k′,N1}∑
q=max{N−N1−k′,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)2

− 1

λk′

⎡
⎣ min{k′,N1}∑

q=max{N−N1−k′,0}

(
d

N1
q,k1

d
N−N1
k′−q,k2

)2
(

k′ − q − N − N1

2

)⎤
⎦2

⎫⎪⎬
⎪⎭

= 4
N∑

k′=0

min{k′,N1}∑
q=max{N−N1−k′,0}

2−NC
q

N1
C

k′−q

N−N1

(
k′ − q − N − N1

2

)2

− 2−NCk′
N

[
(2k′ − N )(N − N1)

2N

]2

= 4
N∑

k′=0

min{k′,N1}∑
q=max{N−N1−k′,0}

2−NC
q

N1
C

k′−q

N−N1

[(
k′ − q − N − N1

2

)2

−
(

(2k′ − N )(N − N1)

2N

)2]

= 4
N∑

k′=0

min{k′,N1}∑
q=max{N−N1−k′,0}

2−NC
q

N1
C

k′−q

N−N1

{
(Nq − k′N1)[k′(N1 − 2N ) + N (N − N1 + q)]

N2

}
. (F7)

052306-13
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Again, we split the summation over q into two cases k′ � N1 and k′ � N1. For k′ � N1 we find

min{k′,N1}∑
q=max{N−N1−k′,0}

2−NC
q

N1
C

k′−q

N−N1

{
(Nq − k′N1)[k′(N1 − 2N ) + N (N − N1 + q)]

N2

}

= 2−NCk′
N

k′(N − k′)(N − N1)N1

(N − 1)N2
= λk′

k′(N − k′)(N − N1)N1

(N − 1)N2
. (F8)

For the case k′ � N1, shifting the summation with q = j + (k′ − N1) like for the eigenvalues and simplifying in the same way
leads to the same result, such that we can calculate the variance to(

�vk′ 1 ⊗ Sz

)2 = k′(N − k′)(N − N1)N1

(N − 1)N2
. (F9)

Together, the QFI is given by

FQ = 4
N∑

k′=0

λk′
(
�vk′ 1N1 ⊗ SN−N1

z

)2 = 4
N∑

k′=0

2−NCk′
N

k′(N − k′)(N − N1)N1

(N − 1)N2
= (N − N1)N1

N
, (F10)

which is maximal F max
Q = N/4 for N1 = N/2.
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[8] G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006

(2014).
[9] B. M. Escher, R. L. de Matos Filho, and L. Davidovich,

Nature Phys. 7, 406 (2011).
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