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Detecting Genuine Multipartite Entanglement with Two Local Measurements
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We present entanglement witness operators for detecting genuine multipartite entanglement. These
witnesses are robust against noise and require only two local measurement settings when used in an
experiment, independent of the number of qubits. This allows detection of entanglement for an increasing
number of parties without a corresponding increase in effort. The witnesses presented detect states close to
Greenberger-Horne-Zeilinger, cluster, and graph states. Connections to Bell inequalities are also
discussed.
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FIG. 1. (a) Measurement settings needed for detecting genuine
multiqubit entanglement close to GHZ states with Bell inequal-
ities. For each qubit the measured spin component is indicated.
(b) Settings needed for the approach presented in this paper for
detecting entangled states close to GHZ states and (c) cluster
states.
Entanglement lies at the heart of quantum mechanics
and plays an important role in quantum information theory
[1]. While bipartite entanglement is well understood, mul-
tiparty entanglement is still under intensive research. It was
soon realized that it is not an extension of the bipartite case
and several new phenomena have arisen. For instance, for
three qubits there are two different classes of true many-
body entanglement [2]. Moreover, multiqubit states can
contradict local realistic classical models in a new and
stronger way [3]. These phenomena can be used to imple-
ment novel quantum information processing tasks such as
error correction [4], fault-tolerant quantum computation,
cryptographic protocols such as secret sharing [5],
measurement-based quantum computation [6] and open-
destination teleportation [7].

With the rapid development of quantum control it is now
possible to study experimentally the entanglement of many
qubits using photons [7–10], trapped ions [11], or cold
atoms on an optical lattice [12]. In these experiments it is
not sufficient to claim that ‘‘the state is entangled’’. A
multiqubit experiment is meaningful and presents some-
thing qualitatively new only if provably more than two
qubits are entangled. While a lot of thought has been given
to detecting entanglement in general [13–16], detection of
genuine multiqubit entanglement has only a limited litera-
ture [9,10,15,17]. Existing methods need an experimental
time growing exponentially with the number of qubits,
making multiqubit entanglement detection impossible
even for modest size systems.

We will show it is still possible to decide whether a state
is multiqubit entangled without the need for exponentially
growing resources, using only local measurements. This is
unexpected since the property to be detected is nonlocal
over increasing number of qubits. Our method can readily
be used in any future experiment preparing Greenberger-
Horne-Zeilinger (GHZ) and cluster states [6,18]. They
both play a central role in the quantum algorithms men-
tioned before. GHZ states, as maximally entangled multi-
qubit states, are intensively studied [13–15] and have been
realized in numerous experiments [8,9,11]. Cluster states
05=94(6)=060501(4)$23.00 06050
can easily be created in a spin chain with Ising-type
interaction [18] and have been realized in optical lattices
of two-state atoms [12]. Remarkably, their entanglement is
more persistent to noise than that of a GHZ state [18].

A usual approach for detecting entanglement is using
Bell inequalities [13–15]. These indicate the violation of
local realism, a notion independent of quantum physics.
When applied to detect quantum entanglement, they detect
usually any (i.e., also partial or biseparable [19]) entangle-
ment [15]. For N qubits Bell inequalities typically need the
measurement of two variables at each qubit. Thus, as
shown in Fig. 1(a), the number of local measurement
settings needed increases exponentially with N. Here, a
measurement setting means a simultaneous measurement
of single qubit operators fO�k�gNk�1 at sites k � 1; 2; :::; N in
parallel.

Another approach for detecting multipartite entangle-
ment is using entanglement witnesses [16]. These are
observables which have a positive or zero expectation
value for all separable states, thus a negative expectation
value signals the presence of entanglement. In a typical
experiment one aims to prepare a pure state, j�i, and
would like to detect it as true multipartite entangled.
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While the preparation is never perfect, it is still expected
that the prepared mixed state is in the proximity of j�i.
The usual way to construct entanglement witnesses using
the knowledge of this state is

~W � ~c1 � j�ih�j: (1)

Here ~c is the smallest constant such that for every product

state Tr�% ~W � 
 0. In order to measure the witness ~W in
an experiment, it must be decomposed into a sum of locally
measurable operators [20]. The number of local measure-
ments in these decompositions seems to increase exponen-
tially with the number of qubits [10,17].

In this paper we propose to construct witnesses for
N-qubit states of the form

W � c01 �
X
k

ckSk; (2)

where the ck’s are constants and the Sk operators stabilize
the state j�i [4]

Skj�i � j�i: (3)

For certain class of states, i.e., for GHZ and cluster states
[18] the Sk’s can be chosen locally measurable: they are the
tensor products of Pauli spin matrices. It will turn out that
for measuring our stabilizer witnesses, only two local
measurement settings are required, independently of the
number of qubits.

Let us briefly explain what we understand by such a
local measurement setting [20]. Measuring a local setting
fO�k�gNk�1 consists of performing simultaneously the von
Neumann measurements O�k� on the corresponding parties.
After repeating the measurements several times, the coin-
cidence probabilities for the outcomes are collected. Given
these probabilities it is possible to compute all two-
point correlations hO�k�O�l�i, three-point correlations
hO�k�O�l�O�m�i, etc. Since all these correlation terms can
be measured with one setting, the number of settings
determines the experimental effort rather than the number
of measured correlation terms in Eq. (2). For detecting
entanglement at least two settings are needed since the
coincidence probabilities obtained from a single setting
can always be mimicked by a separable state.

In order to demonstrate the power of our approach with
an example, let us write down an entanglement witness
(discussed later in detail) which detects genuine three-
qubit entanglement around the three-qubit GHZ state
jGHZ3i � �j000i � j111i�=

���
2

p
:

W GHZ3
:�

3

2
1 � ��1�

x ��2�
x ��3�

x �
1

2
��1�

z ��2�
z � ��2�

z ��3�
z

� ��1�
z ��3�

z �: (4)

This witness requires the measurement of the
f��1�

x ; ��2�
x ; ��3�

x g and the f��1�
z ; ��2�

z ; ��3�
z g settings. The

projector-based witness W GHZ3
� 1=2� jGHZ3ihGHZ3j

requires four measurement settings [17].
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After showing the previous example, we present a wit-
ness detecting entangled states close to an N-qubit GHZ
state, jGHZNi � �j0i�N � j1i�N�=

���
2

p
. Its stabilizing op-

erators are

S�GHZN�
1

:�
YN
k�1

��k�
x ;

S�GHZN�
k :� ��k�1�

z ��k�
z for k � 2; 3; . . . ; N:

(5)

Using these stabilizing operators, Eq. (3) defines uniquely
the GHZ state. The latter is stabilized not only by S�GHZN�

k ’s
but also by their products. These operators form a group
called stabilizer [4], and S�GHZN�

k ’s are the generators of this
group. Allowing both �1 and �1 eigenvalues in Eq. (3),
2N N-qubit states can be defined which are orthogonal to
each other and form a complete basis. We will refer to this
as the GHZ state basis. All the elements of the stabilizer
are diagonal in this basis.

Theorem 1. The following entanglement witness de-
tects genuine N-qubit entanglement for states close to an
N-qubit GHZ state:

W GHZN
:�31�2

�
S�GHZN�
1 �1

2
�
YN
k�2

S�GHZN�
k �1

2

�
: (6)

Another witness for this task is given by

W 0
GHZN

:� �N � 1�1 �
XN
k�1

S�GHZN�
k : (7)

Proof. First, we need to know that ~W GHZN
� 1=2�

jGHZNihGHZNj detects genuine N-qubit entanglement.
This follows from the methods presented in Ref. [10].

We will now show that the witness ~W GHZN
is finer than

the witness W GHZN
, i.e., that for all states with

Tr�%W GHZN
�< 0 also Tr�% ~W GHZN

�< 0 holds [21]. For

that we have to show that W GHZN
� � ~W GHZN


 0 where
� is some positive constant. Then for any state % detected

by W GHZN
we have �Tr�% ~W GHZN

� � Tr�%W GHZN
�< 0

thus the state is also detected by ~W GHZN
. This implies that

W GHZN
is also a multiqubit witness. Let us now look at the

observable X :� W GHZN
� 2 ~W GHZN

and show that X 


0: We can express X in the GHZ state basis. Since W GHZN

as well as ~W GHZN
are diagonal in this basis, X is also

diagonal. By direct calculation it is straightforward to
check that the entries on the diagonal are all non-negative,
which proves our claim. For the other witness one can

show similarly that W 0
GHZN

� 2 ~W GHZN

 0. �

The main advantage of the witnesses W GHZN
and

W 0
GHZN

in comparison with ~W GHZN
lies in the fact that

for implementing them only two measurement settings are
needed as shown in Fig. 1(b). From the first setting
hS�GHZN�

1 i can be obtained, from the second one hS�GHZN�
k i
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for k � 2; 3; . . . ; N. The form of W GHZN
can be intuitively

understood as follows. The first term in the square bracket
is a projector to the subspace where hS�GHZN�

1 i � �1. The
second one is a projector to subspace where hS�GHZN�

k i �
�1 for all k 2 f2; 3; . . . ; Ng. Clearly only a GHZ state
gives �1 for both projectors. The witness W GHZN

can be
proven to be optimal from the point of view of noise
tolerance among stabilizer witnesses using two measure-

ment settings, and having the property W GHZN
�

2 ~W GHZN

 0 [22].

For practical purposes it is important to know how large
neighborhood of the GHZ state is detected by our wit-
nesses. This is usually characterized by the robustness to
noise. The witness W GHZN

is very robust: It detects a state
of the form %�p� � pnoise1=2N � �1� pnoise�jGHZNi�
hGHZNj for pnoise < 1=�3� 4=2N� as true multipartite en-
tangled thus it tolerates at least 33% noise, independent of
the number of qubits. For N � 3 the witness from Eq. (6)
was already given in Eq. (4) and tolerates noise up to
pnoise < 0:4. The witness W 0

GHZN
, having the minimal N

stabilizing terms, is not so robust: It tolerates noise for
pnoise < 1=N:

Other novel witnesses can be obtained by including fur-
ther terms of the stabilizer and using more than two mea-
surement settings. For instance, following the lines of the
previous paragraphs it can be proved that the observable
W 00

GHZ3
:� 21� S�GHZ3�

1 1� S�GHZ3�
2 �1� S�GHZ3�

3 � � 21�

��1�
y ��2�

y ��3�
x � ��1�

x ��2�
y ��3�

y � ��1�
y ��2�

x ��3�
y � ��1�

x ��2�
x ��3�

x

detects genuine three-party entanglement if pnoise < 1=2. It
is very remarkable that witness W 00

GHZ3
is equivalent to

Mermin’s inequality [14] for detecting violation of local
realism. However, Mermin’s inequality in the form from
above is normally used to detect some, not necessarily
genuine multipartite, entanglement. From our witness it
follows that it detects indeed only genuine multipartite
entanglement [23]. For N > 3 Mermin’s inequality also
contains only stabilizing terms. Including even more terms
from the stabilizer one can even construct the projector-
based witness [24].

Let us continue our discussion by presenting a witness
detecting entangled states close to cluster states. An
N-qubit cluster state, jCNi, can be created starting from
the state j1111 . . .ix by applying the Ising chain-type dy-
namics Ucl � expi �4

P
k�1� ��k�

z ��1� ��k�1�
z ��: The sta-

bilizing operators used for constructing our witnesses are

S�CN�
1

:� ��1�
x ��2�

z ;

S�CN�
k

:� ��k�1�
z ��k�

x ��k�1�
z for k � 2; 3; . . . ; N � 1;

S�CN�
N :� ��N�1�

z ��N�
x :

(8)

The results for cluster states are analogous to the case of
the GHZ state.
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Theorem 2. The following witnesses detect genuine
N-party entanglement close to a cluster state

W CN
:� 31 � 2

� Y
even k

S�CN�
k � 1

2
�

Y
odd k

S�CN�
k � 1

2

�
;

W 0
CN

:� �N � 1�1 �
XN
k�1

S�CN�
k : (9)

Proof. In order to show that these observables are
witnesses, we first show that

~W CN
:�

1

2
1 � jCNihCNj (10)

is a witness. To do this we have to show that for all pure
biseparable states j�i the bound jh�jCNij � 1=

���
2

p
holds.

This is equivalent to showing that the Schmidt coefficients
do not exceed 1=

���
2

p
when making a Schmidt decomposi-

tion of jCNi with respect to an arbitrary bipartite splitting,
since they bound the overlap with the biseparable states
[10]. It is known that one can produce a singlet between an
arbitrary pair of qubits from a cluster state by local opera-
tions and classical communication [18]. For a singlet both
Schmidt coefficients are 1=

���
2

p
: Furthermore, it is known

that the largest Schmidt coefficient cannot decrease [25]
under these operations. This proves our claim. Knowing

that ~W CN
is a witness, one can show as in the GHZ case

that W CN
and W 0

CN
are also witnesses. �

The stabilizing operators in the expression given for
W CN

are again grouped into two terms corresponding to
the two settings shown in Fig. 1(c). The witness W CN

tolerates mixing with noise if pnoise < 1=�4� 4=2N=2� for
even N (respectively, pnoise < 1=4� 2�1=2�N�1�=2 �

1=2�N�1�=2�� for odd N). Thus, for any number of qubits

at least 25% noise is tolerated. Alternatively, ~W CN
can

also be decomposed into local terms following
Refs. [10,17]. The noise tolerance is at least 50% even
for large N, however, more than the two settings are
necessary.

Up to now, we presented witnesses detecting only genu-
ine N-qubit entanglement. If the noise is large, there might
be no true N-party entanglement in the system. In this case
some entanglement can still be detected with the two
measurement settings from above, although it may not be
multipartite entanglement. Similarly to Ref. [26], the fol-
lowing necessary conditions for full separability can be
constructed for GHZ and cluster states

hS�GHZN�
1 i � hS�GHZN�

m i � 1 for N 
 m 
 2; (11)

hS�CN�
k i � hS�CN�

k�1 i � 1 for N � 1 
 k 
 1: (12)

These conditions detect entanglement after mixing with
noise if pnoise < 1=2 and they both need only two mea-
surement settings. The proofs are given in the Appendix.
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The previous results can straightforwardly be general-
ized for graph states [27]. These states are defined by a
graph of N vertices. Edges of this graph are described by
the adjacency matrix �. �kl � 1 (0) if the vertices k and l
are connected (not connected). An N-qubit state is defined
as an eigenstate with eigenvalue 1 of the stabilizing opera-
tors S�GN�

k :� ��k�
x
Q

l�k��
�l�
z ��kl . Physically, �kl � 1 (0)

means that spins k and l interact (do not interact) by an
Ising-type interaction. We assume that the graph cannot be
partitioned into two separate subgraphs, since then the
graph state would be biseparable.

A witness detecting genuine N-party entanglement can
be defined as W GN

:� �N � 1�1 �
P

kS
�GN�
k . The proof is

essentially the same as before. It must be used that one can
produce from a graph state by local means a singlet be-
tween an arbitrary pair of qubits [28]. For two-colorable
graphs only two settings are needed for measuring W GN

[29]. The maximum number of settings required is N,
reached, for example, by the state corresponding to the
complete graph. A necessary condition for separability can
be given as hS�GN�

k i � hS�GN�
m i � 1 where spins �k� and �m�

are neighbors.
In summary, based on the stabilizer theory we con-

structed entanglement witnesses with simple local decom-
position for GHZ, cluster, and graph states. Our approach
is optimal from the point of view of the duration of an
experimental implementation since only two local mea-
surement settings are needed independent of the number of
qubits. We found that some Bell inequalities (when used
for entanglement detection) and the projector-based wit-
nesses are in fact also stabilizer witnesses.
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Appendix: Proof of Equations (11) and (12).
Using the Cauchy-Schwarz inequality and the fact
that h��k�

x i2 � h��k�
z i2 � 1 we obtain for product

states hS�GHZN�
1 i � hS�GHZN�

m i � jh��m�1�
x ijjh��m�

x ij �

jh��m�1�
z ijjh��m�

z ij � 1 for m � 2; 3; . . . ; N. Because of
linearity, this bound is also valid for full separable
states. For the second inequality, we have hS�CN�

k � S�CN�
k�1 i �

h��k�1�
z ih��k�

x ih��k�1�
z i� h��k�

z ih��k�1�
x ih��k�2�

z i � jh��k�
x ij�

jh��k�1�
z ij� jh��k�

z ijjh��k�1�
x ij � 1: Here, for the end of the

chain ��0�
z � ��N�1�

z � 1 was used. �
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