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We study the separability of permutationally symmetric quantum states. We show that for bipartite

symmetric systems most of the relevant entanglement criteria coincide. However, we provide a method to

generate examples of bound entangled states in symmetric systems, for the bipartite and the multipartite

case. These states shed some new light on the nature of bound entanglement.
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Entanglement is a central phenomenon of quantum me-
chanics and plays a key role in quantum-information pro-
cessing applications such as quantum teleportation and
quantum cryptography [1]. Therefore, entanglement ap-
pears as a natural goal of many recent experiments aiming
to create various quantum states with photons, trapped
ions, or cold atoms in optical lattices. While being at the
center of attention, to decide whether a quantum state is
entangled or not is still an unsolved problem. There are
numerous criteria for the detection of entanglement, but no
general solution has been found [1].

Symmetry is another central concept in quantum me-
chanics [2]. Typically, the presence of certain symmetries
simplifies the solution of tasks like the calculation of
atomic spectra or finding the ground state of a given spin
model. Symmetries are also useful in quantum-information
theory: For instance, if a multiparticle quantum state is
invariant under the same change of the basis at all parties
(i.e., invariant under local unitary transformations of the
type Utot ¼ U �U � � � � �U), this symmetry can be used
to study the existence of local hidden variable models [3],
to determine its entanglement properties [4] or to simplify
the calculation of entanglement measures [5].

In this Letter, we investigate to which extent symmetry
under permutation of the particles simplifies the separabil-
ity problem. In general, a quantum state % is called sepa-
rable, if it can be written as % ¼ P

kpk%
A
k � %B

k ; where the
pk form a probability distribution. There are several nec-
essary criteria for a state to be separable. The most famous
one is the criterion of the positivity of the partial trans-
position (PPT), which states that for a separable % ¼P

ij;kl%ij;kljiihjj � jkihlj the partially transposed state

%TA ¼ P
ij;kl%ji;kljiihjj � jkihlj has no negative eigenvalues

[6]. This criterion is necessary and sufficient only for small
systems (2� 2 and 2� 3), while for other dimensions
some entangled states escape the detection [7]. These states
are then bound entangled, which means that no pure state

entanglement can be distilled from them. While bound
entangled states are difficult to construct, they play an
important role in quantum-information theory, as they are
at the heart of some open problems in quantum-
information theory [7,8]. Apart from the PPT criterion,
several other strong separability criteria exist [9–14],
which can detect some states where the PPT criterion fails.
Also for symmetric states, some special separability crite-
ria have been proposed [15–18].
We will show that for states that are symmetric under a

permutation of the particles, most of the relevant known
separability criteria coincide. However, we present ex-
amples of bound entangled symmetric states. These states
form therefore a challenge for the derivation of new sepa-
rability criteria. Moreover, these states shed new light on
the phenomenon of bound entanglement, as it has been
suggested that symmetry and bound entanglement are
contradicting notions [19–21]. Finally, we present symmet-
ric multipartite bound entangled states, which are never-
theless genuine multipartite entangled.
We first consider two d-dimensional quantum systems.

We examine two types of permutational symmetries, de-
noting the corresponding sets by I and S: (i) We call a state
permutationally invariant (or just invariant, % 2 I) if % is
invariant under exchanging the particles. This can be for-
malized by using the flip operator F ¼ P

ijjijihjij as

F%F ¼ %. The reduced state of two randomly chosen
particles of a larger ensemble has this symmetry. (ii) We
call a state symmetric (% 2 S) if it acts on the symmetric
subspace only. This space is spanned by the basis vectors

j�þ
kli :¼ ðjkijli þ jlijkiÞ= ffiffiffi

2
p

for k � l and jc ki :¼ jkijki:
The projector Ps onto this space can be written as Ps ¼
ð1þ FÞ=2. This implies that for symmetric states by defi-
nition Ps%Ps ¼ %Ps ¼ % and %F ¼ F% ¼ %. This is the
state space of two d-state bosons.
Clearly, we have S � I . For a basis state of the anti-

symmetric subspace j��
kli :¼ ðjkijli � jlijkiÞ= ffiffiffi

2
p

, we
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have, j��
klih��

klj 2 I , however, j��
klih��

klj =2 S: Our main

tool for the investigation of entanglement criteria is an
expectation value matrix of a bipartite quantum state.
This matrix has the entries

�klð%Þ :¼ hMk �Mli%; (1)

where Mk’s are local orthogonal observables for both
parties, satisfying TrðMkMlÞ ¼ �kl [22]. We can directly
formulate our first main result:

Observation 1.—Let % 2 S be a symmetric state. Then
the following separability criteria are equivalent: (i)� � 0,
or, equivalently hA � Ai � 0 for all observables A [17].
(ii) % has a positive partial transpose, %TA � 0 [6]. (iii) %
satisfies the CCNR criterion, kRð%Þk1 � 1, where Rð%Þ
denotes the realignment map and k . . . k1 denotes the trace
norm [9,10]. (iv) The correlation matrix, defined via the
matrix elements as

Ckl :¼ hMk �Mli � hMk � 1ih1 �Mli (2)

is positive semidefinite [15]. (v) The state satisfies several
variants of the covariance matrix criterion, e.g., kCk21 �½1� Trð%2

AÞ�½1� Trð%2
BÞ� or 2

P jCiij � ½1� Trð%2
AÞ� þ½1� Trð%2

BÞ� [11,12]. These criteria are for general states
strictly stronger than the CCNR criterion.

Here, separability criteria are formulated as conditions
that a separable state has to fulfill, and violation implies
entanglement of the state. Further, we call two separability
criteria equivalent, if a state that is detected by the first
criterion is also detected by the second one and vice versa.
Note that the criteria (i) and (iv) are criteria specifically for
symmetric states, while the others also work for generic
separable states. During the proof of this theorem, we will
see that several of the equivalences also hold for permuta-
tionally invariant states.

Proof.—For invariant states, � is a real symmetric ma-
trix. It can be diagonalized by an orthogonal matrixO. The
resulting diagonal matrix f�kg is the correlation matrix
corresponding to the observables M0

k ¼
P

OklMl. Hence,

any invariant state can be written as

% ¼ X

k

�kM
0
k �M0

k; (3)

where M0
k are pairwise orthogonal observables. This is

almost the Schmidt decomposition of the matrix %, with
the only difference that �k (which are the eigenvalues of
�) can also be negative. Let us compute Trð�Þ ¼ P

k�k ¼
hPkM

0
k �M0

ki. We can use that
P

kM
0
k �M0

k ¼ F, where F
is again the flip operator [23]. Hence,�1 � P

k�k � 1 for
invariant states and

P
k�k ¼ 1 for symmetric states.

Nowwe can show the first equivalences. Let us start with
the CCNR criterion. It states that if % is separable, then

kRð%Þk1 � 1, where kXk1 ¼ Trð
ffiffiffiffiffiffiffiffiffiffi
XXyp

Þ is the trace norm
and the realigned density matrix is Rð%ij;klÞ ¼ %ik;jl [10].

As noted in Ref. [24], this just means that if kð%FÞTAk1 > 1
then % is entangled. Since for symmetric states %F ¼ %,
this condition is equivalent to k%TAk1 > 1. This is just the

PPT criterion, since we have Trð%TAÞ ¼ 1 and the condition
k%TAk1 > 1 signals the presence of negative eigenvalues.
On the other hand, the realignment criterion can be

reformulated as follows: If
P

kj�kj> 1 in the Schmidt
decomposition [Eq. (3)], then the quantum state is en-
tangled [9]. For symmetric states this is equivalent to�k <
0 for some k. But then hM0

k �M0
ki< 0 and � has a negative

eigenvalue. For invariant states�k < 0 is necessary but not
sufficient for violating the CCNR criterion. This proves the
equivalence of (i),(ii), and (iii).
Now we show that C � 0 , � � 0. The direction ‘‘)’’

is trivial, since for invariant states the matrix hMk � 1i�
h1 �Mli is a projector and hence positive. On the other
hand, if we make for a given state the special choice of
observables Qk ¼ Mk � hMki we just have CðMkÞ ¼
�ðQkÞ, implying the other direction. Note that here the
invariance of the state guaranteed that the Qk are the same
for both parties.
Finally, let us turn to the discussion of (v). If % is

symmetric, the fact that C is positive semidefinite gives
kCk1 ¼ TrðCÞ ¼ P

�k � P
kTrð%AM

0
kÞ2 ¼ 1 � Trð%2

AÞ
and similarly,

P
ijCiij ¼ P

iCii ¼ 1� Trð%2
AÞ. Hence, a

state fulfilling (iv) fulfills also both criteria in (v). On the
other hand, a state violating (iv) must also violate the
conditions in (v), as they are strictly stronger than the
CCNR criterion [25]. j
In this proof, sometimes only the permutational invari-

ance was used, hence we can state for invariant states:
Observation 2.—For invariant states, the separability

criteria (i), (iv), and (v) are equivalent.
Given the equivalence of the above criteria, it is an

interesting question to ask whether there are any entangled
symmetric states that escape the detection by these criteria.
These states are then PPT and hence bound entangled.
Moreover, such states are a challenge for the derivation
of new separability criteria, as most of the standard criteria
fail. We will present now two methods for constructing
such states.
The literature has already examples for invariant bound

entangled states: In Ref. [14] Breuer presented, for even
d � 4, a single parameter family of bound entangled states
that are I symmetric, namely,

%B ¼ �j�d
0ih�d

0j þ ð1� �Þ�d
s : (4)

The state is shown to be entangled for 0< � � 1while it is
PPT for 0 � � � 1=ðdþ 2Þ. Here j�0i is the singlet state
[for the d ¼ 4 case it is j�0i ¼ ðj03i � j12i þ j21i �
j30iÞ=2] and �s is the normalized projector to the sym-
metric subspace, �d

s ¼ Ps=½dðdþ 1Þ=2� [26].
The first idea to construct bound entangled states with I-

or S-symmetry is to embed a low-dimensional entangled
state into a higher dimensional Hilbert space, such that it
becomes symmetric, while it remains entangled. To see a
first example, consider a general bound entangled state %AB

on H AB and add to each party a two-dimensional Hilbert
space H A0 and H B0 . Then one can consider the state
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~% ¼ 1
2½j10ih10jA0B0 � %AB þ j01ih01jA0B0 � ðF%ABFÞ�:

(5)

If % acts on a d� d system then ~% acts on a system of size
2d� 2d. Obviously, ~% is an invariant state. If % is en-
tangled, then ~% is entangled, too, as one can obtain % from
~% by a local measurement on the ancilla qubits A0 and B0.
Moreover, if % is PPT then ~% is also PPT. Substituting the
various nonsymmetric bound entangled states available in
the literature for % in Eq. (5) gives invariant bound en-
tangled states.

With a similar method, one can generate a symmetric
bound entangled state. Starting from Eq. (4) we consider
the state

%̂ ¼ ��D
a � j�d

0ih�d
0j þ ð1� �Þ�D

s ��d
s : (6)

Here,�D
a and�D

s are appropriately normalized projectors
to the two-qudit symmetric/antisymmetric subspace with
dimension D, e.g., �D

a ¼ Pa=½DðD� 1Þ=2� with Pa ¼
1� Ps. This guarantees that %̂ is symmetric. Again, if
the original system is of dimension d� d then the system
of %̂ is of dimension dD� dD. Since %B is the reduced
state of %̂, if the first is entangled, then the second is also
entangled. However, it is not clear from the beginning that
if %B is PPT then %̂ is also PPT, since�D

a is entangled. For
D ¼ 2 and N ¼ 4, however, numerical calculation shows
that %̂ is PPT for � < 0:062. This provides an example of
an S symmetric (and invariant) bound entangled state of
size 8� 8. Note that this state represents an explicit coun-
terexample to Ref. [21]. There, it has been suggested that
an invariant state with � � 0 has to be of the form % ¼P

kpk%k � %k, which implies that it is separable [27]. Also,
in Ref. [19] it has been found that the nondistillability of
entangled quantum states may be connected to the asym-
metry of quantum correlations in that state. While this may
be valid for many examples, our results demonstrate that
there is not a strict rule connecting the two phenomena.

Finally, we show a simple method for constructing
symmetric bipartite bound entangled states numerically.
We first generate an N-qubit symmetric state, that is, a
state of the symmetric subspace. We consider even N. It is
known that such a state is either separable with respect to
all bipartitions or it is entangled with respect to all biparti-
tions [28]. Thus any state that is PPTwith respect to the N

2:
N
2

partition while NPTwith respect to some other partition is
bound entangled with respect to the N

2:
N
2 partition. Since the

state is symmetric, it can straightforwardly be mapped to a
ðN2 þ 1Þ � ðN2 þ 1Þ bipartite symmetric state [29].

To obtain such a multiqubit state, one has to first gen-
erate an initial random state % that is PPT with respect to
the N

2:
N
2 partition. Reference [30] describes how to get a

random density matrix with a uniform distribution ac-
cording to the Hilbert-Schmidt measure. Then, we com-
pute the minimum nonzero eigenvalue of the partial
transpose of % with respect to all other partitions

�minð%Þ :¼ mink minl �lð%TIk Þ. Here Ik describes which

qubits to transpose for the partition k. If �minð%Þ< 0 then
the state is bound entangled with respect to the N

2:
N
2 parti-

tion. If it is non-negative then we start an optimization
process for decreasing this quantity. The zero eigenvalues
due to the nonmaximal rank of symmetric states are ex-
cluded from the minimization, otherwise one always gets
�min � 0.
We generate another random density matrix �%, and

check the properties of %0 ¼ ð1� "Þ%þ "�%, where 0<
"< 1 is a small constant. If %0 is still PPT with respect to
the N

2:
N
2 partition and �minð%0Þ< �minð%Þ then we use %0 as

our new random initial state %. If this is not the case, we
keep the original %. Repeating this procedure, we obtained
a four-qubit symmetric state this way

%BE4 ¼ diagð0:22; 0:176; 0:167; 0:254; 0:183Þ � 0:059R;

where R :¼ j3ih0j þ j0ih3j. The basis states are j0i :¼
j0000i, j1i :¼ symðj1000iÞ, j2i :¼ symðj1100iÞ; . . . where
symðAÞ denotes an equal superposition of all permutations
of A. The state is bound entangled with respect to the 2:2
partition. This corresponds to a 3� 3 bipartite symmetric
bound entangled state [29], demonstrating the simplest
possible symmetric bound entangled state.
Our method can be straightforwardly generalized to

create multipartite bound entangled states of the symmetric
subspace, such that all bipartitions are PPT (‘‘fully PPT
states’’). Then, however, a new separability criterion must
be used, different from the PPT criterion. The PPT sym-
metric extension of Doherty et al. [13] seems to be ideal for
our case. For symmetric states, it can be formulated as
follows: We define the PPT symmetric extension of an
N-qubit state %N as a symmetric M-qubit state, %M such
that %N ¼ TrNþ1;Nþ2;...;Mð%MÞ, and all bipartitions of %M

are PPT. If there is an M for which such an extension does
not exist then our state is entangled. Semidefinite program-
ming makes it possible to look for such an extension. Note
that the two density matrices can be efficiently stored as
ðMþ 1Þ � ðMþ 1Þ and ðN þ 1Þ � ðN þ 1Þ matrices, re-
spectively, in the symmetric basis, making it possible to
look for very large extensions or examine large states [31].
Moreover, similarly to the algorithm described in the pre-
vious paragraph, it is possible to design a simple random
search that, starting from fully PPT random nonentangled
states, leads to PPT states without an extension. We found
such a state for five qubits

%BE5 ¼ diagð0:17; 0:174; 0:153; 0:182; 0:147; 0:174Þ �Q;

whereQ :¼ 0:0137ðj4ih0j þ j0ih4jÞ, and the basis states of
the symmetric system are j0i; j1i; . . . ; j4i. We also found
such a state for six qubits [32].
These multiqubit states are by construction genuine

multipartite entangled [28,33]. This finding is quite pecu-
liar: Genuine multipartite entanglement is considered in a
sense a strong type of entanglement, while local states or
states with PPT bipartitions are considered weakly en-
tangled. It is interesting to relate this to the Peres conjec-
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ture, stating that fully PPT states cannot violate a Bell
inequality [34]. If this is true, then we presented genuine
multiqubit states that are local. So far, such states have
been known only for the three-qubit case [35].

In summary, we have discussed entanglement in sym-
metric systems. We showed that for states that are in the
symmetric subspace several relevant entanglement condi-
tions, especially the PPT criterion, the CCNR criterion, and
the criterion based on covariance matrices, coincide. We
showed the existence of symmetric bound entangled states,
in particular, a 3� 3, five-qubit and six-qubit symmetric
PPT entangled states.
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