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Hydrodynamics of domain growth in nematic liquid crystals
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We study the growth of aligned domains in nematic liquid crystals. Results are obtained solving the Beris-
Edwards equations of motion using the lattice Boltzmann approach. Spatial anisotropy in the domain growth is
shown to be a consequence of the flow induced by the changing order parameter field~backflow!. The
generalization of the results to the growth of a cylindrical domain, which involves the dynamics of a defect
ring, is discussed.
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I. INTRODUCTION

Liquid crystals@1# are an ideal material for the study o
topological defects due to the complex textures they cre
which are easily visible to the naked eye. As topologi
defects arise in many situations the observed phenomen
liquid crystals can be used to test theories in other area
physics from cosmic strings@2# to vortices in superfluid he
lium @3#. Contrary to the assumption inherent in most pre
ous studies of defect dynamics in liquid crystals@4–6#, in a
recent paper@7# we found that backflow, the coupling be
tween the order parameter and the velocity fields, has a
nificant effect on the motion of defects. In particular, t
defect speed can depend strongly on the topological stre
in two dimensions and on the sense of rotation of the dire
about the core in three dimensions.

These defects were free, in the sense that they were i
unbounded system. However, it is much easier to study
uid crystals experimentally in a confined system. A ve
straightforward example is the geometry used for display
vices. In such a display the liquid crystal is sandwiched
tween two plates. As the optical and electrical response
the liquid crystal are coupled, one can apply an electric fi
between the two plates and directly observe the behavio

The operational state of many such devices, including
cells @8#, is topologically distinct from its state at zero vol
age. Before the device can be used, the operational state
be nucleated and grow to fill the display.@A typical cross
section through a domain wall separating an operational s
and a zero voltage state is shown in Fig. 2~b!.# These inter-
faces between topologically distinct states can behave di
ently than nematic-isotropic interfaces studied by ot
groups @9#. Recent experimental work on pi-cells@8# has
shown an unusual anisotropy in the domain growth: one s
of a domain grows faster than the opposite side. This wo
appear to be very similar to the anisotropy observed in
simulations of free defects@7#. However, there are importan
differences in this system related to the wall tilt angle, wh
can dominate the defect-defect interaction energy, and
driving force of the electric field. As such, in order to unam
biguously characterize the observed anisotropy we nee
directly study the growth of these domain walls, which i
corporate topological defects, in a confined geometry.

In additional to the technological applications, similar d
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vices have been proposed as ideal experimental realiza
of two-dimensional Ising models~in the plane defined by the
walls of the device!. Coarsening of reverse tilt domains i
liquid crystal cells with heterogeneous alignment layers
been shown to be consistent with predictions of the rando
bond Ising model@10#, thus providing experimental confir
mation of theoretical predictions for domain growth und
conditions of quenched random disorder.

The dynamics of a liquid crystal medium is often model
by using the Ericksen-Leslie-Parodi equations of mot
@1,24#. These equations describe the state of the liquid cry
in terms of a director fieldn, which is related to the orien
tation of the typically long, thin, rodlike molecules, whic
make up the liquid crystalline material. The Ericksen-Lesl
Parodi equations are restricted to an uniaxial order param
field of constant magnitude. Thus they cannot model the
namics of topological defects where in the defect core
magnitude of order has a steep gradient and the order pa
eter field is biaxial.~However, they provide a good descrip
tion of the bulk away from the defect core.!

In order to describe the hydrodynamics of topological d
fects correctly, we use the more complex Beris-Edwards
mulation of liquid crystal hydrodynamics@11#. The propen-
sity to order, as well as the direction along which the syst
orders are conveniently described by a tensor order par
eterQ @1#. The Beris-Edwards equations allow for variatio
in the magnitude of the nematic order parameter as wel
biaxiality present in defect cores. They model both def
dynamics and the coupling between the velocity field and
motion of the order parameter. We use a recent lattice Bo
mann algorithm@12#, which has been shown to successfu
model the full Beris-Edwards equations.

Our aim in this paper is to study the growth of a doma
of a nematic liquid crystal at the expense of a second dom
with a different director orientation. Defects form at th
walls between domains and their dynamics is vital in co
trolling the rate of growth. We find that a spatial anisotro
in domain growth can result from backflow and discuss h
the wall speed varies with the material parameters of
liquid crystal, such as viscosity and elastic constants,
geometry and the surface properties of the confining cell,
an external electric field. The Beris-Edwards equations
motion are presented in Sec. II, and the results of the dom
growth are described in Secs. III and IV. In Sec. V we d
©2003 The American Physical Society05-1
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cuss the relevance of our results to the experiments on
cells @8#. An outline of the numerical algorithm is given i
the Appendix.

II. THE HYDRODYNAMIC EQUATIONS OF MOTION

We summarize the formulation of liquid crystal hydrod
namics described by Beris and Edwards@11#, extended to
include an electric field and surface potentials. Similar m
els have been examined by a number of researchers@13#. The
continuum equations of motion are written in terms of
tensor order parameterQ, which is related to the direction o
individual moleculesm̂ by Qab5^m̂am̂b2 1

3 dab&, where the
angular brackets denote a coarse-grained average.~Greek in-
dices will be used to represent Cartesian components of
tors and tensors, and the usual summation over repeate
dices will be assumed.! Q is a traceless symmetric tensor. I
largest eigenvalue,23 q, 0,q,1, describes the magnitude o
the order.

We first write down a Landau–de Gennes free ene
which describes the equilibrium properties of the liquid cry
tal @1,14#

F5E
V
dV$ f bulk1 f el1 f f ield%1E

S
dS$ f sur f%. ~1!

f bulk describes the bulk free energy

f bulk5
A0

2 S 12
g

3DQab
2 2

A0g

3
QabQbgQga1

A0g

4
~Qab

2 !2.

~2!

For g52.7 there is a first-order transition from the isotrop
to the nematic phase. The minimum off bulk describes a
uniaxial nematic with an order parameter of the formQab
5q(nanb2 1

3 dab) whereq is zero in the isotropic phase an
has a finite value in the nematic phase, andn is the director
field.

f el is the analog of the Frank elastic free energy dens

f el5
L1

2
~]aQbg!21

L2

2
~]aQag!~]bQbg!

1
L3

2
Qab~]aQge!~]bQge!. ~3!

This can be easily mapped to give the Frank elastic const
K1 , K2, andK3 @11#. In particular, the ‘‘one elastic constant
approximation,K15K25K3 corresponds toL1.0 and L2
5L350.

For a uniaxial nematic, the dielectric constant is ani
tropic measured along or perpendicular to the director. T
relation between the electric displacementD and fieldE is of
the form @1#

D5e'E1~e i2e'!~n•E!n. ~4!

More generally, the dependence of the dielectric constan
the order parameter is described by
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eab5 2
3 eaQab1emdab , ~5!

where

ea5
3

2q
~e i2e'!, ~6!

em5 2
3 e'1 1

3 e i , ~7!

giving results consistent with Eq.~4! for the uniaxial nem-
atic. The electric contribution to the thermodynamic poten
f f ield is

f f ield52
1

4pE D•dE52
em

8p
E22

ea

12p
EaEbQab . ~8!

The equation of motion for the nematic order paramete
@11#

~] t1uW •“ !Q2S~W,Q!5GH, ~9!

whereG is a collective rotational diffusion constant. The fir
term on the left-hand side of Eq.~9! is the material derivative
describing the usual time dependence of a quantity adve
by a fluid with velocityuW . This is generalized by a secon
term

S~W,Q!5~jA1V!~Q1I /3!1~Q1I /3!~jA2V!

22j~Q1I /3!Tr~QW!, ~10!

where A5(W1WT)/2 and V5(W2WT)/2 are the sym-
metric part and the antisymmetric part, respectively, of
velocity gradient tensorWab5]bua . S(W,Q) appears in the
equation of motion because the order parameter distribu
can be both rotated and stretched by flow gradients. This
consequence of the rodlike geometry of the liquid crys
molecules.j is a constant, which depends on the molecu
details of a given liquid crystal.

The term on the right-hand side of Eq.~9! describes the
relaxation of the order parameter towards the minimum
the free energy. The molecular fieldH, which provides the
driving motion, is related to the derivative of the free ener
by

H52
d F
d Q

1~ I /3!Tr
d F
d Q

5Hbulk1Hel1H f ield , ~11!

where

Hbulk52A0S 12
g

3DQ1A0g@Q22~ I /3!TrQ2#

2A0gQTrQ2, ~12!

~Hel!ab5L1~]g
2Qab!1L2@ 1

2 ~]a]gQgb1]b]gQga!

2 1
3 dab]g]eQge#1 1

2 L3@]g~Qge]eQab!

2~]aQge!~]bQge!1 1
3 dab~]hQge!

2#, ~13!
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~H f ield!ab5
ea

12p S EaEb2
dab

3
Eg

2D , ~14!

and dab is the Kronecker delta. We work in a two
dimensional cross section, assuming that the order param
does not change in the perpendicular direction~although the
director may point out of the simulation plane!. In addition,
the symmetry and zero trace ofQ is exploited for simplifi-
cation.

At the surfaces of the device we assume a pinning po
tial

f sur f5
1
2 aS~Qab2Qab

0 !2. ~15!

We typically takeQ0 of the form

Qab
0 5q~na

0nb
02dab/3!, ~16!

where q is set to the equilibrium bulk value. This corre
sponds to specifying a preferred directionn0 for the director
at the surface. There can be other terms in the surface
energy@15# and a complete treatment of surface dynam
can be quite rich@16#. However, in this paper we will be
operating in the strong pinning limit (aS large! so that the
only effect of the pinning potential is to furnish an almo
fixed value ofQab at the surface~equal toQ0). In all cases
studied here, the results are insensitive to the precise valu
aS , so long as it is large enough to be in the strong pinn
limit.

The fluid momentum obeys the continuity

] tr1]arua50 ~17!

and the Navier-Stokes equation

r~] t1ub]b!ua5]btab1]bsab1h]b@~123]rP0!

3]gugdab1]aub1]bua#, ~18!

where r is the fluid density andh5rt f /3 is an isotropic
viscosity~which is controlled by the simulation parametert f
described in the Appendix!. The form of this equation is no
dissimilar to that for a simple fluid. However, the details
the stress tensor reflect the additional complications of liq
crystal hydrodynamics. There is a symmetric contribution

sab52P0dab2jHag~Qgb1 1
3 dgb!2j~Qag1 1

3 dag!Hgb

12j~Qab1 1
3 dab!QgeHge2]bQgn

dF
d]aQgn

~19!

and an antisymmetric contribution

tab5QagHgb2HagQgb . ~20!

These additional terms can be mapped onto the Erick
Leslie equations to give the Leslie coefficients@12#. The
background pressureP0 is constant in the simulations to
very good approximation (61%).

The differential equations for order parameter field Eq.~9!
and the flow field Eq.~18! are coupled. The velocity field
05170
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and its derivatives appear in the equation of motion for
order parameter Eq.~9!. Unless the flow field is zero,uW
50, the dynamics given by Eq.~9! are not relaxational and
hydrodynamics play an important role. Conversely, the or
parameter field affects the dynamics of the flow field throu
the stress tensors~19! and~20!, which appear in the Navier
Stokes equation~18! and depend onQ and H. This back
action of the order parameter field on the flow field is usua
referred to as backflow. To study these equations we us
lattice Boltzmann algorithm summarized in the Append
Other than when explicitly stated, the simulation paramet
are those listed in Ref.@17#.

III. DOMAIN GROWTH

We consider a liquid crystal confined between two plan
a distanceLx apart. The director field may take topological
distinct states depending on the boundary conditions and
plied voltage. In the simulations we set the boundary con
tion @Q0 in Eq. ~15!# so as to give a tilt angle2up between
the director and they axis atx50 and1up at x5Lx . At
zero applied voltage these conditions result in a global m
mum free energy state with a splayed director configurati
or horizontal~H! state, as shown in Fig. 1~a!. At high volt-
ages, typically on the order of 6 V, theH state is no longer
the global minimum, and a bend configuration~vertical state!
is obtained, such as shown in Fig. 1~b!. At intermediate volt-
ages, the vertical~V! state is more relaxed as shown in Fi
1~c!.

As theH andV states are topologically distinct, the tran
sition fromV to H requires nucleation ofH domains and the
generation of defects. The problem we will investigate is
growth ~or shrinking! of the H state within theV state. In
particular, we are interested in how hydrodynamics affe
the speed of the domain walls. This is partly motivated
the observation in Ref.@8# that the domain growth in a liquid

FIG. 1. The possible alignment of directors for a tilt ang
2up on the top surface and1up on the bottom surface (up,45°;
the surface tilt angle is measured with respect to the horizo
axis!: ~a! director configuration when the field is switched off an
the system had time to relax to its global minimum (H, or horizon-
tal state!; ~b! the field is switched on at a fairly high voltage;6 V
(V, or vertical state!; ~c! the field is at a voltage;2 V or lower.
The system may remain in the metastable state~c! for some time
even at zero voltage. Periodic boundary conditions apply in
horizontal~y! direction.
5-3
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crystal device can be anisotropic and the speculation that
may be due to hydrodynamics.

We have previously observed that the velocity of defe
in unbound systems can be affected by hydrodynamics
particular, the defect speed can depend strongly on the t
logical strength in two dimensions and on the sense of r
tion of the director about the core in three dimensions@7#.
The crucial difference between the domain growth probl
and the motion of free defects is that in the latter case e
defect moves due the director field of the other. In the
main growth problem the defects are not interacting but
dragged by the free-energy-driven movement of the dom
walls. The free defects are accelerated as they approach
other, while in the domain growth problem the defects mo
with a constant speed. Due to these differences and the
ditional geometrical parameters, a separate analysis is ne
for the confined system, which is also easier to realize
perimentally and provides a better control of the parame
influencing the defect speed.

In order to study the role of hydrodynamics in the syst
we will examine the factors affecting the domain growth
that we can clearly identify what causes the wall speed
isotropy. The key parameters are the surface director tiltup ,
the sample thicknessLx and material parameters such as c
efficients in the bulk free energy~1!: A0 , g, and elastic
constantsL1 , L2, and L3. In addition, the rotational diffu-
sion constantG, which appears in the dynamical equation~9!
for the order parameter gives an overall~inverse! time scale
and is related to the Leslie-Ericksen viscosities@12#.

For simplicity, we will first study the undriven case of a
H domain growing at the expense of aV state. We will later
examine growth under the influence of an electric field. T
initial configuration, depicted in Fig. 2~a!, is a horizontal
~i.e., along they direction! domain in an otherwise vertically
aligned state. This models a time shortly after the elec
field has been switched off when small but macroscopic
mains have formed in the device. As the simulation procee
the director configuration relaxes rapidly to that shown
Fig. 2~b!. During the relaxation defects are formed at t
center of each domain wall with strengths1 1

2 and2 1
2 , re-

spectively. Once the two defects have formed the vert
domain begins to grow and the1 1

2 and2 1
2 defects move in

opposite directions.
Our simulations correspond to a two-dimensional cr

section of the two line defects, assuming that the order
rameter does not change in the perpendicular direction~al-
though the director may point out of the simulation plan!.
The two defects are topologically distinct only in two dime
sions, but even in three dimensions they are usually se
rated by an energy barrier.

A particular advantage of the simulations is that the ba
flow can easily be switched off by settingsab52P0dab
and tab to zero. @Compare this with Eqs.~19! and ~20!.#
Since there is no flow imposed, there is a zero velocity fi
throughout the whole simulation. The dynamical equation
this case can be obtained from Eq.~9! by settinguW to zero. It
corresponds to the purely relaxational Ginzburg-Land
model @23#
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] tQ5GH, ~21!

where the molecular fieldH is given by Eq.~11!. Comparing
the dynamics obtained from the Ginzburg-Landau model
the full hydrodynamic equations, the effect of the backflo
can be unambiguously identified.

The Ginzburg-Landau equation~21! with a single elastic
constant is invariant under a local coordinate transforma
mirroring the director on thex axis. This corresponds to th
transformation

Qxy→2Qxy , Qyx→2Qyx . ~22!

The order parameter fields of the twomovingdefects with
topological chargess56 1

2 shown in Fig. 2~b! ~even includ-
ing the deformation due to the boundaries! transform into
each other. Thus approaches based on a simple Ginzb
Landau equation predict that as the defects move they fol
symmetric dynamical trajectories.

We can construct a simple model for the domain mot
in the absence of hydrodynamic flow. In the bulk regio
~away from the domain walls!, f bulk is minimized with a
uniaxial order parameter of the formQab5q(nanb
2 1

3dab
). We can then restrict our attention to the elastic fr

energyf el . With this form of the order parameter and ifL2
5L350, the elastic free energy density has the formf el
5L1q2(¹u)2 if the director remains in the plane so thatn
5(cosu,sinu,0). The minima in the bulk regions~away
from the domain walls! correspond to the director angl
changing linearly along thex coordinate from2up to 1up
in the H domain, and from2up to (1up2180°) in theV
domain. The difference of the free energy densities of
two domains can then be written as

FIG. 2. ~a! The initial director configuration is a horizontal do
main (H state! in an otherwise vertically aligned system (V state!.
~b! As the system begins to relax, two defects are formed at
boundary of the horizontal and vertical domains. The left~right!
defect has a topological strengths52

1
2 (s51

1
2 ). The curved ar-

rows indicate the direction of the vortices induced by the reori
tation of the director during the growth of the horizontal doma
The straight arrows point into the direction of defect motion. No
that there are periodic boundary conditions in the horizontal~y!
direction.
5-4
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D f 5 f V2 f H5
4pL1q2

Lx
2 S p

4
2upD . ~23!

For up,45°, the horizontal domain grows because this
creases the free energy of the system. Forup.45° the hori-
zontal domain should begin to shrink, and atup545° the two
domains have the same free energy and the defects sh
stop moving.

If the H domain grows by a length ofDLy then the free
energy of the system decreases byD f 3Lx3DLy . Simple
relaxational arguments then suggest that the speed of do
growth can be described by the formula

v5
1

he
~D f !Lx , ~24!

wherehe is an effective viscosity.
Surface tilt:We first investigate the effect of the surfac

tilt up on the defect speed. Equations~23! and ~24! suggest
that asup increases, the free energy difference decreases,
the defects should move more slowly. The defect speedv is
plotted as a function of surface tiltup in Fig. 3. Consider first
the diamonds. These correspond to the case with back
switched off. For this case both defects move at the sa
speed~but in opposite directions!. Notice that the defect ve
locity is proportional to (up245°). From Eqs.~23! and~24!
this leads to the conclusion that the effective viscosityhe is
independent of the tilt angle and its value is found to
0.138 Pa s for the parameters of the simulation.

Back-flow:The triangles and circles in Fig. 3 show th
velocity of the defects when backflow is included in t
model. The s51 1

2 defect is considerably speeded u
whereas thes52 1

2 defect is only slightly accelerated. Th
defect speed remains proportional to (up245°) within a 2%

FIG. 3. The velocity of the two defects as a function of surfa
tilt if backflow is ignored~diamonds! or included. Note that if back-
flow is not included then the two defects move with the same sp
which is well described by the dashed line based on Eqs.~23! and
~24!. Hydrodynamics accelerates thes51

1
2 defect~triangles! sub-

stantially, while it affects thes52
1
2 defect~circles! much less. The

speed anisotropya is 36%.
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error. The effective viscosities areh11/250.083 Pa s
,h21/250.123 Pa s. These values are comparable to the
tational viscosityg150.08 Pa s@8#. The speed anisotropy
defined as

a5
Dv

v̄
5

vs511/22vs521/2

~vs511/21vs521/2!/2
~25!

is independent ofup and its value isa536%.
The order parameter field affects the flow field throu

the symmetric and antisymmetric stress tensors, Eqs.~19!
and~20!. The total nonviscous stress~i.e., the combination of
all the stress terms not related to the velocity gradient ten!
is the sum of three terms

s1t5si1sH1sd . ~26!

Heres i ,ab52P0dab is the stress due to the isotropic pre
sure. sd,ab52]bQgn(dF/d]aQgn) is the deformation
stress. ForL25L350 the deformation stress issd,ab5
2L1Tr(]aQ]bQ). The rest of the terms in Eqs.~19! and
~20! give what we will refer to as the molecular field stres
sH , which is a function ofH andQ. sd and the diagonalsi
do not change under the transformation~22! that transforms
the defects of topological charge61/2 into each other. Con
versely, the off-diagonal elements ofsH have their sign in-
verted. Thus the stress fields and the resultant backflow
different for the two defects.

The stress fieldsd is related to the deformation free en
ergy density, which is the same for both defects. It indu
vortices similar to those around a solid cylinder moving in
viscous liquid. The flow points in the direction of defe
motion at the defect core. The contributionsH describes the
stress due to the reorientation of the director. The reorie
tion is the strongest around the core while molecules near
surfaces reorient much less. The director reorientation
duces vortices around the two defects, as shown in Fig. 2~b!.
The direction of these vortices is determined by the grad
of the director angle taken moving around the defect
the positive direction. It is positive~negative! for the 1 1

2

(2 1
2 ) defect.
The two contributions to the backflow reinforce ea

other for thes51 1
2 defect but partially cancel for thes5

2 1
2 defect. The resulting flow fields can be seen in Fig.

The flow is stronger around thes51 1
2 defect. Around the

s52 1
2 defect the flow is much weaker and the flow fie

points opposite to the defect propagation at the core. H
ever, even in this case backflow accelerates the relaxati
dynamics.

Sample dimensions:As the sample becomes wider th
speed of the defect propagation decreases@18#, as can be
seen in Fig. 5~a!. The dependence of the defect velocity o
Lx follows from Eqs.~23! and ~24!, which gives

v}
1

heLx
. ~27!

The effective viscosity can be calculated fromhe
51/(2psL1G)*(¹uq)2dr , whereuq is the field due just to

d,
5-5
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TÓTH, DENNISTON, AND YEOMANS PHYSICAL REVIEW E67, 051705 ~2003!
the defect itself@5,6# and the integral is over the volume o
the system. Due to the confining geometry, one expects
integral to be dominated by the near-field contribution~i.e.,
the field near the defect core!, which is the same for both a
static or moving defect@5#. The gradient ofu caused by a
static defect drops off as 1/r and hence one expects the e
fective viscosity to go like log(Lx /Lx0) @6#.

This dependence is observed in Fig. 5~b!. The fit is he
50.62 Pa s3 log(Lx /Lx0), whereLx050.076mm is compa-
rable to the defect core diameter. The dashed line in Fig.~a!
shows the fit to Eq.~27! including theLx dependence of the
viscosity.

When backflow is considered, the relative speed ani
ropy increases withLx and saturates at about 60%, as sho
in the inset of Fig. 5~a!. The increase is probably due to th
increasingly larger regions around the core involved in dir
tor reorientation. This leads to stronger vortices and he
stronger hydrodynamic effects.

Electric field: When an external electric field is applied,
changes the free energy densities of theH and V domains.
Thus, it also influences the speed of the domain grow
Figure 6 shows the speed of the two defects as the func
of applied voltage. For low voltages the free energy diff
ence between theH andV domains can be estimated. If w
assume that the orientation of theH and V states are un-
changed from the zero voltage case@i.e., the director angle
remains a linear function ofx, as used in Eq.~23!#, then
substituting this into Eq.~8! and integrating over space give

DF f ield5
eaq

48pLx
S 1

up
2

1

p/22up
DV2Lysin 2up , ~28!

for a sample of lengthLy . The total free energy differenc
between the domains is the sum of the elastic and the
contributions, Eqs.~23! and ~28!, respectively. Substituting
this into Eq. ~24! results in a parabolic dependence of t
velocity on V for low voltages, as shown in Fig. 6. A

FIG. 4. Velocity field corresponding to the~a! s52
1
2 and ~b!

s51
1
2 defects shown in Fig. 2~b!. There is a strong vortex pai

around thes51
1
2 defect which, at the defect core, points in th

direction of defect movement. The flow at the core of thes52
1
2

defect is weaker and points opposite to the direction of de
propagation.
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Vlimit;0.9 V domain growth is reversed since the effect
the surfaces is balanced by the influence of the electric fi

At high voltages (V;0.6 V), theH domain is replaced
by HA , an asymmetric horizontal domain shown in Fig. 7.
has a lower free energy than theH domain due to the more
favorable alignment with the electric field. As a result of t
deformation of theHA domain, the defects move towards th
surfaces. ForV.1 V the molecules in the bulk are almo
completely aligned with the vertical field. The horizontal r
gion is then confined to a thin layer near the surfaces.
this type of configuration, the free energy difference betwe
the domains is proportional to the voltage@8#. This gives the
linear slope of the curve in Fig. 6 seen for the higher vo
ages.

For low voltages the speed anisotropy is 36% and in
pendent of the voltage. As shown in the inset of Fig. 6,
high voltages (V.1 V) the speed anisotropy decreases. T

ct

FIG. 5. ~a! Speed of the1 1
2 ~triangles! and2

1
2 ~circles! defects

as a function of the thickness of the sample. The diamonds co
spond to the case without hydrodynamics. The inset shows the
tive speed anisotropy as a function of sample thickness.~b! Effec-
tive viscosity he as a function of sample thickness for the ca
without hydrodynamics. The dashed lines in both figures co
spond to the fit to the theoretical results discussed in the text.
5-6
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HYDRODYNAMICS OF DOMAIN GROWTH IN NEMATIC . . . PHYSICAL REVIEW E 67, 051705 ~2003!
effect on the anisotropy can be explained by the rela
weight of the relaxational dynamics and the backflow. In
V51V to 1.6 V range the relaxational dynamics are subst
tially speeded up by the increasing voltage due to the elec
field contribution ~8! in the free energy. The backflow i
induced by the stress fields given in Eqs.~19! and ~20!.
These stress fields do not depend directly on the elec
field, only on the order parameter field, which changes o
slightly in this voltage range. Therefore, the stress fields
not increase with the increasing voltage, and the hydro
namics is dominated by the relaxational dynamics at h
fields. ~In comparison, for the experiment presented in R
@8# the domain wall speed was;0.1 mm/ms and the anisot
ropy also decreased with increasing voltage.!

IV. OTHER CONTROL PARAMETERS

The equations governing the dynamics of liquid cryst
covered in Sec. II contain a large set of parameters. In
section we explore some of this parameter space. In par
lar, we examine the case of multiple elastic constants, imp
tant for comparing to any real liquid crystal. In addition w
look at the influence of the different viscosities and free
ergy parameters on the balance of the relaxational dynam
and the backflow. We also examine the case of asymme
and inhomogeneous surface tilts since they give deepe
sights about the underlying symmetries of the system and

FIG. 6. Speed of the1 1
2 ~triangles! and2

1
2 ~circles! defects as

a function of the external fieldV. Without hydrodynamics the de
fects move at the same speed~diamonds!. The inset shows the rela
tive speed anisotropy as a function ofV.

FIG. 7. AV domain growing in an asymmetricHA environment.
At high fields the horizontal domain is deformed moving the defe
towards one of the boundaries.
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important for practical devices with nontrivial surface a
choring.

Elastic constants:Real liquid crystals have multiple elas
tic constants. We now consider the effect of nonzero ela
constantsL2 andL3. If L2Þ0 in the expression of the mo
lecular field Eq.~13!, the dynamical equation in the absen
of backflow Eq.~21! loses its invariance under the transfo
mation ~22!. However, the speed anisotropy is very sma
The reason for this is that the relaxational dynamics are
invariant under the mirroring transformation for a uniax
order parameter with a constant magnitude@19#. In our setup
these conditions hold except for close to the defect core

A larger anisotropy in speed is obtained ifL3Þ0. If L3
.0 (L3,0) then thes51 1

2 (s52 1
2 ) defect is faster. For

L158.73 pN andL3515.87 pN, we measure a speed anis
ropy of a53%, in a system without hydrodynamics. Th
anisotropy due to the unequal elastic constants increases
increasing sample thickness. ForLx51.25mm ~our bench-
mark system hasLx50.7 mm @17#! the anisotropy due to
nonzeroL3 is a56%. This may be due to the fact that, fo
free defects, the elastic anisotropy causes significant de
tions from the case of isotropic elasticity in the order para
eter field away from the axis determined by the two def
cores@1#. In the thinner sample, the surfaces ‘‘cut off’’ thi
part of the field, decreasing the anisotropy.

If the surface tilt is close to vertical and the horizont
domain is shrinking, then theL3 dependence of the spee
anisotropy is the opposite. IfL3,0 (L3.0), then thes5
1 1

2 (s52 1
2 ) defect is faster. Since in the two cases~grow-

ing vs shrinking domain! the order parameter fields near th
axis of the two cores are the same, this should also be at
uted to the differences in the order parameter fields far fr
the defect cores, which results from the different tilts.

Viscosities and diffusion:Consider now the effect of the
parameters governing the time scales in the equation of
tion for the domain growth.t f is proportional to the viscosity
in the Navier-Stokes equation~18!. Increasingt f increases
the viscosity, slows the defects, and decreases their velo

s

FIG. 8. Speed of the1 1
2 ~triangles! and2

1
2 ~circles! defects as

a function of the viscosityh5rt f /3. The dashed line correspond
to the velocity without backflow. The inset shows the relative spe
anisotropy as a function ofh.
5-7
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TÓTH, DENNISTON, AND YEOMANS PHYSICAL REVIEW E67, 051705 ~2003!
anisotropy, as shown in Fig. 8. The velocity tends to t
measured without backflow, as represented by a dashed
in the figure. This is as expected since backflow will
suppressed by a large viscosity.

IncreasingG which appears in Eq.~9! increases the ve
locity of both defects, but decreases the relative speed an
ropy as shown Fig. 9. The defects move faster, due to the
thatG governs the speed of the relaxational dynamics. Si
the stress fields in Eqs.~19! and ~20! do not depend onG,
they do not increase. As a result, asG increases, the relax
ational dynamics speed up, but the backflow does not cha
as significantly, and as a result the anisotropy decreases

Free energy:g is the parameter in free energy~2!, which
controls the magnitude of order in the bulk of the domai
~The isotropic-nematic phase transition is atg52.7.! When
g decreases, the defect core gets bigger and this results
smaller effective viscosity@5#. Thus the defects move faste
under the relaxational dynamics. The decrease in the ma
tude of order results in a smaller backflow due to the re
entation anda decreases.

ChangingA0 in free energy~2! does not affect the homo
geneously aligned bulkH and V domains, only the defec
structure. The largerA0, the larger the energy cost of an
deviation from the magnitude of order corresponding to
minimum of f bulk in Eq. ~2!. DecreasingA0 increases the
size of the defects, and as above, the defects move fa
under the relaxational dynamics. Since the defect core
increases, the magnitude of order around the core decre
resulting a smaller backflow due to reorientation and henca
decreases. The effect of increasingL1 is similar. It increases
the defect core size, speeds up the defects, and leads
smaller velocity anisotropy.

Nonsymmetric surface tilt:The director surface tilt at the
top and bottom surfaces does not have to be symmetric
this more general case, tilt angles at the surfaces can
written as a sum of a symmetric and an antisymmetric c

FIG. 9. Speed of the1 1
2 ~triangles! and2

1
2 ~circles! defects as

a function ofG. The diamonds correspond to the case without
drodynamics whenv}G. The inset shows the relative speed anis
ropy as a function ofG.
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tribution:

up~x50!52up,s1up,a , ~29!

up~x5Lx!51up,s1up,a .

The dynamical equations forL25L350 and without flow
are invariant under the local rotation of all the molecules
the same angle. The dynamics for a nonsymmetric surf
tilt can, therefore, be obtained from the symmetric case
rotating all the molecules byup,a . Thus even for nonsym-
metric tilts the two defects move with the same speed
remain in the center between the two plates. The full d
namical equations, however, are not invariant under the
tation of molecules if flow is included~or if L2Þ0, L3
Þ0). Thus the defects will move with a different spee
Moreover, they are no longer constrained by symmetry to
midway between the two plates. Typical director and veloc
fields for an asymmetric surface tilt are shown in Fig. 10

It is also possible to construct a patterned alignment
liquid crystals on surfaces@20#. If the surface tilt is not ho-
mogeneous, then, when the defect arrives at a region wi
different tilt, it assumes the velocity corresponding to th
tilt. On the boundary of two bend domains with oppos
surface tilt the defect can even ‘‘change’’ topological streng
by merging with the two defects located at the surface,
shown in Fig. 11.

-
-

FIG. 10. ~a! Director and velocity field about the~b! 11/2 and
~c! 21/2 defects for asymmetric surface anchoring. The director
is up(x50)5210° at the top andup(x5Lx)5160° at the bottom
surface. The qualitative differences between the flow fields of
two defects are the same as for the symmetric case in Fig. 4.
5-8
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HYDRODYNAMICS OF DOMAIN GROWTH IN NEMATIC . . . PHYSICAL REVIEW E 67, 051705 ~2003!
V. GROWTH OF A CYLINDRICAL DOMAIN:
THE HYDRODYNAMICS OF A DEFECT RING

In this section we consider the three-dimensional ana
of our system, where a liquid crystal is held between para
plates;mm apart. A domain nucleated at a point will gro
to a cylindrical shape with its axis perpendicular to the co

FIG. 11. The influence of surface tilt inhomogeneity: the surfa
tilt changes fromup5115° to up5215° towards the right-hand
side of the figure.~a! Upon reaching the border of the two ben
domains with opposite surface tilt, the defect1

1
2 merges with the

two 2
1
2 defects located at the surfaces;~b! a 2

1
2 defect is formed.

FIG. 12. ~a! Confined between two horizontal surfaces, a cyl
drical H domain is growing in aV environment. There is a defec
ring ~dotted line! at the domain boundary.~b! The cross sections
indicated by dashed lines in~a! are shown. This corresponds to th
simulation plane considered in this paper. The director and the
tices due to the reorientation are in the plane of the cross section~c!
The cross section indicated by dashed-dotted lines in~a!. The direc-
tors are perpendicular to the plane of the cross section. The pla
vortices due to the reorientation is also perpendicular to the c
section. However, for both~b! and~c! the vortices due to the defor
mation stress are in the plane of the cross section and the flow a
core points in the direction of defect propagation indicated
straight arrows.
05170
g
l

-

fining plates. Based on our experience with the tw
dimensional system we can discuss how backflow can af
the growth of a cylindricalH domain in aV environment.

At the domain boundary there is a defect ring, as shown
Fig. 12~a!. The defect configuration of a vertical cross se
tion through the ring~perpendicular to the plates! changes
gradually from a2 1

2 to a 1 1
2 defect. Although this problem

is three dimensional, a vertical cross section indicated
dashed lines in Fig. 12~a! gives a geometry similar to tha
considered in Sec. IV.

For simplicity, assume that theH domain is a perfect cyl-
inder. In this case the director field of any vertical cro
section passing through the middle of this cylindrical dom
can be obtained from our two-dimensional simulation pla
by rotating the director field locally by a given angle arou
the vertical axisx.

Let us now examine the effect of the backflow.sd and the
diagonalsi do not change during the local rotation of th
tensor order parameter fieldQ around the vertical axisx by
the same angle. The generated velocity vortices always li
the plane of the cross sections across the defects ring. T
generate flow, which is always in such a direction as to
pand the defect ring, indicated by straight arrows in Fi
12~a–c!.

The tensorsH does, however, change under a local ro
tion aroundx. For the cross section, which includes a1 1

2

defect the resultant backflow points in the direction of def
motion. For the2 1

2 defect, the flow points opposite to th
defect motion, as shown in Fig. 12~b!. In both cases the
vortices are in the plane of the cross section. Figure 12~c!
shows the cross section indicated by the dashed-dotted
in Fig. 12~a!. Now the directors and the vortices due to t
reorientation are in a plane perpendicular to the cross sec
Thus, the total flow field will vary around the domain wa
and will lead to anisotropy in the domain growth.

An experimental setup similar to this was considered
Acosta, Towler, and Walton in their investigation of doma
growth and switching in pi-cell liquid crystal devices@8#.
The growth of a horizontal domain in a bend~V! or twisted
bend environment was studied: such a transition is neede
produce the operational state of the device.~The twisted
bend configuration has a lower energy than the bend state
small surface tilts and low voltage, if the Frank elastic co
stantK2 is sufficiently small. The twisted bend state is r
placed by a bend state for larger (;30°) surface tilts.! A
cylindrical bend or twisted bend domain was formed in aH
environment and the domain wall velocity was measured
four points around the ring, where its cross section cor
sponds to a1 1

2 and a2 1
2 defect, and at two points halfwa

between these. It was found that the wall at the1 1
2 defect

moved substantially faster than that at the other three
seems very plausible that the essential physics is capture
our model.

Further measurements of defect dynamics in confined
ometries have been done very recently@21# and these tech-
niques should allow further testing of the concepts
present here.
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VI. SUMMARY

In this paper we explored domain growth in nematic l
uid crystals. Defects form at moving domain walls. We fi
that a wall incorporating as51 1

2 defect is substantially
speeded up by backflow effects, whereas a wall containin
s52 1

2 defect is only slightly affected. This was explained
terms of the symmetry properties of the different stres
acting on the defects. These reinforce each other for ths
51 1

2 defect while partially cancelling for thes52 1
2 defect.

The influence of different material and geometrical para
eters on the velocity anisotropy was interpreted by comp
ing the relative weight of the relaxational dynamics and
backflow. By generalizing two-dimensional simulation r
sults, a qualitative picture was proposed for the role of
backflow in three dimensions.

Results were obtained using a lattice Boltzmann al
rithm to solve the Beris-Edwards equations of liquid crys
hydrodynamics. Working within the framework of a variab
tensor order parameter it was possible to correctly incor
rate variations in the magnitude of order and hence the
namics of domain walls and their associated topological
fects.
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APPENDIX: A LATTICE BOLTZMANN ALGORITHM
FOR LIQUID CRYSTAL HYDRODYNAMICS

We now summarize a lattice Boltzmann algorithm th
solves the hydrodynamic equations of motion of a liqu
crystal~9!, ~17!, and~18!. Lattice Boltzmann algorithms ar
defined in terms of a set of continuous variables, usefu
termed partial distribution functions, which move on a latti
in discrete space and time@22#.

The simplest lattice Boltzmann algorithm, which d
scribes the Navier-Stokes equations of a simple fluid, is
fined in terms of a single set of partial distribution functio
that sum on each site to give the density. For liquid crys
hydrodynamics this must be supplemented by a second
which are tensor variables, and which are related to the
sor order parameterQ @12#.

We define two distribution functions, the scalarsf i(xW ) and
the symmetric traceless tensorsGi(xW ) on each lattice sitexW .
Eachf i , Gi is associated with a lattice vectoreW i . We choose
,
-
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a nine-velocity model on a square lattice with velocity ve
tors eW i5(61,0),(0,61),(61,61),(0,0). Physical variables
are defined as moments of the distribution functions

r5(
i

f i , rua5(
i

f ieia , Q5(
i

Gi . ~A1!

The distribution functions evolve in a time stepDt ac-
cording to

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !

5
Dt

2
@Cf i~xW ,t,$ f i%!1Cf i~xW1eW iDt,t1Dt,$ f i* %!#,

~A2!

Gi~xW1eW iDt,t1Dt !2Gi~xW ,t !

5
Dt

2
@CGi~xW ,t,$Gi%!1CGi~xW1eW iDt,t1Dt,$Gi* %!#.

~A3!

This represents free streaming with velocityeW i and a colli-
sion step that allows the distribution to relax towards eq
librium. f i* and Gi* are first-order approximations tof i(xW

1eW iDt,t1Dt) and Gi(xW1eW iDt,t1Dt), respectively. They
are obtained by using only the collision operat
Cf i(xW ,t,$ f i%) on the right of Eq.~A2! and a similar substitu-
tion in Eq.~A3!. Discretizing in this way, which is similar to
a predictor-corrector scheme, has the advantages that la
viscosity terms are eliminated to second order and that
stability of the scheme is improved.

The collision operators are taken to have the form o
single relaxation time Boltzmann equation@22#, together
with a forcing term

Cf i~xW ,t,$ f i%!52
1

t f
@ f i~xW ,t !2 f i

eq~xW ,t,$ f i%!#1pi~xW ,t,$ f i%!,

~A4!

CGi~xW ,t,$Gi%!52
1

tg
@Gi~xW ,t !2Gi

eq~xW ,t,$Gi%!#

1M i~xW ,t,$Gi%!. ~A5!

The form of the equations of motion and thermodynam
equilibrium follow from the choice of the moments of th
equilibrium distributionsf i

eq and Gi
eq and the driving terms

pi andM i . Full details of the algorithm can be found in Re
@12#.
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