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The supplemental material contains some additional results helping to characterize the bound
entangled states found numerically, as well as results of the maximization of the quantum Fisher
information for a constrained negativity. We also provide a list of quantum states that are available
from the electronic supplement as text files.

Maximum of the quantum Fisher information for sep-
arable states.—For any of the single qudit operators a(n)
we have
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The first equality in Eq. (S1) is a well known identity for
the variance. The inequality is based on the idea that
an expectation value of an operator is never larger than
its largest eigenvalue. In the second line, the µ leading
to the minimum is µ = [�max(a(n)) + �min(a(n))]/2. A
state maximizing the variance, and hence saturating the
inequality, is the equal superposition of the eigenstates
corresponding to the minimal and maximal eigenvalues,
respectively. Then, for a pure product state | iprod =
| i(1) ⌦ | i(2) ⌦ ... ⌦ | i(N) we have
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where the inequality can be saturated. Equation (S2)
is valid for separable states due to the convexity of the
quantum Fisher information.

Comments on scaling.—We examine the scaling of the
metrological performance of PPT states with the number
of particles. If we construct a tensor product of metro-
logically useful states, the quantum Fisher information
scales as
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where A
[m] acts on the m

th copy of the state. Using the
four-qubit state mentioned above we obtain for A = Jz

FQ = 1.0022N, (S4)

where N is divisible by 4. Hence, we have a constant
factor compared to the shot-noise limit given in Eq. (3).
Using the state above as an initial state, one could start
a numerical maximization of FQ for PPT states. It is
expected that a higher level of metrological usefulness can
be achieved, since we allow PPT entanglement between
the four-qubit units.

Description of the SDP algorithm to compute a lower
bound to pnoise.—Let us consider a d ⇥ d system, and
denote the maximal quantum Fisher information achiev-
able by separable states in this system by F (sep)

Q
. Let %

be a quantum state for which FQ[%, A] is higher than
F (sep)

Q
. We define the robustness of the metrological use-

fulness of a state as follows. It is the minimal amount
of separable noise that has to be mixed with % in or-
der to have FQ  F (sep)

Q
. This definition is analogous

to that of the robustness of entanglement in Ref. [39].
Mathematically, we ask for the minimal amount of p, de-
noted by pnoise, such that FQ[%(p), A]  F (sep)

Q
, where

%(p) = (1 � p)% + p%sep, and %sep belongs to the set of
separable states.

We presented lower bounds on the noise tolerance de-
noted by p

LB

noise
in Table II. The calculation was carried

out using the following SDP

pM (X) = min
�
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Here, % is the state for which we would like to obtain a
bound on the robustness. The operator M is obtained
according to formula (8). Note that the last condition
can be written as Tr[M2

%(p)] � (X2
/F (sep)

Q
) to make it

suitable for an SDP formulation. Then, the robustness
of the quantum Fisher information is computed as

p
LB

noise
= min

X2[Xmin,Xmax]

pM (X), (S6)
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FIG. S1. The maximal quantum Fisher information as the
function of the smallest eigenvalue of the partial transpose.
(a) four-qubit systems and (b) 4⇥ 4 systems with A given in
Eq. (4).
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FIG. S2. The maximal quantum Fisher information as the
function of the smallest bipartite negativity for (circles) four-
qubit systems with A = Jz. (squares) 4 ⇥ 4 systems with A
given in Eq. (4). (solid) Line corresponding to FQ = 24N +4.

where Xmin and Xmax are the minimum and maximum
eigenvalues of the expression i[A,M ], respectively.

In order to see that the SDP (S5) gives indeed a lower
bound we note that (i) the state �̃ = �/p approximates
the set of separable states %sep from the outside. (ii)
FQ[%(p), A] � 1/(�✓)2%(p). Both (i) and (ii) potentially
increase the feasible p values defined by the condition
appearing in the last line of the optimization (S5), which
entails a lower bound to pnoise.

Relation between the negativity and the metrological
usefulness.—We consider the constraint that the eigen-
values of %Tk are larger than �min for all k. We present the
maximal quantum Fisher information for various values
of �min in Fig. S1.

We now put a constraint on the negativity of the quan-
tum state [40]. In the multipartite case, we limit the min-
imum of the bipartite negativities. We use the following

Bipartite state Entanglement

3⇥ 3 0.0003

4⇥ 4 0.0147

5⇥ 5 0.0239

6⇥ 6 0.0359

7⇥ 7 0.0785

UPB 3⇥ 3 0.0652

Breuer 4⇥ 4 0.1150

TABLE S1. Lower bound on the linear entanglement for some
of the bipartite states considered in Table II. For a compari-
son, the entanglement is also shown for the 3⇥ 3 state based
on unextendible product bases (UPB) [23] and for the Breuer
state with a parameter � = 1/6 [24].

semidefinite program [40]

f
N
M (X,Y ) = min

%
Tr(M2

%),

s.t. % = %+ � %�,

% � 0,Tr(%) = 1,

Tr(%�) = N ,

%
Tk
+

, %
Tk
� � 0 for all k,

hi[M,Jz]i = X and hMi = Y, (S7)

where the minimal bipartite negativity is not larger than
N . We changed the original iterative algorithm by re-
placing fM (X,Y ) defined in Eq. (6) by f

N
M (X,Y ) de-

fined in Eq. (S7). The results are shown in Fig. S2.
In the four-qubit case, the line connects our bound en-
tangled state with the four-qubit Greenberger-Horne-
Zeilinger (GHZ) state, which has a negativity of 0.5 and
FQ[%GHZ, Jz] = 16 (see, e.g., Ref. [6]).

Entanglement of the PPT entangled states.—Next, we
calculate a very good lower bound on the the entangle-
ment measure based on the convex roof of the linear
entropy of entanglement, called linear entanglement, for
some of the bound entangled states presented in this pa-
per [25]. This measure has already been used to char-
acterize bound entangled states [26]. The results can be
seen in Table S1. Two programs to calculate the entan-
glement measure are given in Ref. [27].

Cluster states.—Cluster states attracted a large atten-
tion since they can be used as a resource in measurement-
based quantum computing [30]. They arise naturally in
Ising spin chains and have been realized with photons
and cold atoms on an optical lattice [15, 16, 31]. Cluster
states are fully entangled pure states, hence they are not
PPT with respect to any partition. They violate a Bell
inequality [32–34]. Linear cluster states of three qubits
are equivalent to GHZ states under local unitaries, hence
they are metrologically useful. Linear cluster states with
N � 4 particles are also useful metrologically. On the
other hand, for N � 5 particles, ring cluster states as
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well as cluster states in more than one dimension are
metrologically not useful (see Proposition 3 in Ref. [10]).
In Fig. 1, such cluster states are in the set M\P\L.

Description of a 4 ⇥ 4 bound entangled PPT state.—
Let us define the following six states | 1i = (|0, 1i +
|2, 3i)/

p
2, | 2i = (|1, 0i + |3, 2i)/

p
2, | 3i = (|1, 1i +

|2, 2i)/
p
2, | 4i = (|0, 0i � |3, 3i)/

p
2, and | 5i =

(1/2)(|0, 3i + |1, 2i) + |2, 1i/
p
2, | 6i = (1/2)(�|0, 3i +

|1, 2i) + |3, 0i/
p
2. Then our 4 ⇥ 4 state in question

is a convex mixture of the following states %4⇥4 =
p
P

4

n=1
| nih n| + q

P
6

n=5
| nih n|, where q = (

p
2 �

1)/2 and p = (1 � 2q)/4. The state is invariant under
the partial transposition, which ensures that the state is
PPT. We next show that ⇢4⇥4 is in fact a metrologically
useful bound entangled state. We consider the operator
A = H ⌦ + ⌦ H, where H = diag(1, 1,�1,�1). For
the %4⇥4 state, h k|A| li = 0 for all k, l = 1, 2, . . . , 6.
Straightforward calculations show that this property im-
plies the equality FQ[%, A] = 4(�A)2. Then, we obtain
FQ[%, A] = 4(�A)2 = 32 � 16

p
2 ' 9.3726. Since for

separable states FQ[%sep, A]  8 holds, we find that the
state %4⇥4 is indeed bound entangled.

Wigner-Yanase skew information.—There are alterna-
tives of the quantum Fisher information, that, apart from
a constant factor, coincide with it for pure states and
are convex [19, 28]. The Wigner-Yanase skew informa-
tion I(%, A) = Tr(A2

%� A
p
%A

p
%) is such a quantity

[29]. The limit for separability for I(%, A) is the same
as for FQ[%, A]/4, since in general I(%, A)  FQ[%, A]/4.
We find that even for the skew information, there are
PPT entangled states that violate the separable limit.
For the 4 ⇥ 4 bound entangled state presented in the
previous paragraph, | ki for k, l = 1, 2, . . . , 6 have been
used to denote the eigenvectors of the density matrix cor-
responding to nonzero eigenvalues. For these, as has

already been mentioned, the property h k|A| li = 0
holds. Straightforward algebra shows that due to this,
I(%, A) = FQ[%, A]/4 = 9.3726/4 = 2.3431, where A is
given in Eq. (4) and FQ[%, A] is shown in Table II. The
skew information signals entanglement since the bound
for separability is 2.

Quantum states obtained numerically.—The list of
quantum states submitted with the supplement are given
in Table S2.

System File name

four qubits rho_fourqubits_r.txt
rho_fourqubits_i.txt

three qubits rho_threequbits_r.txt
rho_threequbits_i.txt

2⇥ 4
rho_2x4_r.txt
rho_2x4_i.txt

3⇥ 3 rho3x3.txt
4⇥ 4 rho4x4.txt
5⇥ 5 rho5x5.txt
6⇥ 6 rho6x6.txt
7⇥ 7 rho7x7.txt
8⇥ 8 rho8x8.txt
9⇥ 9 rho9x9.txt
10⇥ 10 rho10x10.txt
11⇥ 11 rho11x11.txt
12⇥ 12 rho12x12.txt

TABLE S2. Quantum states submitted with this work, which
have appeared in Tables I and II. The elements of the density
matrices are given in text files. For the first three states, the
real and imaginary parts are given in two separate files, while
for the rest the imaginary part is zero.


