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1ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels, Barcelona, Spain
2Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario, Canada N2L 2Y5

3Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
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We study the nonlocal properties of states resulting from the mixture of an arbitrary entangled state � of
two d-dimensional systems and completely depolarized noise, with respective weights p and 1� p. We
first construct a local model for the case in which � is maximally entangled and p at or below a certain
bound. We then extend the model to arbitrary �. Our results provide bounds on the resistance to noise of
the nonlocal correlations of entangled states. For projective measurements, the critical value of the noise
parameter p for which the state becomes local is at least asymptotically log�d� larger than the critical
value for separability.
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In 1964, Bell showed that some entangled states are
nonlocal, in the sense that measurements on them yield
outcome correlations that cannot be reproduced by a lo-
cally causal model [1]. This nonlocal character of en-
tangled states may be demonstrated through the violation
of Bell inequalities. All pure entangled states violate such
an inequality and, hence, are nonlocal [2]. For noisy states,
the picture is much subtler. Werner constructed in 1989 a
family of bipartite mixed states, which, while being en-
tangled, return outcome correlations under projective mea-
surements that can be described by a local model [3]. This
result has been extended to general measurements [4] and
more parties [5]. Thus, while entanglement is necessary for
a state to be nonlocal, in the case of mixed states it is not
sufficient.

Beyond these exploratory results, little is known about
the relation between noise, entanglement, and quantum
nonlocality. Understanding this relation, apart from its
fundamental interest, is important from the perspective of
quantum information science. In this context, entangle-
ment is commonly viewed as a useful resource for various
information-processing tasks. Not all entangled states,
however, are useful for every task: for example, quantum
computation with slightly entangled states can be effi-
ciently simulated on a classical computer [6], and bound
entangled states are useless for teleportation [7]. For cer-
tain tasks, such as quantum communication complexity
problems [8] or device-independent quantum key distribu-
tion [9], entangled states are useful only to the extent that
they exhibit nonlocal correlations. Indeed, in these scenar-
ios two (or more) distant observers, Alice and Bob, directly
exploit the correlations

 PMN�a; b� � Tr ��ABMa � Nb�; (1)

obtained by performing measurements M and N on a
distributed entangled state �AB (in the above formula, Ma
and Nb are the positive operators associated with the
measurement outcomes a and b). If the entangled state

�AB can be simulated by a local model, these correlations
can be written as

 PMN�a; b� �
Z
��d��PM�aj��PN�bj��; (2)

where � denotes a shared classical variable distributed with
probability measure �, and PM�aj�� and PN�bj�� are the
local response functions of Alice and Bob. For all practical
purposes then, the entangled state �AB can be replaced by
classical correlations, and so it does not provide any im-
provement over what is achievable using classical resour-
ces [10].

In this work, we estimate the resistance to noise of the
nonlocal correlations of bipartite entangled states in Cd �
Cd, where d is the local Hilbert-space dimension of each
subspace. To do this, we analyze the nonlocal properties of
states resulting from the mixture of an arbitrary state �
with completely depolarized noise,

 ��p� � p�� �1� p�
1

d2 : (3)

Our goal is to find the minimal amount of noise that
destroys the nonlocal correlations of any state �, i.e., the
maximal value pL such that ��p� is local for any � when
p � pL. Clearly, for sufficiently small values of p � pS,
the state ��p� becomes separable for any � [11,12], thus
local. We give here lower bounds on pL that are more
constraining than the one obtained from the separability
condition. If we restrict Alice and Bob to perform projec-
tive measurements only, the bound that we obtain for the
locality limit is asymptotically log�d� larger than the sepa-
rability limit.

A key step in the proof of our results is the construc-
tion of a local model for states of the form (3) when
� � j�dih�dj is maximally entangled, i.e., j�di �

1=
���
d
p Pd

i�1 jiii. Thus we also provide a lower bound on
p�L , defined as the maximal value of p such that
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 pj�dih�dj � �1� p�
1

d2

is local. This last result implies, in particular, the existence
of entangled states whose nonlocal correlations are more
robust than those of maximally entangled ones.

The results presented here concern mostly the simpler
but physically relevant case in which Alice and Bob are
restricted to projective measurements. Extensions to com-
pletely general measurements are discussed at the end of
the Letter. Our results also provide bounds for the notion of
state steerability introduced in [13].

As mentioned, we start by analyzing the case in which
the state � in (3) is maximally entangled. Such states are
called isotropic states and are the unique ones invariant
under U �U� transformations for all unitary operators U
on Cd [14]. If Alice and Bob each make on these states a
projective measurement, specified by a set of d orthogonal
projectors Q � fQag for Alice and R � fRbg for Bob, with
a; b � 1; . . . ; d, the resulting joint outcome probabilities
are given by

 

p
d

Tr �QT
aRb� �

1� p

d2 : (4)

Our first aim is to construct a local model for isotropic
states, that is, to write the quantum probabilities (4) in the
form (2) for some value of the noise parameter p.

Our construction is inspired by the model given in
Ref. [3] for Werner states, which are U �U invariant,
and which we adapt to the U �U� symmetry of isotropic
states. The local classical variables � in our model are
taken to be complex d-dimensional vectors which we can
thus formally identify with d-dimensional quantum states
j�i. The probability measure � is the unique measure
invariant under all unitary transformations U on Cd. In
analogy with the quantum formalism, Alice’s response
function is defined as

 PQ�aj�� � h�jQ
T
a j�i: (5)

Bob’s response function is suggested by the perfect corre-
lations of maximally entangled states and taken to be

 PR�bj�� �

(
1 if h�jRbj�i � max

i
h�jRij�i

0 otherwise:
(6)

It satisfies

 PUyRU�bj�� � PR�bjU��: (7)

To obtain the joint probabilities predicted by this model,
and to compare them with (4), it is necessary to compute
the integral (2) for our specific choice of measure � and
response functions. Following Werner (see [3] for details),
one can show that the U invariance of �, the form (5) of
Alice’s response function, and the relation (7) satisfied by
Bob’s response function, imply

 

Z
��d��PQ�aj��PR�bj�� � Tr 	QT

aB̂�b; R�
; (8)

where B̂�b; R� is a positive operator depending on Bob’s

response function. One can further show, exploiting the
fact that the relation (8) holds for all one-dimensional
projectors Qa [3], that B̂�b; R� � �p�=d�Rb � �1�
p��=d21, for some p� 2 R, and thus that

 

Z
��d��PQ�aj��PR�bj���

p�

d
Tr�QT

aRb��
1�p�

d2 : (9)

These correlations are thus already of the prescribed form
(4). To determine the value of p� for which (9) holds, it is
sufficient to compute the integral (8) in the simplest case
where QT

a � Rb, which gives

 p� �
1

d� 1

�
�1� d2

Z
��d��h�jRbj�iPR�bj��

�
: (10)

It now remains to evaluate this integral for the specific
choice (6) for PR�bj��. After patient algebra, one obtains

 p� �
1

d� 1

�
�1�

Xd
k�1

1

k

� ���!
large d

log�d�
d

: (11)

For d � 2, p� � 1=2 is equal to the critical value for two-
dimensional Werner states, as expected since Werner and
isotropic states are equivalent up to local unitary trans-
formations when d � 2. In the limit of large d, p� is
asymptotically log�d� larger than the critical probability
p�S �1=�d�1� for the separability of isotropic states [14].

Our next goal is to generalize the local model for iso-
tropic states to mixed states of the form

 � � pj ih j � �1� p�
1

d2 ; (12)

where j i is an arbitrary pure state in Cd � Cd. This
automatically also implies a model for the general states
(3), since any mixed state � is a convex combination of
pure states. To do this, we incorporate Nielsen’s protocol
[15] for the conversion of bipartite pure states by local
operations and classical communication (LOCC) into our
model. Recall that a maximally entangled state j�di can be
transformed by LOCC in a deterministic way into an
arbitrary state j i by a single measurement on Alice’s
particle followed by a unitary operation on Bob’s side,
depending on Alice’s measurement outcome. Indeed, con-
sider an arbitrary pure entangled state written in its
Schmidt form j i �

Pd�1
j�0 �jjjji, and denote by D� the

d� d diagonal matrix with entries �D��jj � �j. Taking the
d cyclic permutations �i �

Pd�1
j�0 jjihj� i�modd�j, where

i � 0; . . . ; d� 1, it is possible to write

 j i �
���
d
p
�Ai ��i�j�di for all i � 0; . . . ; d� 1; (13)

with Ai � D��i. The operators Wi � Ayi Ai define a mea-
surement, since they are positive and sum to the identity,P
iWi � 1. In order to convert j�di into j i, Alice first

carries out this measurement, obtaining the outcome iwith
probability h�djWij�di � 1=d. She then communicates
her result to Bob who applies the corresponding unitary
operation �i, the resulting normalized state being j i, as
implied by (13).
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The quantumlike properties of our local model, i.e., the
fact that the hidden variable j�i can be thought of as a
quantum state and the quantum form of the response
function (5), allow us to adapt Nielsen’s construction to
it. The idea is that at the source, before sending the clas-
sical instructions j�i to each party, a measurement defined
by the operators A�i is simulated on j�i, giving outcome i

with probability qi��� � h�jA
T
i A
�
i j�i. The classical de-

scription of the normalized hidden states j�Ai i �
A�i j�i=

�����
qi
p

and j�Bi i � �ij�i are then sent, respectively,
to Alice and Bob, who use them in the response functions
(5) and (6) instead of j�i. The joint probabilities PQR�a; b�
predicted by the model for measurements Q and R are thus
given by

 

Z
��d��

Xd�1

i�0

qi���PQ�aj�
A
i �PR�bj�

B
i � �

Xd�1

i�0

Z
��d��h�jATi Q

T
aA
�
i j�iP�yi Rb�i

�bj��; (14)

where we used property (7). Replacing the integral in the
last expression by the right-hand side of (9), we obtain

 

Xd�1

i�0

�
p�

d
Tr �ATi Q

T
aA
�
i�
y
i Rb�i� �

1� p�

d2 Tr �ATi Q
T
aA
�
i �

�
:

(15)

Using Eqs. (4) and (13), and the fact that
P
AiA

y
i � d�,

where � � TrBj ih j, one can check that these probabil-
ities are equal to the quantum probabilities Tr �~�Qa � Rb�
for the state

 ~� � p�j ih j � �1� p��� �
1

d
: (16)

Not surprisingly, the measurement at the source modifies
the local noise of Alice, which is no longer completely
depolarized, and introduce some bias depending on j i.

This result can already be interpreted as a measure of the
robustness of the nonlocal correlations of an arbitrary
entangled state j i. By mixing a state-dependent local
noise, with mixing probability 1� p�, it is always pos-
sible to wash out the nonlocal correlations of the state j i.

In order to extend this result to the case of completely
depolarized noise, one can add some extra local noise to
Alice such that the resulting state has the form (12), with
the penalty that p < p�. Writing the reduced density ma-
trix � in its diagonal form � �

P
j�

2
j jjihjj, and defining

�k �
P
j�

2
j�k�modd�jjihjj, it is clear that the state

 q~��
1� q
d� 1

Xd�1

k�1

�k �
1

d
(17)

has the form (12) for q�1� pd� � �1� q�=�d� 1�, in
which case the probability p is given by

 p� �
p�

�1� p���d� 1� � 1
���!

large d

log�d�

d2 : (18)

The state (17) is clearly local, since it is a convex combi-
nation of local states. We have thus shown that the noisy
states (3) have a local model for projective measurements
whenever p � p�. The probabilities p� and p� represent
the main results of this work and provide lower bounds on
p�L and pL. Several implications of our findings are dis-
cussed in what follows.

First of all, one may ask about the tightness of our
bound. Actually, our model is based on Werner’s construc-

tion, and this model is known not to be tight in the case
d � 2 [16]. Even if it is not tight, it would be interesting to
understand whether the model predicts the right asymptotic
dependence with the Hilbert-space dimension d. An upper
bound on pL follows from the results of [17], where it was
shown that a state of the form %2 � pj�2ih�2j � �1�
p�1=d2, where j�2i � 1=

���
2
p
�j00i � j11i� is a projector

onto a two-qubit maximally entangled state, violates the
Clauser-Horne-Shimony-Holt inequality [18] whenever
p > p%2 , where

 p%2 �
4�d� 1�

�
���
2
p
� 1�d2 � 4d� 4

���!
large d

4

�
���
2
p
� 1�d

; (19)

which tends to zero when d! 1. This result together with
our previous model thus imply that p� � pL � p%2 .

Our results, when combined with (19), also provide a
strict proof of the fact that the nonlocal correlations of
maximally entangled states, under projective measure-
ments, are not the most robust ones. Indeed, we have a
local model for isotropic states whenever p � p�, while
there exist quantum states of the form (3) violating a Bell
inequality when p > p%2 . For sufficiently large dimension,
p%2 < p�, so we have a Bell inequality violation in a range
of p for which we have shown the existence of a local
model for isotropic states.

It is also interesting to compare the bounds derived here
for nonlocality with those known for entanglement. To our
knowledge, the best upper and lower bounds on the critical
probability pS such that the states (3) are guaranteed to be
separable were obtained in Ref. [12]:

 

1

d2 � 1
� pS �

2

d2 � 2
: (20)

Interestingly, the upper bound is obtained, as above, for the
case in which the state � in (3) is equal to a projector onto
j�2i. Comparing with Eq. (18), we see that the critical
noise probability for nonlocality under projective measure-
ments is, at least, asymptotically log�d� larger than the one
for separability, as it is for isotropic states.

Finally, let us briefly mention how the above results can
be extended to the case of general measurements. The idea
is, as above, to start by constructing a model for isotropic
states, adapting the one for Werner states of Ref. [4]. As
noted in [4], it is sufficient to simulate measurements M
and N defined by operators Ma � caQa and Nb � cbRb
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proportional to one-dimensional projectors Qa and Rb to
be able to simulate any measurement by Alice and Bob. In
our corresponding model, the hidden states are again vec-
tors j�i in Cd chosen with the Haar measure �. Alice’s
response function is basically the same as before,

 PM�aj�� � h�jMT
a j�i; (21)

while Bob’s is, taking inspiration from [4], chosen as
 

PN�bj��� h�jNbj�i�
�
h�jRbj�i�

1

d

�

�
cb
d

�
1�

X
k

h�jNkj�i�
�
h�jRkj�i�

1

d

��
; (22)

where � is the Heaviside step function. Evaluation of the
integral (2) with the definitions (21) and (22) can be done
along the same steps as in [4] and yields the joint mea-
surement outcome probabilities for an isotropic state with
the critical value

 ~p� �
�3d� 1��d� 1�d�1

�d� 1�dd
���!

large d

3

e
1

d
: (23)

Since this model has the same quantumlike properties as
the one for projective measurements cf. definition (21), it
can also be extended to arbitrary noisy states (3) using
Nielsen’s protocol. The corresponding critical probability
is given by (10) with p� replaced by the above value of ~p�.

In conclusion, we have obtained bounds on the robust-
ness of the nonlocal correlations of arbitrary entangled
states. Our results are summarized in Table I. In the par-
ticular but interesting case where the state is maximally
entangled, we derived better bounds by exploiting the
symmetry of isotropic states [13]. Apart from their funda-
mental significance, our results are interesting from the
point of view of the characterization of quantum informa-
tion resources: if the noise affecting a state is larger than
our bounds, its outcome correlations for local measure-
ments can be reproduced by classical means alone.

We acknowledge financial support from the EU Qubit
Applications Project (QAP) Contract No. 015848, the
Spanish Projects No. FIS2004-05639-C02-02, Consolider
QOIT, the Spanish MEC for ‘‘Ramon y Cajal’’ and ‘‘Juan
de la Cierva’’ grants, the Generalitat de Catalunya, the
Fundação para a Ciência e a Tecnologia (Portugal) through
the Grant No. SFRH/BD/21915/2005, the National
Research Fund of Hungary OTKA under Contract
No. T049234, and the Hungarian Academy of Sciences

(Bolyai Programme). Research at Perimeter Institute for
Theoretical Physics is supported in part by the Government
of Canada through NSERC and by the Province of Ontario
through MRI.

Note added.—While completing this work, we learned
that our local model for isotropic states was independently
derived in [13] in the context of state steerability. We note
that all our models imply the nonsteerability of the corre-
sponding quantum states because Alice’s response function
is always quantum (see [13] for details).
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TABLE I. Asymptotic bounds on the critical noise threshold for separability (pS) and locality (pL) for maximally entangled states
(j�di) and arbitrary states (�). For maximally entangled states, p�S is given in [14]; the lower bounds for p�L follow from Eqs. (11) and
(23) and the upper bounds from [19], where K is Catalan’s constant. For arbitrary states, bounds for pS were derived in [12]; the lower
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State Separability Locality (projective measurement) Locality (general measurement)

j�di p�S �
1

d�1 ��logd
d � � p�L �

�2

16K ’ 0:67 �� 3
ed� � p�L �

�2

16K ’ 0:67

Arbitrary � 1
d2�1
� pS �

2
d2�2

��logd
d2 � � pL � �� 4

�
��
2
p
�1�d
� �� 3

ed2� � pL � �� 4
�
��
2
p
�1�d
�
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