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Appendix A: Proof of Observation 1

Observation 1. For an N -qubit permutationally symmetric state ϱ, the first, second, and third moments J (r)(ϱ)
for r = 1, 2, 3 completely characterize spin-squeezing entanglement. That is, a constructive procedure for achieving
the necessary and sufficient condition is obtained by the moments with the parameters α = 2/N2, β = −2(N −
2)/(NN2), γ = −1/[2(N − 1)] and N2 = N(N − 1).

Proof. In the following, we will first describe the logic of how to prove Observation 1 in the main text and later explain
each line step-by-step

ϱPS ∈ H⊗N
2 is spin squeezed ⇐⇒ ϱab ∈ H⊗2

2 is entangled (A1a)
⇐⇒ ϱab ̸∈ PPT (A1b)
⇐⇒ M ≱ 0 (A1c)
⇐⇒ C ≱ 0 (A1d)
⇐⇒ obtained from tr(Cr) for r = 1, 2, 3 (A1e)

⇐⇒ obtained from C(r)(ϱ) for r = 1, 2, 3 (A1f)

⇐⇒ obtained from J (r)(ϱ) for r = 1, 2, 3. (A1g)

In the first line, we denote an N -qubit permutationally symmetric state as ϱPS and recall again that it possesses
bipartite entanglement or often spin squeezing if and only if any two-qubit reduced state ϱab = tr(a,b)c(ϱPS) is
entangled for a, b = 1, 2, . . . , N , where Xc is the complement of a set X. This has been already discussed in Refs. [62–
64]. In the second line, we also recall that any two-qubit state is entangled if and only if it has a negative eigenvalue
under partial transposition, that is, it violates the so-called PPT criterion [76, 77].

In the third line, we first recall that any two-qubit state ϱab can be written as

ϱab =
1

4

3∑
i,j=0

mijσi ⊗ σj . (A2)

Here we note that a two-qubit state ϱab is permutationally symmetric and separable (that is, PPT) if and only if it
holds that M ≥ 0, where M = (mij) for i, j = 0, 1, 2, 3. In the fourth line, this separability condition is equivalent to
C ≥ 0 for a permutationally symmetric ϱab. Here the 3 × 3 matrix C = (Cij) is the Schur complement of the 4 × 4
matrix M , which is given by Cij = mij −mi0m0j for i, j = 1, 2, 3 since m00 = 1. For details, see Refs. [54, 66, 67].

In the fifth line, we first discuss the explicit form of the covariance matrix C

Cij = tr[ϱabσi ⊗ σj ]− tr[ϱaσi]tr[ϱbσj ] = tij − aiaj , (A3)

where mij = tij = tji and mi0 = m0i = ai since ϱab is permutationally symmetric. Then, the covariance matrix
C = T −aa⊤ is symmetric C = C⊤, where T = (tij) = T⊤ with the constraint tr[T ] =

∑
i tii = 1 and a = (ax, ay, az).

To proceed, let us remark that the matrix C can be diagonalized by a collective local unitary transformation V ⊗ V ,
leads to that OCO⊤ = diag(c1, c2, c3) with a rotation matrix O ∈ SO(3). In fact, the eigenvalues c1, c2, c3 can be
found by computing the roots of the characteristic polynomial

pC(λ) = λ3 − tr(C)λ2 +
1

2

[
tr(C)2 − tr(C2)

]
λ− det (C), (A4)
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where tr(Cr) =
∑

i=1,2,3 c
r
i and the det (C) can be written as

det (C) =
1

6

[
tr(C)3 − 3tr(C)tr(C2) + 2tr(C3)

]
. (A5)

That is, knowing the tr[Cr] for r = 1, 2, 3 can enable us to access its eigenvalues and therefore decide whether the
matrix C is positive or negative.

In the sixth and seventh lines, it is sufficient to show that tr[Cr] for r = 1, 2, 3 can be obtained from the moments
J (r)(ϱ) in the collective randomized measurements. For the choice α = 2/N2, β = −2(N −2)/(NN2), γ = −1/[2(N −
1)], and N2 = N(N − 1), we immediately find that the moments J (r)(ϱ) can be equal to the moments C(r)(ϱab) of
the random covariance matrix

J (r)(ϱ) = C(r)(ϱab) ≡
∫
dU [CovU ]

r, (A6a)

CovU = tr[ϱabU
⊗2σz ⊗ σz(U†)⊗2]− tr[ϱaUσzU

†]tr[ϱbUσzU
†]. (A6b)

This results from the fact that ⟨Jz⟩U = N
2 tr[ϱaUσzU

†] and ⟨J2
z ⟩U = N

4 + N(N−1)
2 tr[ϱabU

⊗2σz ⊗ σz(U†)⊗2]. In the
following, we will evaluate the moments C(r)(ϱab) and show that they are associated with tr[Cr].

Let us begin by rewriting the moments C(r)(ϱab) as

C(r)(ϱab) =
1

4r

∫
dU

 ∑
i,j=x,y,z

Cij O(i)
U O

(j)
U

r

, (A7)

where we define that O(i)
U = tr[σiUσzU

†]. For convenience, we denote that

I(1)(i, j) =
∫
dU O(i)

U O
(j)
U , (A8a)

I(2)(i, j, k, l) =
∫
dU O(i)

U O
(j)
U O

(k)
U O

(l)
U , (A8b)

I(3)(i, j, k, l,m, n) =
∫
dU O(i)

U O
(j)
U O

(k)
U O

(l)
U O

(m)
U O(n)

U . (A8c)

These integrals are known to be simplified as follows

I(1)(i, j) = 4

3
δij , (A9a)

I(2)(i, j, k, l) = 16

15
(δijδkl + δikδjl + δilδjk) , (A9b)

I(3)(i, j, k, l,m, n) = 64

105

{
δij [δklδmn + δkmδln + δknδlm] + δik[δjlδmn + δjmδln + δjnδlm]

+ δil[δjkδmn + δjmδkn + δjnδkm] + δim[δjkδln + δjlδkn + δjnδkl]

+ δin[δjkδlm + δjlδkm + δjmδkl]
}
, (A9c)

where we use the formulas in Ref. [10]. Substituting the above results into the moments in Eq. (A7) for different
r = 1, 2, 3, we can straightforwardly obtain the following expressions

C(1)(ϱab) =
1

3
tr(C), (A10a)

C(2)(ϱab) =
1

15

[
tr(C)2 + tr(CC⊤) + tr(C2)

]
, (A10b)

C(3)(ϱab) =
1

105

{
tr(C)

[
tr(C)2 + 3tr(C2) + 3tr(CC⊤)

]
+ 4tr(C2C⊤) + 2tr(CC⊤C⊤) + 2tr(C3)

}
. (A10c)

Furthermore, using the symmetric condition C = C⊤, we can finally arrive at

C(1)(ϱab) =
1

3
tr(C), (A11a)

C(2)(ϱab) =
1

15

[
tr(C)2 + 2tr(C2)

]
, (A11b)

C(3)(ϱab) =
1

105

{
tr(C)

[
tr(C)2 + 6tr(C2)

]
+ 8tr(C3)

}
. (A11c)
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The moments C(r)(ϱab), equivalently J (r)(ϱ), are directly connected to tr[Cr]. Hence we complete the proof.

Appendix B: Derivation of the result in Observation 2

Observation 2. For an N -qubit state ϱ, the first moment J (1) with (α, β, γ) = (3, 0, 0) is given by

J (1)(ϱ) =
∑

l=x,y,z

(∆Jl)
2. (B1)

Any N -qubit fully separable state obeys

J (1)(ϱ) ≥ N

2
. (B2)

Then violation implies the presence of multipartite entanglement.

Proof. Here we give the derivation of Eq. (B1). Let us begin by writing that J (1)(ϱ) = 3
∫
dU (∆Jz)

2
U and

(∆Jz)
2
U = ⟨U⊗NJ2

z (U
†)⊗N ⟩ϱ − ⟨U⊗NJz(U

†)⊗N ⟩2ϱ

=
1

4

N∑
i,j=1

⟨U⊗Nσ(i)
z ⊗ σ(j)

z (U†)⊗N ⟩ϱ −
1

4

N∑
i,j=1

⟨U⊗Nσ(i)
z (U†)⊗N ⟩ϱ⟨U⊗Nσ(j)

z (U†)⊗N ⟩ϱ

=
1

4

N +

N∑
i ̸=j

tr
[
U⊗2σ(i)

z ⊗ σ(j)
z (U†)⊗2ϱij

]
−

N∑
i,j=1

tr
[
Uσ(i)

z U†ϱi

]
tr
[
Uσ(j)

z U†ϱj

] , (B3)

where ϱij and ϱi are the two-qubit and single-qubit reduced states of ϱ. Let us focus on the second term in Eq. (B3)
and take the Haar unitary average

N∑
i ̸=j

∫
dU tr

[
U⊗2σ(i)

z ⊗ σ(j)
z (U†)⊗2ϱij

]
=

1

4

N∑
i ̸=j

∫
dU tr

U⊗2σ(i)
z ⊗ σ(j)

z (U†)⊗2
∑

k,l=x,y,z

t
(i,j)
kl σ

(i)
k ⊗ σ

(j)
l


=

1

4

N∑
i ̸=j

∑
k,l=x,y,z

t
(i,j)
kl

∫
dU tr

[
Uσ(i)

z U†σ
(i)
k

]
tr
[
Uσ(j)

z U†σ
(j)
l

]

=
1

3

N∑
i ̸=j

∑
l=x,y,z

t
(i,j)
ll =

4

3

∑
l=x,y,z

⟨J2
l ⟩ −N, (B4)

where t(i,j)kl = ⟨σ(i)
k ⊗ σ

(j)
l ⟩ϱij

. Similarly, the third term in Eq. (B3) can be given by

N∑
i,j=1

∫
dU tr

[
Uσ(i)

z U†ϱi

]
tr
[
Uσ(j)

z U†ϱj

]
=

4

3

∑
l=x,y,z

⟨Jl⟩2. (B5)

Summarizing these results, we can thus arrive at

J (1)(ϱ) =
3

4

N +
4

3

∑
l=x,y,z

⟨J2
l ⟩ −N +

4

3

∑
l=x,y,z

⟨Jl⟩2
 =

∑
l=x,y,z

(∆Jl)
2. (B6)

Remark B1. Here we consider the generalization of Observation 2 in the main text to high-dimensional spin systems.
For that, let us denote the N -qudit collective operators Λl =

1
d

∑N
i=1 λ

(i)
l , with the so-called Gell-Mann matrices λ(i)l

for l = 1, 2, . . . , d2 − 1 acting on i-th system. The Gell-Mann matrices are d-dimensional extensions of Pauli matrices
satisfying the properties: λ†l = λl, tr(λl) = 0, tr(λkλl) = dδkl. For details, see [107–110]. Let us define the random
expectation and its variance

⟨Λl⟩U = tr[ϱU⊗NΛl(U
†)⊗N ], (∆Λl)

2
U = ⟨Λ2

l ⟩U − ⟨Λl⟩2U , (B7)



4

which depends on the choice of collective unitaries U⊗N with U ∈ U(d). Now we introduce the average of (∆Λl)
2
U for

any l over Haar random unitaries

D(ϱ) = (d2 − 1)

∫
dU (∆Λl)

2
U . (B8)

Now we can make the following:

Remark B2. For an N -qudit state ϱ, the average can be given by

D(ϱ) =
d2−1∑
l=1

(∆Λl)
2. (B9)

Any N -qudit fully separable state obeys

d2−1∑
l=1

(∆Λl)
2 ≥ N(d− 1)

d
. (B10)

This violation implies the presence of multipartite entanglement.
This is the generalization of Observation 2. The fully separable bound was already discussed in Refs. [111, 112]. In

the following, we give the derivation of Eq.(B9).

Proof. Similarly to Eq. (B3), the random variance (∆Λl)
2
U can be written as

(∆Λl)
2
U =

1

d2


N∑
i=1

tr[U(λ
(i)
l )2U†ϱi]+

N∑
i ̸=j

tr
[
U⊗2λ

(i)
l ⊗ λ

(j)
l (U†)⊗2ϱij

]
−

N∑
i,j=1

tr
[
Uλ

(i)
l U†ϱi

]
tr
[
Uλ

(j)
l U†ϱj

] , (B11)

where ϱij and ϱi are the two-qudit and single-qudit reduced states of ϱ. To evaluate the Haar unitary integral, let us
use the known formulas [2, 50, 113–117]∫

dU UXU† =
tr[X]

d
1d,

∫
dU U⊗2X(U†)⊗2 =

1

d2 − 1

{[
tr(X)− tr(SX)

d

]
1
⊗2
d +

[
tr(SX)− tr(X)

d

]
S
}
, (B12)

for an operator X. Here S is the SWAP (flip) operator acting on d×d-dimensional systems, defined as S |a⟩ |b⟩ = |b⟩ |a⟩.
Thus we first obtain

N∑
i=1

∫
dU tr[U(λ

(i)
l )2U†ϱi] =

N∑
i=1

tr[(λ
(i)
l )2]

d
tr[ϱi] = N. (B13)

Next, we have

N∑
i ̸=j

∫
dU tr

[
U⊗2λ

(i)
l ⊗ λ

(j)
l (U†)⊗2ϱij

]
=

1

d2

N∑
i ̸=j

∫
dU tr

U⊗2λ
(i)
l ⊗ λ

(j)
l (U†)⊗2

d2−1∑
m,n=1

t(i,j)mn λ
(i)
m ⊗ λ(j)n


=

1

d2
1

d2 − 1

N∑
i̸=j

d2−1∑
m,n=1

t(i,j)mn tr
[
(dS− 1⊗2

d )λ(i)m ⊗ λ(j)n

]

=
1

d2 − 1

N∑
i ̸=j

d2−1∑
l=1

t
(i,j)
ll

=
d2

d2 − 1

d2−1∑
l=1

⟨Λ2
l ⟩ −N. (B14)

In the first line, we denote that t(i,j)mn = ⟨λ(i)m ⊗ λ(j)n ⟩ϱij
. In the second line, we used the formula in Eq. (B12) and the

so-called SWAP trick: tr[SX] = tr[S(XA⊗XB)] = tr[XAXB ] for an operator X = XA⊗XB . In the final line, we used
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that
∑d2−1

l=1 λ2l = (d2 − 1)1d, which can be derived from the facts that S = 1
d

∑d2−1
l=0 λl ⊗ λl and S2 = 1

⊗2
d . Similarly,

we obtain
N∑

i,j=1

∫
dU tr

[
Uλ

(i)
l U†ϱi

]
tr
[
Uλ

(j)
l U†ϱj

]
=

1

d2 − 1

N∑
i,j=1

[dtr(ϱiϱj)− 1] =
d2

d2 − 1

d2−1∑
l=1

⟨Λl⟩2. (B15)

Summarizing these results, we can complete the proof.

Appendix C: Detailed discussion of Observation 3

Observation 3. The average T (ϱ) is given by

T (ϱ) = tr[ϱOA] =
∑

i<j<k

∑
a,b,c

εabc⟨σ(i)
a ⊗ σ

(j)
b ⊗ σ

(k)
c ⟩ϱ, (C1)

where εabc denotes the Levi-Civita symbol for a, b, c = x, y, z. Any N -qubit fully separable state can obey a certain
tight bound

|T (ϱ)| ≤ p(N)
fs , (C2)

where p(N)
fs can be computed analytically for N = 3 and numerically for up to N ≤ 7 and is, up to numerical precision,

given by p(N)
fs = N2 cot (π/N)/3

√
3. Then violation implies the presence of multipartite entanglement.

Proof. Here we give the derivation of Eq. (C1). Let us begin by recalling

T (ϱ) =
∫
dU tr

[
ϱU⊗NOA(U

†)⊗N
]
, OA =

∑
i<j<k

A
(
σ(i)
x ⊗ σ(j)

y ⊗ σ(k)
z

)
, (C3)

where A represents a linear mapping that can make the antisymmetrization (or alternatization) by summing over
even permutations and subtracting the sum over odd permutations. More precisely, the observable can be rewritten
as

OA =
∑

i<j<k

∑
l,m,n=x,y,z

εlmnσ
(i)
l ⊗ σ

(j)
m ⊗ σ(k)

n . (C4)

For instance, in the three-qubit system ABC, it is given by

OA = σ(A)
x ⊗ σ(B)

y ⊗ σ(C)
z + σ(A)

y ⊗ σ(B)
z ⊗ σ(C)

x + σ(A)
z ⊗ σ(B)

x ⊗ σ(C)
y

− σ(A)
x ⊗ σ(B)

z ⊗ σ(C)
y − σ(A)

y ⊗ σ(B)
x ⊗ σ(C)

z − σ(A)
z ⊗ σ(B)

y ⊗ σ(C)
x . (C5)

Then we have

T (ϱ) =
∑

i<j<k

∑
l,m,n=x,y,z

εlmn

{∫
dU tr

[
ϱijkU

⊗3σ
(i)
l ⊗ σ

(j)
m ⊗ σ(k)

n (U†)⊗3
]}

=
1

23

∑
i<j<k

∑
l,m,n=x,y,z

∑
a,b,c=x,y,z

εlmnξ
(i,j,k)
abc

∫
dU tr[σ(i)

a Uσ
(i)
l U†]tr[σ

(j)
b Uσ(j)

m U†]tr[σ(k)
c Uσ(k)

n U†], (C6)

where ϱijk is the three-qubit reduced state of ϱ for i, j, k = 1, 2, . . . , N with the three-body correlation ξ
(i,j,k)
abc =

tr[ϱijkσ
(i)
a σ

(j)
b σ

(k)
c ] for a, b, c = x, y, z.

To evaluate the Haar unitary integral, we use the formula∫
dU tr[σaUσxU

†]tr[σbUσyU
†]tr[σcUσzU

†] =
4

3
εabc, (C7)

which has been derived in Ref. [10]. Using this formula leads to

T (ϱ) = 1

23
4

3

∑
i<j<k

∑
l,m,n=x,y,z

∑
a,b,c=x,y,z

εlmnξ
(i,j,k)
abc εabc =

∑
i<j<k

∑
a,b,c=x,y,z

ξ
(i,j,k)
abc εabc. (C8)

Hence we can complete the proof.
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Figure 3. Geometry of N single-qubit states |χi⟩ represented as (Blue) points on the surface in the single-qubit Bloch sphere,
for i = 1, 2, . . . N and N = 6, 20, 100.

Remark C1. Here we explain how to derive the bound p
(N)
fs . First, we note that the average |T (ϱ)| is a convex

function of a quantum state. Then it is enough to maximize the average for all N -qubit pure fully separable states:
|Φfs⟩ =

⊗N
i=1 |χi⟩. Each of single-qubit states |χi⟩ can be mapped into points on the surface in the single-qubit Bloch

sphere, which can be parameterized as ⟨σx⟩χi = cos(θi), ⟨σy⟩χi = sin(θi) cos(ϕi), and ⟨σz⟩χi = sin(θi) sin(ϕi) for
χi = |χi⟩⟨χi|. Substituting these expressions into |T (ϱ)| and performing its maximization over the parameters, we
can find the bound p

(N)
fs . From numerical research up to N ≤ 7, we collect evidence that there may exist the tight

bound

p
(N)
fs =

N2 cot
(
π
N

)
3
√
3

, (C9)

which may be obtained by θi = 2 tan−1(
√
2−
√
3) and ϕi = 2πi/N for i = 1, 2, . . . , N . In Fig. 3, we illustrate the

geometrical expressions of the points |χi⟩ on the surface in the single-qubit Bloch sphere for N = 6, 20, 100. Note that
we will give the analytical proof of the case with N = 3 at Corollary in the end of Appendix C.

Remark C2. In Fig. 4, we illustrate the criterion of Observation 3 for the state ϱx,y in Eq. (14) in the main text for
N = 4, 5, 6 on the x− y plane.

Remark C3. Let us generalize Observation 3 in the main text by focusing only on three-particle systems. We begin
by denoting three-particle d-dimensional (three-qudit) operator as

WS =
∑
i,j,k

wijksi ⊗ sj ⊗ sk, (C10)

for some given three-fold tensor wijk and matrices si ∈ Hd with si ̸= 1d. If d = 2, wijk = εijk, and si = σi, then it
holds that |⟨WS⟩| = |T |. To proceed, we recall that a three-particle state is called biseparable if

ϱbs =
∑
k

pAk ϱ
A
k ⊗ ϱBC

k +
∑
k

pBk ϱ
B
k ⊗ ϱCA

k +
∑
k

pCk ϱ
C
k ⊗ ϱAB

k , (C11)

where and pXk for X = A,B,C are probability distributions. The state is called genuinely multiparticle entangled if
it cannot be written in the form of ϱbs. Now we will make the following:

Lemma. For a three-qudit state ϱABC , we denote the vector sX = (sXi ) and the matrix SXY = (sXY
ij ) with sXi =

tr[ϱXsi] and sXY
ij = tr[ϱXY si ⊗ sj ], where ϱX , ϱXY are marginal reduced states of ϱABC for X,Y, Z = A,B,C. Any

three-qudit fully separable state obeys

|⟨WS⟩| ≤ max
X,Y,Z=A,B,C

∥sX∥ ∥vY Z∥ , (C12)
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Figure 4. Entanglement criteria for the mixed state in Eq. (14) in the main text for N = 4, 5, 6 in the x − y plane. The fully
separable states are contained in Green area, which obeys all the optimal spin-squeezing inequalities (OSSIs) previously known
with optimal measurement directions [44, 45] and also our criterion in Obs. 3 in the main text. Blue area corresponds to the
spin-squeezed entangled states that can be detected by all OSSIs and Obs. 3. Yellow area corresponds to the entangled states
that cannot be detected by all OSSIs but can be detected by Obs. 3, thus marking the improvement of this paper compared
with previous results.

where ∥v∥2 =
∑

i v
2
i is the Euclidean vector norm of a vector v with elements vi and the vector vY Z = (vY Z

i ) with
vY Z
i =

∑
j,k s

Y
j s

Z
k wijk. Also, any three-qudit biseparable state obeys

|⟨WS⟩| ≤ max
X,Y,Z=A,B,C

∑
i

σi(SXY )σi(Z
∗), (C13)

where σi(O) are singular values of a matrix O in decreasing order and the matrix Z∗ = (z∗ij) with z∗ij =
∑

k s
Z
k wijk.

Proof. Since |⟨WS⟩| is a convex function for a state, it is sufficient to prove the cases of pure states. First, let us
consider a pure fully separable state ϱA ⊗ ϱB ⊗ ϱC . Then we have

⟨WS⟩ =
∑
i,j,k

wijktr[ϱ
A ⊗ ϱB ⊗ ϱCsi ⊗ sj ⊗ sk] =

∑
i

sAi
∑
j,k

sBj s
C
k wijk =

∑
i

sAi v
BC
i ≤ ∥sA∥ ∥vBC∥ , (C14)

where we used the Cauchy–Schwarz inequality to derive the inequality. Similarly, we can have cases that correspond
to sB and sC .

Second, let us consider a pure biseparable state for a fixed bipartition XY |Z. For a case AB|C, we have

⟨WS⟩ =
∑
i,j

sAB
ij

∑
k

sCk wijk =
∑
i,j

sAB
ij c∗ij = tr[SAB(C

∗)⊤] ≤
∑
i

σi(SAB)σi(C
∗), (C15)

where we used von Neumann’s trace inequality [118]. Similarly, we can obtain the bounds for the other bipartitions
B|CA and C|AB. Hence we can complete the proof.

Corollary. Consider the case where d = 2, wijk = εijk, and si = σi. Any three-qubit fully separable state obeys
|⟨WS⟩| ≤ 1. Also, any three-qubit biseparable state obeys |⟨WS⟩| ≤ 2.

Proof. To show these, without loss of generality, we can take ϱC = |0⟩⟨0|. This can lead to that vBC = (sB2 ,−sB1 , 0).
For single-qubit pure states, we have that ∥sA∥ = 1 and ∥vBC∥ ≤ 1. Thus we can show the the fully separable
bound. For the biseparable bound, since σ1(C

∗) = σ2(C
∗) = 1 and σ3(C

∗) = 0, we can immediately find that
σ1(SAB) + σ2(SAB) ≤ 2 for all pure ϱAB .
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Appendix D: Detailed discussion of Observation 4

Observation 4. For a 2N -qubit state ϱAB with the permutationally symmetric reduced states, any separable ϱAB

obeys

G(2)AB + J (1)
A + J (1)

B − J (1)
A J

(1)
B ≤ 1, (D1)

where g = (3/N2)2 and (α, β, γ) = (0, 12/N2, 0).

Proof. We begin by writing

G(r)AB = g

∫
dUA

∫
dUB [ηUAB

]r, ηUAB
= (∆J+

z )2UAB
− (∆J−

z )2UAB
, (D2a)

J (r)
X (ϱX) =

∫
dUX [fU (ϱX)]r, fU (ϱX) = α(∆Jz,X)2UX

+ β⟨Jz,X⟩2UX
+ γ, (D2b)

where

⟨J±
z ⟩UAB

= tr
[
ϱABU

⊗N
AB J

±
z (U†

AB)
⊗N

]
, (∆J±

z )2UAB
= ⟨(J±

z )2⟩UAB
− ⟨J±

z ⟩2UAB
, (D3a)

J±
z = Jz,A ± Jz,B , Jz,X =

1

2

N∑
i=1

σ(Xi)
z , UAB = UA ⊗ UB . (D3b)

Then we can have

⟨J±
z ⟩2UAB

= ⟨Jz,A⟩2UA
+ ⟨Jz,B⟩2UB

± 2⟨Jz,A⟩UA
⟨Jz,B⟩UB

, (D4a)

(∆J±
z )2UAB

= (∆Jz,A)
2
UA

+ (∆Jz,B)
2
UB
± 2 [⟨Jz,A ⊗ Jz,B⟩UAB

− ⟨Jz,A⟩UA
⟨Jz,B⟩UB

] , (D4b)
ηUAB

= 4 [⟨Jz,A ⊗ Jz,B⟩UAB
− ⟨Jz,A⟩UA

⟨Jz,B⟩UB
] . (D4c)

Let us evaluate the form of G(2)AB(ϱAB). Applying the assumption that ϱA and ϱB are permutationally symmetric, we
can further simplify the form of ηUAB

ηUAB
= 4

1

2

1

2


N∑

i,j=1

tr[ϱAiBj
UAσ

(Ai)
z U†

A ⊗ UBσ
(Bj)
z U†

B ]−
N∑

i,j=1

tr[ϱAi
UAσ

(Ai)
z U†

A]tr[ϱBi
UBσ

(Bi)
z U†

B ]


=
N2

4

∑
p,q=x,y,z

CpqO(p)
UA
O(q)

UB
, (D5)

where the covariance matrix C = (Cpq) is given by

Cpq = tr[ϱAiBjσ
(Ai)
p ⊗ σ(Bj)

q ]− tr[ϱAiσ
(Ai)
p ]tr[ϱBjσ

(Bj)
q ] = tpq − apbq, (D6)

for the two-qubit reduced state ϱAiBj
= trij(ϱAB) such that both particles are still spatially separated, defined in

HAi ⊗HBj . Here we denote that

O(p)
UX

= tr
[
σ(Xi)
p UXσ

(Xi)
z U†

X

]
, (D7)

for Xi = Ai, Bi. Notice that Cpq and O(p)
UX

are independent of indices i, j due to the permutational symmetry.
To avoid confusion, we have to stress that the above covariance matrix C = (Cpq) is different from Eq. (A3) in

Appendix A in general. If the spatially-separated reduced state ϱAiBj
is also permutationally symmetric, both are

the same, but here we do not require the assumption.
Using the formula in Eq. (A9a) in Appendix A, we have that

G(2)AB(ϱAB) = g
N4

42

∑
p,q,r,s=x,y,z

CpqCrs

∫
dUAO(p)

UA
O(r)

UA

∫
dUB O(q)

UB
O(s)

UB
=

∑
p,q=x,y,z

C2
pq, (D8)
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where we set that g = (3/N2)2. Also, since ⟨Jz,A⟩UA
= (N/4)

∑
p=x,y,z apO

(p)
UA

and β = 12/N2, we can find

J (1)
A (ϱA) = β

N2

42

∑
p,q=x,y,z

apaq

∫
dUAO(p)

UA
O(q)

UA
=

∑
p=x,y,z

a2p, (D9)

as well as J (1)
B (ϱB) =

∑
p=x,y,z b

2
p. In summary, for the choice g = (3/N2)2 and (α, β, γ) = (0, 12/N2, 0), we have

that

G(2)AB + J (1)
A + J (1)

B − J (1)
A J

(1)
B =

∑
p,q=x,y,z

C2
pq +

∑
p=x,y,z

(a2p + b2p)−
∑

p,q=x,y,z

a2pb
2
q. (D10)

To derive the entanglement criterion, we rewrite the right-hand-side in Eq. (D10) as

G(2)AB + J (1)
A + J (1)

B − J (1)
A J

(1)
B =

∑
p,q=x,y,z

(t2pq − 2apbqtpq) +
∑

p=x,y,z

(a2p + b2p), (D11)

where we use that C2
pq = t2pq + a2pb

2
q − 2apbqtpq. To proceed further, we recall the separability criterion presented in

Ref. [16] (see, Proposition 5): if a bipartite quantum state ϱXY is separable, then it obeys that

tr(ϱ2XY ) + tr(ϱ2X) + tr(ϱ2Y )− 2tr[ϱXY (ϱX ⊗ ϱY )] ≤ 1. (D12)

If ϱXY is a two-qubit state, we can rewrite this inequality as∑
i,j=x,y,z

(z2ij − 2xiyjzij) +
∑

i=x,y,z

(x2i + y2i ) ≤ 1, (D13)

where xi = tr(ϱXσi), yi = tr(ϱY σi), and zij = tr(ϱXY σi ⊗ σj). Let us apply this criterion to Eq. (D11). Exchanging
the symbols

xi ←→ ap, yi ←→ bp zij ←→ tpq, (D14)

we can connect this criterion to Eq. (D11) and arrive at the inequality in Observation 4. Hence we can complete the
proof.

Remark D1. The right-hand-side in Eq. (D10), that is, the right-hand-side in Eq. (17) in Observation 4 in the main
text, can be rewritten as

G(2)AB + J (1)
A + J (1)

B − J (1)
A J

(1)
B =

1

N4

{∑
p,q

η2pq + 4N2
∑
p

[
⟨Jp,A⟩2 + ⟨Jp,B⟩2

]
− 16

∑
p,q

⟨Jp,A⟩2⟨Jq,B⟩2
}
, (D15)

where ∑
p=x,y,z

a2p =

(
2

N

)2 ∑
p=x,y,z

⟨Jp,A⟩2, (D16a)

∑
p=x,y,z

b2p =

(
2

N

)2 ∑
p=x,y,z

⟨Jp,B⟩2, (D16b)

∑
p,q=x,y,z

C2
pq =

(
1

N2

)2 ∑
p,q=x,y,z

[
(∆J+

p )2 − (∆J−
q )2

]2 ≡ (
1

N2

)2 ∑
p,q=x,y,z

η2pq, (D16c)

and ηpq ≡ (∆J+
p )2 − (∆J−

q )2.

Remark D2. Here we consider the generalization of Observation 4 in the main text to m ensembles for m ≥ 3. For
that, let us define a quantum state ϱ ∈ H1 ⊗ · · · ⊗ Hm, where HX = H⊗N

2 for X = 1, . . . ,m. Now it is essential to
notice that the left-hand-side in Observation 4 can be available for any two-pair in m ensembles. Then, let us define
the average over all pairs

P(ϱ) = 2

m(m− 1)

∑
X<Y

G(2)XY + J (1)
X + J (1)

Y − J (1)
X J

(1)
Y , (D17)
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for X,Y = 1, 2, . . . ,m. Now we can formulate the following.

Remark D3. For this mN -qubit state ϱ consisting of the m ensembles of N spin- 12 particles, if each N -qubit ensemble
is permutationally symmetric, then any fully separable ϱ obeys

P(ϱ) ≤ 1, (D18)

where g = (3/N2)2 and (α, β, γ) = (0, 12/N2, 0).

Proof. In general, if a multipartite state ϱ is fully separable, then all the bipartite reduced states are clearly separable.
For such separable reduced states, Observation 4 in the main text holds. Thus we can complete the proof.

Remark D4. Let us test our criterion in Observation 4 in the main text with the Dicke state as a bipartite state.
The NAB-qubit Dicke state with mAB excitations is defined as

|NAB ,mAB⟩ =
(
NAB

mAB

)− 1
2 ∑
mAB

PmAB
(|11, . . . , 1mAB

, 0mAB+1, . . . , 0NAB
⟩), (D19)

where {PmAB
} is the set of all distinct permutations in the qubits. Applying the Schmidt decomposition to the Dicke

state, one can have

|NAB ,mAB⟩ =
NAB∑
m=0

λm |NA,mA⟩ ⊗ |NB ,mB⟩ , (D20)

where NA +NB = NAB , mA +mB = mAB , and m = mA. Here, the Schmidt coefficients λm are given by

λm =

(
NAB

mAB

)− 1
2
(
NA

mA

) 1
2
(
NB

mB

) 1
2

. (D21)

The states |NA,mA⟩ and |NB ,mB⟩ are permutationally symmetric states, for details, see [56, 119].
Let us consider the case where NA = NB = NAB/2, and mAB = NAB/2. Then we have

⟨Jp,A⟩ = ⟨Jp,B⟩ = 0, for p = x, y, z, (D22a)

⟨J2
z ⟩ = (∆J+

z )2 = 0, (D22b)

(∆J−
z )2 = −4⟨Jz,A ⊗ Jz,B⟩ =

N2
AB

4(NAB − 1)
, (D22c)

(∆J+
x )2 = (∆J+

y )2 =
NAB

4

(
NAB

2
+ 1

)
, (D22d)

(∆J−
x )2 = (∆J−

y )2 =
NAB

8

NAB − 2

NAB − 1
, (D22e)

where we used the results in Ref. [99]. Then we have the values of (∆J±
p )2. In this paper, we set NAB = 2N . This

results in

G(2)AB + J (1)
A + J (1)

B − J (1)
A J

(1)
B =

1

N4

∑
p,q=x,y,z

[
(∆J+

p )2 − (∆J−
q )2

]2
=

6N4 − 2N3 + 1

(1− 2N)2N2
. (D23)

The right-hand side monotonically decreases as N increases, and it becomes 3/2 when N → ∞. Therefore the pure
2N -qubit Dicke states can be detected in any N .

Finally, let us consider the case where the global depolarizing channel with noise p influences the state as follows:
ϱD → ϱ′D = pϱD + (1 − p)ϱmm for ϱD = |NAB ,mAB⟩⟨NAB ,mAB | and the maximally mixed state ϱmm. This noise
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Figure 5. Linear-Log plot of the critical point p∗(N) discussed in Remark D4.

effects can change (∆J±
l )2 as follows:

(∆J+
x/y)

2
ϱD
→ (∆J+

x/y)
2
ϱ′
D
=
NAB

4
+ p

[
(∆J+

x/y)
2
ϱD
− NAB

4

]
=
N(1 +Np)

2
, (D24a)

(∆J−
x/y)

2
ϱD
→ (∆J−

x/y)
2
ϱ′
D
=
NAB

4
+ p

[
(∆J−

x/y)
2
ϱD
− NAB

4

]
=
N [N(2− p)− 1]

2(2N − 1)
, (D24b)

(∆J+
z )2ϱD

→ (∆J+
z )2ϱ′

D
=
NAB(1− p)

4
=
N(1− p)

2
, (D24c)

(∆J−
z )2ϱD

→ (∆J−
z )2ϱ′

D
=
NAB

4
+ p

[
(∆J−

z )2ϱD
− NAB

4

]
=
N(2N + p− 1)

2(2N − 1)
. (D24d)

This leads to

G(2)AB + J (1)
A + J (1)

B − J (1)
A J

(1)
B =

(
6N4 − 2N3 + 1

)
p2

(1− 2N)2N2
. (D25)

Then we can find that the separability bound in Observation 4 is violated when p > p∗(N) for the critical point

p∗(N) =
N(2N − 1)√

6N4 − 2N3 + 1
. (D26)

In Fig. 5, we illustrate the behavior of the critical point depending on N . In the limit N → ∞, this point becomes
p∗ →

√
2/3.

Appendix E: Entanglement detection with finite statistics

In Appendix E, we will discuss the estimation of the statistical error of the moments from collective randomized
measurements. We will determine the number of measurements required for reliable entanglement detection, following
similar discussions given in the previous works [2, 8–10, 15].

In randomized measurement schemes, the total number of measurements is denoted as Mtot = M × K. Here
M is the number of random unitaries, and K is the number of measurements for a fixed unitary. For the moment
J (r) =

∫
dU [fU ]

r defined in Eq. (4) in the main text, the unbiased estimator can be given by J̃ (r) = (1/M)
∑M

i=1[f̃r]i,
that is, EUE[J̃ (r)] = J (r). Here, the subscript i in [f̃r]i refers to the measurement setting, EU represents the average
over collective local random unitaries, and f̃r is the unbiased estimator of [fU ]r, that is, E[f̃r] = [fU ]

r.
To quantify how much the estimator J̃ (r) deviates from the J (r), let us consider the inequality

Prob(J̃ (r) − J (r) ≥ δerror) ≤ αssl, (E1)
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where δerror is called the error or accuracy, αssl the statistical significance level, and γcl = 1 − αssl the confidence
level. In the case where [f̃r]i cannot be assumed to be i.i.d. random variables, we can employ the so-called (one-sided)
Chebyshev-Cantelli inequality

Prob
(
J̃ (r) − J (r) ≥ δerror

)
≤ Var(J̃ (r))

Var(J̃ (r)) + δ2error
, (E2)

where Var(J̃ (r)) denotes the variance of the estimator J̃ (r). Based on this inequality, one can determine the total
number of measurements Mtot = M ×K required for entanglement detection, for a fixed error and confidence level.
Since it holds that Var(J̃ (r)) = (1/M2)

∑M
i=1 Var([f̃r]i), the main task is to evaluate the variance Var([f̃r]i).

In the following, as a simple example, we will particularly focus on Observation 2 in the main text: the moment
J (1) =

∫
dU [3(∆Jz)

2
U ] is equal to

∑
l=x,y,z(∆Jl)

2, and any N -qubit fully separable state obeys J (1)(ϱ) ≥ N/2. Now
the variance is written as Var(f̃1) = EUE[(f̃1)2]− [J (1)]2, and the explicit form of E[(f̃1)2] can be given by

E[(f̃1)2] = 9
{
c1(K)⟨J4

z ⟩U + c2(K)⟨J3
z ⟩U ⟨Jz⟩U + c3(K)⟨J2

z ⟩2U + c4(K)⟨J2
z ⟩U ⟨Jz⟩2U + c5(K)⟨Jz⟩4U

}
, (E3)

where c1(K) = 1/K, c2(K) = −4/K, c3(K) = [(K − 1)2 + 2]/[K(K − 1)], c4(K) = −2(K − 2)(K − 3)/[K(K − 1)],
and c5(K) = (K − 2)(K − 3)/[K(K − 1)]. This expression can be derived using the result in Ref. [120] that coincides
with [121].

Let us consider the statistically significant test with the family of the states

ϱp = (1− p)ϱsinglet + p
1

2N
, (E4)

where ϱsinglet denotes the N -qubit many-body spin singlet state, discussed in the main text. Since this state obeys
⟨Jk

l ⟩ϱsinglet = 0 for any k, we have that ⟨Jl⟩ϱp
= 0, ⟨J2

l ⟩ϱp
= Np/4, and therefore, J (1)(ϱp) = 3Np/4. Thus, the state

ϱp violates the separability bound in Observation 2 when p becomes smaller than the critical point psep = 2/3, which
is independent of N . From a straightforward calculation, we can obtain

Var(J̃ (1)) =
9Np{3N(p− 1) + 2−K[N(p− 3) + 2]}

[16(K − 1)K]M
, (E5)

where we used ⟨J4
l ⟩ϱp

= N(3N − 2)p/16. Rearranging the Chebyshev-Cantelli inequality in Eq. (E2) and requiring
that the confidence 1− Prob(J̃ (1) − J (1) ≥ δerror) is at least γcl, we have

δerror =

√
γcl

1− γcl
Var(J̃ (1)). (E6)

Since the variance Var(J̃ (1)) can monotonically increase for large p, the worst-case error in the estimation is given by
p = 1. In this case, we have

M =
9γclN [K(N − 1) + 1]

8(1− γcl)(K − 1)Kδ2error
. (E7)

To proceed, let us set the error as δerror = minϱsep∈SEP J (1)(ϱsep) − J (1)(ϱp) = N/2 − 3Np/4. By minimizing the
value of Mtot =M(K)×K with respect to K for a fixed N , we can thus find the optimal number of measurements.
In Fig. 6, we illustrate the necessary number of measurements for N = 100 and the confidence level γcl = 0.95.
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Figure 6. Log plot of the total number of measurements Mtot obtained from the Chebyshev-Cantelli inequality required to
certify the violation of the separability bound in Observation 2 in the main text of ϱp, for N = 102 and confidence level
γcl = 0.95.
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