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We show that any state that violates the computable cross norm �or realignment� criterion for separability
also violates the separability criterion of the local uncertainty relations. The converse is not true. The local
uncertainty relations provide a straightforward construction of nonlinear entanglement witnesses for the cross
norm criterion.
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Entanglement plays a central role in quantum-information
processing. Thus its characterization is important for the
field: It is crucial to be able to decide whether or not a given
quantum state is entangled. However, this so-called separa-
bility problem remains one of the most challenging unsolved
problems in quantum physics.

Several sufficient conditions for entanglement are known.
The first of such criteria was the criterion of the positivity of
the partial transpose �PPT� �1�. This criterion is necessary
and sufficient for 2�2 and 2�3 systems �2�, but in higher-
dimensional systems some entangled states escape detection.
The characterization of these PPT entangled states is thus of
great interest. Recently, the computable cross norm �CCN� or
realignment criterion was put forward by Rudolph �3� and
Chen and Wu �4�. The original condition has been reformu-
lated in several ways and extended to multipartite systems
�5–7�. The CCN criterion allows one to detect the entangle-
ment of many states where the PPT criterion fails; however,
some states that are detected by the PPT criterion cannot be
detected by the CCN criterion �5�. In this way, one may view
the CCN criterion as complementary to the PPT criterion. In
addition to the CCN criterion, there are also algorithmic ap-
proaches to the separability problem, which allow the detec-
tion of entanglement when the PPT criterion fails �8�.

A different approach to the separability problem tries to
formulate separability criteria directly in mean values or
variances of observables. Typically, these conditions are for-
mulated as Bell inequalities �9�, entanglement witnesses
�2,10�, or uncertainty relations �11–16�. Here, the local un-
certainty relations �LURs� by Hofmann and Takeuchi are re-
markable �12�. They have a clear physical interpretation and
are quite versatile. It has been shown that they can be used to
detect PPT entangled states �13�. It is further known that in
certain situations they can provide a nonlinear refinement of
linear entanglement witnesses �14�. Consequently, the inves-
tigation of LURs has been undertaken in several directions
�15,16�.

In this paper we investigate the relation between the CCN
criterion and the LURs. We show that any state that can be
detected by the CCN criterion can also be detected by a
LUR. By providing counterexamples, we prove that the con-
verse does not hold. Our results show that the LURs can be

viewed as nonlinear entanglement witnesses for the CCN
criterion. In this way, we demonstrate a surprising connec-
tion between permutation separability criteria �to which the
CCN criterion belongs� �7�, criteria in terms of covariance
matrices, such as LURs �16,17�, and the theory of nonlinear
entanglement witnesses �18,19�. Further, in two Appendixes
we discuss the relation of our constructions to other en-
tanglement witnesses that have been proposed for the CCN
criterion, and we calculate other nonlinear entanglement wit-
nesses for the CCN criterion �18�.

Let us start by recalling the definition of separability. A
quantum state � is called separable if its density matrix can
be written as a convex combination of product states,

� = �
k

pk�k
�A�

� �k
�B�, �1�

where pk�0, �kpk=1, and A and B denote the two sub-
systems. Throughout this paper, we denote by HA and HB
the �finite dimensional� Hilbert spaces of Alice and Bob, and
by B�HA� and B�HB� the real vector space of the Hermitian
observables on them. We first assume that both HA and HB
are d dimensional; later we discuss what happens if this is
not the case.

The CCN criterion can be formulated in different ways.
We use here a formulation given in Ref. �3� in Corollary 18,
since it is best suited for our approach. It makes use of the
Schmidt decomposition in operator space. For that reason,
any density matrix � can be written as

� = �
k

�kGk
A

� Gk
B, �2�

where �k�0 and Gk
A and Gk

B are orthogonal bases of the
observable spaces B�HA�, �B�HB��. Such a basis consists of
d2 observables that have to satisfy

Tr�Gk
AGl

A� = Tr�Gk
BGl

B� = �kl. �3�

We refer to such observables as local orthogonal observables
�LOOs� �20�. For instance, for qubits the �appropriately nor-
malized� Pauli matrices together with the identity form a set
of LOOs �see Eq. �12��. Note that, given a set Gk

A of LOOs,
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any other set G̃l
A of LOOs is of the form G̃l

A=�kOlkGk
A, where

Olk is a d2�d2 real orthogonal matrix �20�.
As for the usual Schmidt decomposition, the �k are �up to

a permutation� unique and if the �k are pairwise different, the
Gk

A and Gk
B are also unique �up to a sign�. The �k can be

computed as in the Schmidt decomposition: First, one de-

composes �=�kl�klG̃k
A

� G̃l
B with arbitrary LOOs G̃k

A and

G̃l
B; then, by performing the singular value decomposition of

�kl, one arrives at Eq. �2�; the �k are the roots of the eigen-
values of the matrix ��†.

The CCN criterion states that if � is separable, then the
sum of all �k is smaller than 1:

� is separable Þ �
k

�k � 1. �4�

Hence, if �k�k�1 the state must be entangled. For states
violating this criterion, an entanglement witness can directly
be written down. Recall that an entanglement witness W is
an observable with a positive expectation value on all sepa-
rable states; hence a negative expectation value signals the
presence of entanglement �10�. Given a state in the form �2�
that violates the CCN criterion, a witness is given by �21�

W = 1 − �
k

Gk
A

� Gk
B, �5�

since for this state we have Tr�W��=1−�k�k	0 due to the
properties of the LOOs. On the other hand, if �=�kl�klGk

A

� Gl
B were separable, then Tr�W��=1−�k�kk�1−�k�k�0,

since �k�kk��k�k due to the properties of the singular value

decomposition �22�. It is clear that any state violating the
CCN criterion can be detected by a witness of the type �5�.
Note that other forms of entanglement witnesses for the CCN
criterion have also been proposed �6�; we will discuss them
in Appendix A.

Let us now discuss the LURs. This criterion is formulated
as follows. Given some noncommuting observables Ak on
Alice’s space and Bk on Bob’s space, one may compute
strictly positive numbers CA and CB such that

�
k=1

n


2�Ak� � CA, �
k=1

n


2�Bk� � CB �6�

hold for all states for Alice �Bob�. Here, 
2�A�= �A2�− �A�2

denotes the variance of an observable A. Then it can be
proved that for separable states

�
k=1

n


2�Ak � 1 + 1 � Bk� � CA + CB �7�

has to hold. Any quantum state that violates Eq. �7� is en-
tangled. Physically, Eq. �7� may be interpreted as stating that
separable states always inherit the uncertainty relations that
hold for their reduced states �23�.

To connect the LURs with the CCN criterion, first note
that for any LOOs Gk

A the relation

�
k=1

d2


2�Gk
A� � d − 1 �8�

holds. This can be seen as follows. If we choose the d2 LOOs

Gk
A =�

1
	2

�
m��n
 + 
n��m
� for 1 � k � �d�d − 1��/2, 1 � m 	 n � d ,

1
	2

�i
m��n
 − i
n��m
� for �d�d − 1��/2 	 k � �d�d − 1�� , 1 � m 	 n � d ,


m��m
 for d�d − 1� 	 k � d2, 1 � m � d ,
�

one can directly calculate that �k�Gk
A�2=d1 and that

�k�Gk
A�2=Tr��2��1. For general G̃k

A=�lOklGl
A we have

�k�G̃k
A�2=�klmOlk

T OkmGl
AGm

A =d1 since O is orthogonal and

again �k�G̃k
A�2=Tr��2��1 �24�. Similarly, we have for Bob’s

system

�
k=1

d2


2�− Gk
B� � d − 1, �9�

where the minus sign has been inserted for later convenience.
Combining Eqs. �8� and �9� with the method of the LURs,

using the fact that �k�Gk
A�2=�k�Gk

B�2=d1 one can directly
calculate that for separable states

1 − �
k

�Gk
A

� Gk
B� −

1

2�
k

�Gk
A

� 1 − 1 � Gk
B�2 � 0. �10�

The first, linear part is just the expectation value of the wit-
ness �5�; from this some positive terms are subtracted. Since
any state that violates the CCN criterion can be detected by
the witness in Eq. �5�, it can also be detected by the LUR in
Eq. �10� and we have the following theorem.

Theorem. Any state that violates the computable cross
norm criterion can be detected by a local uncertainty rela-
tion, while the converse is not true.

To prove the second statement of the theorem we will
later give explicit counterexamples of states that can be de-
tected by a LUR, but not by the CCN criterion. Before doing
that, let us add some remarks.
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First, the theorem above can be interpreted in the follow-
ing way. While the witness in Eq. �5� is the natural linear
criterion for states violating the CCN criterion, the LUR in
Eq. �10� is the natural nonlinear witness for these states. The
fact that LURs can sometimes be viewed as nonlinear wit-
nesses that improve linear witnesses has been observed be-
fore �14�. The theorem, however, proves that the LURs pro-
vide in general improvements for witnesses of the type �5�.
Note that there are other possible nonlinear improvements on
these witnesses as discussed in Appendix B.

Second, we have to discuss what happens if the dimen-
sions of the Hilbert spaces HA and HB are not the same. So
let us assume that dA=dim�HA�	dB=dim�HB�. Then, in Eq.
�2� there are dA

2 different Gk
A and Gk

B. The Gi
A form already a

set of LOOs for HA and one can find further dB
2 −dA

2 observ-
ables Gk

B to complete the set �Gk
B to become a complete set

of LOOs for HB. Using then the LURs with the definition
Gk

A=0 for k=dA
2 +1 , . . . ,dB

2 proves the claim.
Now we present two examples that show that the LURs

are strictly stronger than the CCN criterion. First, let us con-
sider a noisy singlet state of the form

�ns�p� ª p
�s���s
 + �1 − p��sep, �11�

where the singlet is 
�s�ª �
01�− 
10�� /	2, and the separable
noise is given as �sepª2/3
00��00
+1/3
01��01
. Using the
PPT criterion one can see that the state is entangled for any
p�0. First we check for which values of p the state �ns is
detected as entangled by the CCN criterion. It can be seen
that �ns�p� violates the CCN criterion for all p�0.292. Now
we define Gk

A and Gk
B as

�Gk
Ak=1

4 = �−
�x

	2
,−

�y

	2
,−

�z

	2
,

1
	2
� ,

�Gk
Bk=1

4 = � �x

	2
,
�y

	2
,

�z

	2
,

1
	2
� . �12�

These Gk
A and Gk

B are the matrices corresponding to the
Schmidt decomposition of 
�s���s
. Using Eq. �10� with these
LOOs one finds that �ns is detected as entangled by the
LURs at least for p�0.25.

For the second example, we consider the 3�3 bound en-
tangled state defined in �25� mixed with white noise:


�0� =
1
	2


0��
0� − 
1��, 
�1� =
1
	2

�
0� − 
1��
2� ,


�2� =
1
	2


2��
1� − 
2��, 
�3� =
1
	2

�
1� − 
2��
0� ,


�4� =
1

3
�
0� + 
1� + 
2���
0� + 
1� + 
2�� ,

�BE =
1

4
�1 − �

i=0

4


�i���i
�, ��p� = p�BE + �1 − p�
1

9
.

The states ��p� are detected as entangled via the CCN crite-
rion whenever p� pccn=0.8897. Taking the LUR �10� with

the Schmidt matrices of ��pccn� as LOOs, one finds that the
states ��p� must already be entangled for p� plur=0.8885.
Thus, the LURs are able to detect states that are detected
neither by the CCN criterion nor by the PPT criterion. Note
that ��p� is known to be entangled at least for p�0.8744 �6�.

In conclusion, we showed that entanglement criteria based
on local uncertainty relations are strictly stronger than the
CCN criterion. The local uncertainty relations can be viewed
as the natural nonlinear entanglement witnesses for the CCN
criterion. The question of whether there is also a relation
between the PPT criterion and local uncertainty relations is
very interesting. We leave this problem for future research.
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tionsverarbeitung der Bayerischen Staatsregierung and the
National Research Fund of Hungary OTKA under Contracts
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APPENDIX A: CONNECTION TO THE WITNESSES
PROPOSED IN REF. [6]

Now we show that the entanglement witness defined in
Eq. �5� is identical to the witness defined in Ref. �6� based on
a different formulation of the CCN criterion. Let us first
review the realignment map. For a density matrix �
=�kl�klGk

A
� Gl

B the realigned matrix is given by �3�

R��� ª �
kl

�kl
Gk
A��Gl

B
 . �A1�

Here 
Gk
A� denotes a column vector obtained from Gk

A by
joining its columns consecutively while �Gk

B
 denotes the
transposition of a column vector obtained similarly from Gk

B.
R��� can also be computed by a reordering �“realignment”�
of the matrix entries of �, as explained in Ref. �4�. The CCN
criterion states that if �R����1�1 then  is entangled �3–6�.
Here �A�1 denotes the trace norm, i.e., the sum of the singu-
lar values of matrix A. If �=�k�kAk � Bk is given in its
Schmidt decomposition, we have R���=�k�k
Ak��Bk
 and
�R���1=�k�k. In this case R��� is already given in its sin-
gular value decomposition. To make this even more transpar-
ent, let us define �=diag��1 ,�2 , . . . �, U= �
A1� , 
A2� , . . . �, and
V= �
B1� , 
B2� , . . . �. Then we obtain the decomposition R���
=U�V†.

Now we can show that the witness Eq. �5� can be rewrit-
ten using the inverse of R. For that we need to observe that
�kAk � Bk=R−1��k
Ak��Bk
�=R−1�UV†�. Hence the witness
Eq. �5� can be written as

W = 1 − R−1�UV†� . �A2�

Since R realigns the matrix entries, we have always
R−1�X*�=R−1�X�*. Furthermore, since �kAk � Bk is Hermit-
ian, R−1�UV†� is also Hermitian. Thus the witness in Eq.
�A2� can be written as W=1− �R−1�U*VT��T, which is the
witness presented in Ref. �6�.
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APPENDIX B: MORE NONLINEAR WITNESSES

Recently, a method to calculate nonlinear improvements
for a given general witness has been developed �18�. Here,
we apply this method to Eq. �5�.

To start, we first have to calculate the positive map
� :B�HA�→B�HB� corresponding to W �26�. This is ����
=TrA�W��T � 1B��, and one can directly see that for �
=�i�i�Gi

A�T we have ����=Tr���1B−�i�i�Gi
B�. We can as-

sume without the loss of generality that d� is trace nonin-
creasing; otherwise we rescale W to obtain this. According
to the Jamiołkowski isomorphism the witness can then be
rewritten as

W = �IA � d���
�+���+
� , �B1�

where 
�+�=�i
ii� /	d is a maximally entangled state on
HA � HA. Since for LOOs �iTr�Gi

A�Gi
A=1 holds, Eq. �B1�

implies that 
�+���+
=�iGi
A

� �Gi
A�T /d.

To write down a nonlinear improvement, we can take
an arbitrary state 
���HA � HA which has a maximal
squared Schmidt coefficient s���. Then, defining X= �IA

� d���
�+���
� the functional

F��� = �W� − �X��X†�/s��� �B2�

is a nonlinear improvement of W �18�.
To give a first example, let us choose an arbitrary unitary

UA on HA and define 
��= �UA�† � 1
�+�, which implies that
s���=1/d. Then direct calculations lead to the nonlinear wit-
ness

F��� = �W� − d�W�UA
� 1����UA

� 1�†W� . �B3�

To give a second example, let us define 
��=1
� �UA�†
�+�. Using the coefficients �ij =Tr��Gi

A�T�Gj
A�TUA�

we can directly calculate that X= �IA � ����iGi
A

� �Gi
A�TUA�

=1−�ijGi
A

� �ijGj
B. Hence,

F��� = �W� − d�1 − �
ij

Gi
A

� �ijGj
B��1 − �

ij

Gi
A

� �ij
* Gj

B�
is another nonlinear witness, improving the witness in Eq.
�5�. The structure of these witnesses is quite different from
the structure of the LURs. Thus other nonlinear witnesses
can be derived for the CCN criterion, which do not coincide
with the LURs.
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