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1Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
2Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, E-48080 Bilbao, Spain

3QUANTOP, Institut for Fysik og Astronomi, Aarhus Universitet, 8000 Århus C, Denmark
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S1. ESTIMATION OF VARIANCES

The experimental results of Fig. 3 are based on an es-
timate of the variance of the total spin of the ensemble.
This section shows how these values can be extracted
from the raw data. First, the raw data is presented. Sec-
ond, the statistical treatment for the unbiased estima-
tion of the underlying variance is described. Finally, we
show that the variance of Jz results mainly from number-
dependent detection noise.

A. Measured probability distribution of Jz and Jα

The number of atoms in the Zeeman levels is mea-
sured by standard absorption imaging with an illumina-
tion time of 70µs and an intensity of 40 W/m2. The
absolute number of atoms was calibrated [48] and it was
confirmed that shot noise fluctuations are observed for a
coherent state [see Fig. 3 (a)]. Without the microwave
coupling pulse, a measurement of the number of atoms
in the Zeeman levels corresponds to a measurement of
Jz. While an ideal Dicke state would show no fluctu-
ations at all, we record a finite variance. This finite
variance may stem from fluctuations of the number of
atoms and from noise in the detection system. Figure S1
(a) shows the histogram of all measured values for Jz
with a total number of atoms between 3000 and 7000.
The measured distribution is much narrower than the
corresponding result for a coherent state. After a π

2 mi-
crowave pulse, it is possible to record the corresponding
histogram in the Jx-Jy-plane. Since the microwave has
an arbitrary phase difference α from the atomic phases,
each measurement projects onto a different axis Jα in
the Jx-Jy-plane. The histogram in Fig. S1 (b) thus in-
cludes measurements along all possible directions. The
histogram shows super-shot-noise fluctuations, yielding
a large effective spin length Jeff . The presented data can
be used to estimate the second moment of the underlying
probability distribution.

FIG. S1. Histograms of the recorded spin measurements. (a)
The accumulated measurements of Jz are shown for a Dicke-
like state (solid blue columns) and a coherent state (open
columns). The distribution of the Dicke-like state is much
narrower than the distribution of the coherent state. The lat-
ter is very close to a binomial distribution with shot noise
fluctuations (dashed line). We corrected for a small offset
between the two distributions. (b) The accumulated mea-
surements of Jα are shown for a Dicke-like state (solid red
columns). The distribution compares well to the distribution
of a perfect Dicke state (solid grey line with shading). It is
much wider than the sub-shot-noise distribution of Jz (solid
blue columns).

B. Unbiased estimation of the second moment of
the probability distribution

The measurement process creates a finite set of ran-
dom numbers xi according to a special, non-Gaussian
probability function P (x) [see Fig. S1 (b) as an example].
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Such a probability function is well described by its mo-
ments µ1 =

∫
xP (x)dx and µk =

∫
(x− µ1)kP (x)dx for

k > 2. The second moment µ2, which presents the central
quantity of interest within our work, can be estimated
straightforwardly from the measurements as shown be-
low. However, the variance of this estimate is more diffi-
cult to deduce and has previously been gained from split
samples [17]. In this section, we present a formula for an
unbiased estimate of this variance (called second moment
variance estimator, SMVE), allowing for the calculation
of correct error bars for the central result of our work [see
Fig. 1 (c)].

For a given sample of n independent measurements
according to the probability function P (x), it is possible
to calculate the sample moments

m1 =
1

n

n∑
i=1

xi,

m2 =
1

n

n∑
i=1

(xi −m1)2,

m4 =
1

n

n∑
i=1

(xi −m1)4.

The expectation value of m2 is easily calculated to be

〈m2〉 =
n− 1

n
µ2.

It is thus possible to define an unbiased estimator for µ2:

µ̂2 =
n

n− 1
m2.

This estimate shows statistical fluctuations which are de-
scribed by the variance of µ̂2,

var(µ̂2) =
n2

(n− 1)2
var(m2)

=
n2

(n− 1)2

( 〈
m2

2

〉
− 〈m2〉2

)
=

n2

(n− 1)2

〈
m2

2

〉
− µ2

2. (S1)

Thus, the problem of finding an estimator for var(µ̂2)
reduces to finding an estimator for µ2

2. Hence, we calcu-
late the expectation values

〈
m2

2

〉
and 〈m4〉 by using aug-

mented and monomial symmetric functions (see Ref. [27]
p. 416).

〈
m2

2

〉
=

(n− 1)2

n3
µ4 +

(n− 1)(n2 − 2n+ 3)

n3
µ2

2

〈m4〉 =
n3 − 4n2 + 6n− 3

n3
µ4 +

3(n− 1)(2n− 3)

n3
µ2

2
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FIG. S2. Application of the SMVE to generated random num-
bers. We have generate random numbers according to a prob-
ability function P (x). For each sample size n, we have applied
the SMVE to 104 samples. The open circles present the mean
of the calculated SMVEs with their statistical uncertainties.
These results compare well to the directly calculated vari-
ance of the 104 sample variances (red solid dots). It is sta-
tistically equal to the prediction var(µ̂2) = 1

n
µ4 − n−3

n(n−1)
µ2
2

and completely incompatible with the naive guess var(µ̂2) ≈
1
n

(µ4 − µ2
2) (dashed line).

This linear system of equations can be solved to yield an
estimator for µ2

2. By substituting this in Eq. (S1), we
obtain the final result for the SMVE,

var(µ̂2) =
n

(n− 3)(n− 2)
m4−

n(n2 − 3)

(n− 3)(n− 2)(n− 1)2
m2

2.

The SMVE allows for a direct calculation of the error bars
from the moments of the recorded sample without any
assumption on the shape of the probability distribution.

Figure S2 shows the result of a Monte-Carlo simulation
to demonstrate the application of the SMVE. We gener-
ate random numbers according to a probability function

P (x) = 1
π

√
1

1−x2 , similar to Fig. S1 (b), and accumu-

late samples of variable size. The SMVE is applied to
104 samples of each size, yielding estimates for var(µ̂2).
Figure S2 shows that these estimates approximate the
directly calculated variance of the 104 sample variances
very well. It is statistically equal to the prediction gained
solely from the shape of the probability distribution.

In summary, the statistical treatment allows for a cor-
rect evaluation of the second moment of the underlying
probability function and its uncertainty.

C. Estimation of the detection noise

The second moment gained from the experimental
measurements via the statistical treatment above is a
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combination of the variance (∆Jz)
2 of the atomic many-

particle state and the detection noise. The detection
noise comprises an atom-independent part which is dom-
inated by the photoelectron shot noise on the camera pix-
els and an atom-dependent part. The atom-independent
noise was measured continuously during the data acqui-
sition by analysing images without atoms. Since we are
interested in an estimate for (∆Jz)

2, the data in Fig. 3
(a) are corrected for the atom-independent noise.

x =

transmittance intensity (W/m²) intensity (W/m²)
0.6 0.8 1 20 30 40 20 30 40

FIG. S3. Creation of an artificial absorption image. The op-
tical transmittance of an idealized atomic cloud is calculated
from an average of many experimental absorption images. A
typical detection image without atoms is multiplied by the
optical transmittance to gain a synthetic absorption image
with adjustable number of atoms.

The atom-dependent detection noise results from fluc-
tuations of the photoelectrons counted on the camera
pixels which are stronger at a large number of atoms.
Additionally, a change in the number of counted photo-
electrons has a larger effect on the estimated number of
atoms at high column densities resulting in an increased
sensitivity at a large number of atoms. This noise source
is not independent of the atomic noise and it is thus not
legitimate to subtract it. Nevertheless, we estimate the
approximate strength of these fluctuations for compari-
son with our results. For this purpose, we calculate the
mean optical transmittance from many experimental re-
alizations (see Fig. S3) to approximate an ideal atomic
cloud without atom number fluctuations. This optical
transmittance image is adjusted to represent clouds with
different numbers of atoms. We synthesize absorption
images by multiplying empty detection images with the
gained transmittance images. These artificial absorption
images provide a measure of the atom-dependent detec-
tion noise since they do not contain any atom number
fluctuations by construction. The resulting estimate for
the atom-dependent detection noise is shown in Fig. 3
(a) (dashed line). Although it underestimates the effect
of photoelectron shot noise for strongly depleted absorp-
tion images, it nevertheless explains the major part of
the measured variance (∆Jz)

2.

S2. BOUNDARIES FOR GENUINE k-PARTICLE
ENTANGLEMENT

This section presents a method for the determination
of the entanglement depth based on the measurement of
〈J2
x + J2

y 〉 and (∆Jz)
2. With this method, we determine

the allowed regions for k-particle entanglement in Fig. 1
(c). Section S2 A provides a numerical method to calcu-
late the boundaries. In Sec. S2 B, we present the entan-
glement criterion with a closed formula, and we discuss
that it applies to pure states, mixed states and mixed
states with a varying particle number. Finally, Sec. S2 C
presents a comparison with the original spin-squeezing
criterion of Ref. [25]. We show that our criterion detects
a larger entanglement depth for extreme spin-squeezed
states in the presence of minimal noise.

A. Numerical determination of the boundaries

The following numerical method can be used to deter-
mine the allowed region in the (〈J2

x +J2
y 〉, (∆Jz)

2)-space
for quantum states with at most k-particle entanglement
for a given particle number N [28]. We consider states
of the form

|Ψ〉 = ⊗Mn=1|ψ(n)〉, (S2)

where |ψ(n)〉 is the state of the nth non-separable subset
containing kn qubits and kn 6 k. In total, there are M
non-separable subsets. Here, “qubit” refers to individual
pseudo-spin- 1

2 atoms in the experiment. We define the
collective operators

Jl :=

M∑
n=1

j
(n)
l

for l = x, y, z, where j
(n)
l denotes the components of

the kn-particle spin operators and act on the nth non-
separable subset of qubits. Note that we consider kn = k
in the main text, whereas here, we extend our discussion
to the general case kn 6 k.

The total variance (∆Jz)
2 is given by the sum of the

variances of the kn-particle spin operators

(∆Jz)
2 =

∑
n

(∆j(n)
z )2. (S3)

On the other hand, for a state of the form (S2)

〈J2
x + J2

y 〉 =
∑
n

〈
(
j(n)
x

)2

+
(
j(n)
y

)2

〉

+
∑
m 6=n

(
〈j(m)
x 〉〈j(n)

x 〉+ 〈j(m)
y 〉〈j(n)

y 〉
)
.
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Since for non-negative values {xl}Ll=1 and positive integer
L we have ∑

l 6=m

xlxm 6 (L− 1)
∑
l

x2
l ,

we obtain

〈J2
x + J2

y 〉6
∑
n

〈
(
j(n)
x

)2

+
(
j(n)
y

)2

〉

+ (M − 1)
∑
n

(
〈j(n)
x 〉2 + 〈j(n)

y 〉2
)
. (S4)

For simplicity, we assume that N is divisible by k. In
this case, states of the form

|Ψ〉 = |ψ〉⊗N
k (S5)

saturate the inequality (S4), where |ψ〉 is a k-qubit
state. Due to convexity arguments, it is sufficient to
look for states of the form (S5) to calculate the bound-
ary points. A boundary point can be obtained for a given
X = (∆Jz)

2 from

〈J2
x + J2

y 〉(X) = max
|Ψ〉,Nk (∆jz)2=X

[
N
k 〈j

2
x + j2

y〉|ψ〉

+
(
N
k − 1

)
N
k

(
〈jx〉2|ψ〉 + 〈jy〉2|ψ〉

)]
. (S6)

Thus, a constrained optimization for a given (∆jz)
2
|ψ〉

over |ψ〉 has to be performed. This can be simplified
further as follows. For even k, the states at the boundary
can be sought in the form (S5), where |ψ〉 is the ground
state of the spin-squeezing Hamiltonian

h(λ) = j2
z − λjx. (S7)

Thus, an optimal state |ψ〉 is obtained from spin squeez-
ing [25]. Note that the ground state of h(0) is degenerate.
In this case, the symmetric ground state has to be chosen,
i.e., the symmetric Dicke state with 〈jz〉 = 0.

Hence, the boundary points can be obtained for even
k as a function of a single real parameter λ as

〈J2
x + J2

y 〉(λ) =

[
N
k 〈j

2
x + j2

y〉|ψ〉(λ)

+
(
N
k − 1

)
N
k

(
〈jx〉2|ψ〉(λ) + 〈jy〉2|ψ〉(λ)

)]
,

(∆Jz)
2(λ) =N

k (∆jz)
2
|ψ〉(λ),

where |ψ〉(λ) is the ground state of h(λ). This also means

that states of the form |ψ〉⊗N
k (λ) correspond to points on

the boundary. Since 〈jz〉|ψ〉(λ) = 0, we have 〈Jz〉 = 0 for
the states on the boundary mentioned above. Any state
beyond the boundary is at least (k+1)-particle entangled.

B. Proof for general states with a large number of
particles

In the previous section, we have presented a numerical
method to calculate the boundary for k-particle entan-
gled states assuming that the state is a tensor product
of k-qubit pure states and the particle number is fixed.
It is possible to prove that these boundaries are valid for
general states (S2) with kn 6 k.

To obtain a closed formula for the boundary, we employ
the definition [25]

Fj(X) := 1
j min

〈jx〉
j =X

(∆jz)
2.

The spin-squeezing criterion for k-particle entangled
states is given as

(∆Jz)
2 > JmaxF k

2

(√
〈Jx〉2 + 〈Jy〉2

Jmax

)
. (S8)

Equation (S8) is valid for any tensor product of states of
the form (S5) with kn ≤ k [25,S3].

Moreover, for pure k-particle entangled states it is
straightforward to show that

〈J2
x + J2

y 〉 6 Jmax(k2 + 1) + 〈Jx〉2 + 〈Jy〉2. (S9)

Hence, using the properties of Fj(X), for states with k-
particle entanglement,

(∆Jz)
2 > JmaxF k

2


√
〈J2
x + J2

y 〉 − Jmax(k2 + 1)

Jmax


(S10)

holds. Naturally, we can use the formula only if the ex-
pression under the square root is positive. Otherwise, the
lower bound on (∆Jz)

2 is trivially zero. For large N and
k � N, the first term under the square root in Eq. (S10)
is ∼ N2, while the second one is ∼ N. Thus, we obtain
approximately

(∆Jz)
2 & JmaxF k

2


√
〈J2
x + J2

y 〉

Jmax

 . (S11)

Note that, since Fj(x) 6 1
2 , a sub-Poissonian variance,

i.e., (∆Jz)
2 < N

4 is required to detect multi-particle en-
tanglement.

The inequality (S10) can be used to quantify the entan-
glement depth of pure states. It gives the same boundary
for k-particle entangled states as the method of Sec. S2 A.
It can also be shown that our criterion holds not only for
pure states, but also for general mixed states [29]. More-
over, it can be generalized to the experimentally impor-
tant case of mixed states with a fluctuating total number
of particles. Since the total proof exceeds the scope of
this publication, it will be published elsewhere [30].
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FIG. S4. Comparison with the spin-squeezing criterion. The
graph shows the entanglement depth detected by the condi-
tion (S10) (solid line) and the spin-squeezing condition (S8)
(dashed line) for N = 4000 spin- 1

2
particles with additive

white noise to account for imperfections. For states that are
not completely polarized, Eq. (S10) detects a considerably
larger entanglement depth. The inset shows that the max-
imal detected entanglement depth depending on the noise
contribution is larger for our criterion (circles) than for the
spin-squeezing criterion (crosses) if some very small noise is
present.

C. Comparison with the spin-squeezing criterion

Our criterion reliably detects the entanglement depth
of Dicke states. In particular, it detects the symmetric
Dicke state with 〈Jl〉 = 0 for l = x, y, z as fully N -particle
entangled, since the inequality (S10) with k = N − 1 is
violated. In this section, we show that our criterion is also
valuable for the evaluation of spin-squeezed states, since
it outperforms the criterion of Ref. [25] in the presence

of noise.
In order to compare the performance of the two crite-

ria, we consider the ground states of the spin-squeezing
Hamiltonian

H(Λ) = J2
z − ΛJx, (S12)

for N = 4000 spin- 1
2 particles. For Λ = ∞, the ground

state is fully polarized. For Λ = 0, it is the symmetric
Dicke state. In principle, such states are detected by the
spin-squeezing criterion of Ref. [25] as fully N -particle
entangled for all Λ > 0. However, this statement only
holds for ideal pure states. In experimentally realistic
situations, small noise contributions are always expected,
especially for the case of large numbers of particles as
considered here. While the criterion of Ref. [25] becomes
extremely sensitive to noise for strongly squeezed states,
our criterion is much more robust.

We account for these small noise contributions by mix-
ing the density matrix of the ideal spin-squeezed state ρid

with a noisy state ρn. The noisy state is chosen such that
each atom is in an incoherent 50/50 mixture of its two
spin states. For a quantitative comparison, we estimate
the entanglement depth of the state ρ = (1−p) ρid +p ρn

with a noise contribution of p = 0.05. Fig. S4 shows the
detected entanglement depth for the spin-squeezing crite-
rion (S8) and our criterion (S10). For strongly squeezed
states, where 〈Jx〉 � Jmax, our criterion detects a large
entanglement depth, while the result of the method de-
scribed in Ref. [25] tends to zero. The robustness against
noise exhibited in this example is a general property and
is independent of the exact type of noise.

In summary, our criterion detects the entanglement
depth of both spin-squeezed states and more general
states in experimentally realistic situations. Most promi-
nently, it is ideally suited for the characterization of Dicke
states, as produced in our experiments.


