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We consider bipartite entangled states that cannot outperform separable states in any linear
interferometer. Then, we show that these states can still be more useful metrologically than separable
states if several copies of the state are provided or an ancilla is added to the quantum system. We present a
general method to find the local Hamiltonian for which a given quantum state performs the best compared
to separable states. We obtain analytically the optimal Hamiltonian for some quantum states with a high
symmetry. We show that all bipartite entangled pure states outperform separable states in metrology. Some
potential applications of the results are also suggested.
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Entanglement lies at the heart of quantum mechanics and
plays an important role in quantum information theory [1].
Recently, it has been realized that entanglement can be a
useful resource in very general metrological tasks. By using
entangled states it is possible to overcome the shot-noise
limit, corresponding to classical interferometers, in the
precision of parameter estimation [2—7]. On the other hand,
separable states, i.e., states without entanglement cannot
overcome the classical limit. It has even been shown that
quantum states with a very weak form of entanglement,
called bound entanglement [8—10], can also be metrologi-
cally useful in this sense [11,12]. However, there are highly
entangled states that are not useful for metrology [13].

In what sense is metrological usefulness the property
of the quantum state? It is clear that, starting from many
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entangled quantum states that are not useful for metrology,
with local operations and classical communication (LOCC)
it is possible to distill singlets, which are metrologically
useful. This finding is almost trivial, as metrological
“uselessness” is not conserved by LOCC operations. On
the other hand, in quantum metrology experiments most
LOCC operations are typically not possible. Here, we
investigate how metrological usefulness can change in the
two simplest cases very relevant in practice: we consider
adding an ancilla to a single copy of the bipartite quantum
state. We also consider providing two copies of the
state [14]. These two scenarios follow the spirit in which
the activation of bound entanglement and nonlocality has
been studied [10,15-17] (see Fig. 1).

In this Letter, we show that some bipartite entangled
quantum states that are not useful in linear interferometers
become useful in the cases mentioned above. These
findings are quite surprising: including uncorrelated ancilla
qubits can make a state metrologically useful. To support
our claims, we present a general method to find the local
Hamiltonian for which a given bipartite quantum state
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FIG. 1. (a) An ancilla (“a”) is added to bipartite state @,p.
(b) An additional copy or a different state is added to the state. In
both cases, a new bipartite state is obtained, where the two parties
are separated by a dashed line.

provides the largest gain compared to separable states. Note
that this task is different, and in a sense more complex, than
maximizing the quantum Fisher information. The reason is
that by changing the Hamiltonian, the sensitivity achievable
by separable states can also change.

Quantum Fisher information.—Before discussing our
main results, we review some of the fundamental relations
of quantum metrology. A basic metrological task in a linear
interferometer is estimating the small angle  for a unitary
dynamics Uy = exp(—iH0), where the Hamiltonian is
the sum of local terms. That is, all local terms act within
the subsystem and there are no interactions between the
subsystems. In particular, for bipartite systems it is

H="H, +H,, (1)

where H,, are single-subsystem operators. The precision is
limited by the Cramér-Rao bound as [18-21]

1

(AQ) me o, ]

(2)

where m is the number of independent repetitions, and the
quantum Fisher information, a central quantity in quantum
metrology is defined by the formula [18]

ZZ

Here, 4, and |k) are the eigenvalues and eigenvectors,
respectively, of the density matrix ¢, which is used as a
probe state for estimating 6.

Metrological usefulness of a quantum state.—We call a
quantum state metrologically useful, if it can outperform
separable states in some metrological task, i.e., if

k\H|l>| (3)

Folo.H] > maxF 0wy H] = FoP (H).  (4)

Osep

It is an intriguing task to find the operator H, for which a
given state performs the best compared to separable states.

For that we define the metrological gain compared to
separable states by
HI/F™ (H). (5)

gn(e) = Folos

We are interested in the quantity

9(e) = maxg(e). (6)
where a local Hamiltonian is just the sum of single system
Hamiltonians as in Eq. (1). The maximization task looks
challenging since we have to maximize a fraction, where
both the numerator and the denominator depend on the
Hamiltonian. (See the Supplemental Material for basic
properties of the metrological gain [22].)

Maximally entangled state.—As we have mentioned, it is
a difficult task to obtain g(¢) and the optimal local
Hamiltonian for any ¢. As a first step, we consider the
d x d maximally entangled state, which is defined as

me J— 1 d
)) —73;|k>|k>. (7)

Due to the symmetry of the state, the optimal Hamiltonian
can straightforwardly be obtained as

H™ =D®1+1Q D, (8)
where the diagonal matrix D is given as
D = diag(+1,-1,+1,-1,...). 9)

The details are given in the Supplemental Material [22]. For
the 3 x 3 case, we consider the noisy quantum state

oy = (1= p)[2N) (P + p1/d?,  (10)
which is useful if [22]
25 — /177
p <=V 63655, (11)

32

(See the Supplemental Material for the definition of the

related notion of robustness of metrological usefulness [22].)
Activation by an ancilla qubit.—Now we consider the

previous state, after a pure ancilla qubit is added

o) = [0)(0], ® olfy- (12)
The setup is depicted in Fig. 1(a). Then, with the operator
H@) = 12C,, @ Iz + 1,4 ® Dy, (13)

where an operator acting on the ancilla and A is
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Caa :%(26x+gz)a® 10)(0[4 + 1 ® (12)(2[a = [1)(1]4),
(14)

we have g, mo(0@)) > 1 if p < 0.3752 [cf. Eq. (11)].
Hence larger part of the noisy maximally entangled states
are useful in the case with the ancilla.

Activation by adding extra copies.—We consider now
two copies of the noisy 3 x 3 maximally entangled state

0" = iy ® elfy- (15)

The setup is shown in Fig. 1(b). Then, with the two-copy
operator

H) =D, @ Dy ® lgp + 14 ® Dy ® Dy, (16)

we have g0 (') > 1 if p <0.4164 [cf. Eq. (11)].
Hence larger part of the noisy maximally entangled states
are useful in the two-copy case, than with a single copy. So
far we have studied the 3 x 3 case. For the 2 x 2 case, see
the Supplemental Material [22].

Observation 1: In summary, we have just shown that
there are bipartite states with the following properties.
(i) They are not more useful than separable states consid-
ering any local Hamiltonian. (ii) By adding an ancilla or
two copies, they are more useful than separable states for
some local Hamiltonian. For the case of an added ancilla,
the new subsystems are now aA and B, and the Hamiltonian
contains interactions between the ancilla a and A. In the
two-copy case, the new subsystems are AA’ and BB’, and
the Hamiltonian contains interactions between A and A’,
and between B and B’. Note that in both cases, the extra
interactions increase the metrological capabilities of sepa-
rable states. Still, simple algebra shows that in both cases
the metrological gain can stay the same or can increase, but
cannot decrease [22].

So far, we exploited the symmetries of quantum states to
obtain the Hamiltonian leading to the largest metrological
gain. We now present a general method to compute g(¢)
numerically.

Method for finding the optimal Hamiltonian.—We need
to maximize F o [0, H] over H for a given ¢. However, since
it is convex in H, maximizing it over H is a difficult task.
Instead of the quantum Fisher information, let us consider
the error propagation formula

(AM)*

(AG)ZM = W

(17)

which provides a bound on the quantum Fisher information
[22,36-38]

Fole-H] > 1/(A0)3;. (18)

We will now minimize Eq. (17).

Observation 2: The error propagation formula given in
Eq. (17) can be minimized over H for a given M and ¢ as
follows.

Proof.—Simple algebra yields

(ilM, H]) = Tr(AHy) + Tr(AyHs), (19)

where A, = Try )\, (i[e, M]) are operators acting on a
single subsytem. Hence, we have to maximize Eq. (19) over
‘H; and H,. We choose the constraints

e, 1 £H, >0, (20)

where n =1, 2 and ¢,, > 0 is some constant. This way we
make sure that ¢,,,(H,) > —c,, and 6., (H,,) < +c,, for
n =1, 2, where o,;,(X) and o, (X) denote the smallest
and largest eigenvalues of X. The optimal ,, is the one
that maximizes Tr(A,H,) under these constraints. It can
straightforwardly be obtained as

H™ = U,D,Uj. (1)

where the eigendecompisition of A is givenas A, = U, D,, U}
and (D,);x = cuS[(Dn)gs), where s(x) =1 if x>0,

and —1 otherwise. Clearly, H\*™ has the same eigenvectors

as A, and has only eigenvalues +c, and —c,,. [

We already know how to optimize H for a given M.
However, how do we find the optimal M? This can be done
with the well-known formula for the symmetric logarithmic
derivative [21]

~— A — A
M, = 2i Y |(k|H|D). 22
opt Ek,l /1k+/11| ) (| (kI H|T) (22)

For a given H, the error propagation formula given in
Eq. (17) is minimized for M = M, [22,37].

Iterative method.—We can now construct the following
procedure for minimizing Eq. (17). First we choose a
random M. Then, repeat the following two steps. (Step 1)
Determine the optimal H for a given M using Observation
2. (Step 2) Determine the optimal M for a given H using
Eq. (22). A see-saw procedure similar in spirit has been
used to make the optimization of the metrological perfor-
mance over density matrices in Refs. [12,39,40].

After several iterations of the two steps above, we obtain
the maximal quantum Fisher information over a certain
set of Hamiltonians. Based on that, we can calculate the
quantity
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FoloH) ®1+1@H,)
FuP ey, ea)

ey, (@) = max ., (23)

H] .Hg

where we assumed that H,, are constrained with Eq. (20).
The separable limit for Hamiltonians of the form (1)
is [12,41]

FSPMH) = Y [omn(Hy) = omin(H)P. (24

n=12

which leads to F 0% (¢, c;) = 4(c? + c3). Then, the
gain can be expressed as

9(e) = maxge, , (e). (25)

where the optimization is only over c,, and, without the loss
of generality, we set ¢; = 1. The optimal ¢, can be obtained
from an analytical formula [22]. Hence we computed the
maximum of the fraction (5) for local Hamiltonians.

We now stress the following. If we determine the optimal
‘H for a given M using Observation 2, the eigenvalues of the
optimal H,, satisfying Eq. (20) are £=c,,. Let us assume the
contrary. Let us assume that for a state ¢ and for given ¢, ¢,
we know the optimal H; and H,, and H,, fulfill Eq. (20),
but not all eigenvalues are +c,. We observe that (i[M, H])
is a linear function of the eigenvalues of H,,, thus it takes its
maximum at the eigenvalues corresponding to the boundary
of the allowed region. Hence, we can always replace the
eigenvalues of H, by =+c, such that (i[M,H]) will not
decrease, and 1/(A0)?,, will not decrease either.

Using the numerical method above, we obtain a
slightly larger value for the noise bounds of metrological
usefulness for the state with an ancilla, (12). g(e@®<)) > 1
if p <0.3941. The same is true for the case of the two
copies of the noisy maximally entangled state, (15). We
obtain g(0) > 1 if p < 0.4170.

For states with a high symmetry, such as isotropic states
[42,43], and Werner states [44], we obtained the optimal
Hamiltonian analytically and determined the subset of these
states that are metrologically useful [22]. We also used that
to verify our numerical methods.

Activation of a bound entangled state by a separable
state.—While bound entangled or nondistillable states [8,9]
are considered weakly entangled, they can share many
properties with highly entangled states. For example, there
are bound entangled states that can reach the Heisenberg
scaling in metrological applications [11]. It has also
been shown that bipartite bound entangled states, which
have a positive semidefinite partial transposition (PPT),
can be useful for metrology [12]. Moreover, bipartite PPT
entangled states can even have a high Schmidt rank [45].

Let us now consider a PPT entangled state Q%)T) that is

not useful for quantum metrology. Then, we look for a

separable state o*P) such that QS;ST) ® Q(Sep> becomes

A'B
useful. Hence, in this case we have to optimize not only
over ‘H, M, but also over the separable state. Simple
convexity arguments show that the maximum is taken

when we have a pure product state, Qis,eBp,) = Qﬁsnc) ® lernc),

which corresponds to two ancillas at the two parties. In fact,
even a single ancilla qubit is sufficient for activation.

Activation of a PPT entangled state by an ancilla
qubit.—We now consider a PPT entangled state, which
is not useful metrologically, and g(¢45) = 1. However,
with an ancilla it becomes useful, g(Q(4a)(5)) > 1. We show
here examples for d x d dimensional PPT states found in
Ref. [12] for odd dimensions d up to d < 11. See Table I
for the numerical results.

Note that here we fixed ¢; = 1 for the coefficients of the
local Hamiltonians H;, i =1, 2. However, numerics
suggests that optimization over c¢; does not help to increase
g in the case of two ancillas (last column), due to the
permutational symmetry of the states. Optimization over c;
helps only marginally in the case of one ancilla (third
column). For instance, in the case of d =7, the g value
raises from 1.0096 (corresponding to ¢, = 1) to 1.0098
(corresponding to ¢, ~ 1.034) if we optimize over c,.

Entanglement detection.—Our method can be used for
entanglement detection. It identifies the Hamiltonians with
which a given quantum state performs better than separable
states and hence it is detected as entangled. If we add
ancillas or extra copies of the quantum state, the criterion
can be even more powerful.

Random states.—We can use our method to determine
the distribution of metrological usefulness of random
pure or mixed states of a given size. For instance, for
3 x 3 systems, pure states typically are close to be
maximally useful, while this is not the case if we look
for the usefulness with respect to a given Hamiltonian.

TABLE 1. Activation of the metrological usefulness found
numerically in two-qudit systems. (First column) Local dimen-
sion d, where d is odd. For even d up to d < 11, we did not find
activation in the examples of PPT two-qudit states considered.
(Second column) White noise fractions of p* added to the PPT
states given by Ref. [12] such that g ;(¢4p) = 1.0000, that is,
they are not useful metrologically. (Third column) Metrological
gain after an ancilla is added to Alice’s system, g; 1 (@(aa)(5))- The
states become useful as demonstrated by gy ;(Q(aa)5)) > 1.
(Fourth column) Metrological gain after a further ancilla is added
to Bob’s system, gl,l(QwA)(B,,)). The state becomes even more
useful metrologically.

*

d p Gain with one ancilla  Gain with two ancillas
3 0.0006 1.0007 1.0011
5 0.0960 1.0094 1.0190
7 0.1377 1.0096 1.0195
9 0.1631 1.0090 1.0181
11 0.1807 1.0081 1.0165
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For the numerical result, please see the Supplemental
Material [22].

Usefulness of entangled bipartite pure states.—Next we
will consider the usefulness of bipartite pure states.

Observation 3: All entangled bipartite pure states are
metrologically useful. (For the two-qubit case, see
Ref. [13].)

Proof-—Let us consider a pure state with a Schmidt
decomposition

) = oK)k (26)
k=1

where s is the Schmidt number, and the real positive oy
Schmidt coefficients are in a descending order. We define

Ha= >

n=135,...5-1

) Flanmer = [ lamns, (27)

where 5§ is the largest even number for which § < s, and

1) pmnrs = ()4 £+ 1))/ V2. (28)

We define Hp in a similar manner. We also define the
collective Hamiltonian

HAB:HA®H+H®HB. (29)

Then, we have (H,p)y = 0. Direct calculation yields

FQH\P>’ HAB] = 4(AHAB)2‘P =38 Z (Gn + 0n+1)2’

n=135...5-1
(30)
which is larger than the separable bound, F (Qsep) =38,

whenever the Schmidt rank is larger than 1. For even s,
this can be seen noting that

Foll¥). Hoo) > 807 a1

holds, where we used Eq. (30) to evaluate the left-hand
side of Eq. (31), and we also took into account that ¢,, > 0
forn=1,2,3,...,and Y5_, 02 = 1. For odd s, we need
that

s—1 K
Fol|¥), Hag) > 8 (Z o2 + 26162) >8Y o2 (32)
n=1 n=1

holds, where we used that 6,6, > 2. "
We can even consider several copies of a quantum state.
In the Supplemental Material, we prove that for infinite

number of copies of entangled pure quantum states the
metrological gain is maximal [22].

Conclusions.—We showed that entangled quantum
states that cannot outperform separable states in any linear
interferometer can still be more useful than separable states,
if several copies of them are considered or an ancilla is
added to the system. This is a surprising result which shows
that the relationship between quantum metrology and the
structure of quantum states requires further study. We
presented a method to find the Hamiltonian for carrying
out metrology in a linear interferometer with a given
quantum state that provides the largest gain compared to
the precision achievable by separable states. In the Letter
we considered bipartite problems, thus it would be impor-
tant to extend this approach to multipartite systems and
examine the scaling of the metrological gain for noisy
quantum states. It would be also interesting to look for
application in entanglement detection [1], and witnessing
the dimension of quantum systems [46—49], where the
results of the preliminary analysis seem to be promising.
(See the Supplemental Material [22].)
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