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Abstract
We discuss efficient methods to optimize the metrological performance over local Hamiltonians
in a bipartite quantum system. For a given quantum state, our methods find the best local
Hamiltonian for which the state outperforms separable states the most from the point of view
of quantum metrology. We show that this problem can be reduced to maximizing the quantum
Fisher information over a certain set of Hamiltonians. We present the quantum Fisher informa-
tion in a bilinear form and maximize it by an iterative see-saw method, in which each step is based
on semidefinite programming. We also solve the problem with the method of moments that works
very well for smaller systems. Our approach is one of the efficient methods that can be applied
for an optimization of the unitary dynamics in quantum metrology, the other methods being, for
example, machine learning, variational quantum circuits, or neural networks. The advantage of
our method is the fast and robust convergence due to the simple mathematical structure of the
approach. We also consider a number of other problems in quantum information theory that can
be solved in a similar manner. For instance, we determine the bound entangled quantum states
that maximally violate the computable cross norm-realignment criterion.

1. Introduction

Quantum entanglement is at the heart of quantum physics and several quantum information processing
applications [1–4]. It also plays a central role in quantum metrology. It is known that interparticle
entanglement is needed to overcome the shot-noise limit of the precision in parameter estimation in
a linear interferometer [5]. It has also been shown that the larger the achieved precision in parameter
estimation with a multiparticle system, the larger the depth of entanglement the state must possess [6,
7]. However, not all entangled states are useful for metrology [8]. Even bound entangled states, which
are considered very weakly entangled, can be more useful for metrology than some distillable entangled
states [9–11].

At this point, several important questions arise. How can we find the best quantum state for met-
rology for a given setup? Perhaps, historically one of the first methods was the iterative see-saw (ISS)
method applied in the quantum Fisher information picture [10–13], as well as in the Bayesian one [14–
16]. There are also methods based on an optimization over the purifications [17–19]. It is also possible
to use variational techniques for efficiently searching in the high-dimensional space of quantum states,
which was also applied for a similar task [20, 21]. The variational search methods can even be tailored
for particular physical systems, such as tweezer arrays as programmable quantum sensors [22].
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Another relevant question is how we could find the optimal Hamiltonian for a given quantum
state. In the qubit case, it has been studied how to optimize the metrological performance for local
Hamiltonians that are all Pauli spin matrices rotated by some unitary [8]. In this case, the best metro-
logical performance achievable by separable states is a constant independent of the Hamiltonian. Any
state that has a better metrological performance than that must be entangled.

The problem of the metrological performance of a bipartite state of qudits with a dimension lar-
ger than two is more complicated. In this case, the local Hamiltonians cannot be transformed into each
other by local unitaries, and the best metrological performance achievable by separable states depends
on the Hamiltonian. Thus, we introduce the metrological gain as a general way to characterize the
quantum advantage of a system with arbitrary dimensions. It is defined as the ratio of the quantum
Fisher information and the maximum of the quantum Fisher information over separable states max-
imized over local Hamiltonians [23]. The metrological gain is convex in the state, and it cannot decrease
if additional copies or ancilla systems are added [23]. In the multiparticle case, the metrological gain is
related to multiparticle entanglement, as it lower bounds the entanglement depth [24]. The optimization
over the local Hamiltonians can also be carried out via an ISS method [11, 23, 24]. Thus, our method
uses an ISS algorithm for optimizing the unitary dynamics rather than for optimizing the state. Note
that instead of using the metrological gain, one can also consider the difference of the quantum Fisher
information and its maximum for separable states [25], or even consider the difference with respect to a
bound that depends on the state [26–29].

In this paper, we examine the optimization problem above in a great depth. We elaborate the point
that local Hamiltonians with meaningful constraints form a convex set. Thus, we have to maximize the
metrological gain over a convex set of local Hamiltonians. We find several algorithms to maximize the
metrological gain. The first method is based on maximizing a quadratic expression using a see-saw over
a bilinear expression, and its computational costs are minimal. We present other algorithms that need
quadratic programming with quadratic constraints and relaxations. Such methods work for small sys-
tems. We test the methods and compare them to each other. In the second half of the paper, we explore
other important applications, where ISS methods can help with optimization. Namely, we list a num-
ber of similar problems that can be solved in an analogous way, such as maximization of norms over
a convex set, maximizing the Wigner–Yanase skew information, looking for the extremal eigenvalue of
Hermitian matrices, and also for looking for states that violate maximally the computable cross norm-
realignment (CCNR) criterion [30, 31].

Our work is also related to recent efforts to solve various problems of numerical optimization in
quantum metrology, including the combination of the tasks mentioned above, such as using an ISS for
optimizing the quantum state and the unitary dynamics [23]. An ISS-based method has been used for
an optimization over a general dynamics using its Choi-Jamiołkowski representation [32]. An ISS-based
method has also been used for optimizing over adaptive strategies, when coherently probing several
independent quantum channels [33]. An optimization over the probe state and the dynamics has been
realized experimentally in a programmable quantum sensor realized in trapped cold ions [34]. For the
identification of the optimal quantum metrological protocol in large systems, matrix product operators
have been used [13]. Optimization methods, including ISS, has been considered in estimating the spec-
tral density of a stochastic signal field [35]. Finally, numerical optimization in quantum metrology in
various complex scenarios has been considered including multiparameter estimation [36–41], and there
are even methods that are based on semidefinite programming [42].

Variational methods used for the optimization of the probe state have already been mentioned.
General optimization methods have also been applied for the optimization of the dynamics and other
complex tasks. Optimization of the controls has been carried out using neural networks and reinforce-
ment learning [43]. Machine learning approaches have been used in Bayesian parameter estimation
[44]. The advantageous aspects of ISS methods to general optimization methods are discussed in ref-
erence [45].

Our work has a relation to resource theories, in which the quantum Fisher information can be used
to identify quantum resources [25, 46]. Indeed, quantum Fisher information can be ideal to characterize
quantum systems realized in noisy intermediate-scale quantum applications [47]. For a resource theory,
we need to identify a convex set of free quantum states and a set of free operations. In our case, the free
states are the separable states and the free operations include the local unitary operations. We can use
the robustness of metrological usefulness defined in reference [10] to quantify our resource. It asks the
question, how much noise can be added to the state such that it is not useful anymore metrologically. In
this paper, we will examine another measure, the metrological gain mentioned above.
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Finally, our work is relevant for the field that attempts to find a quantum advantage in experiments
[48–51]. The bound for quantum Fisher information for separable states has already been used to detect
metrologically useful multipartite entanglement in several experiments [52–54].

Our paper is organized as follows. In section 2, we review the basic notions of entanglement the-
ory and quantum metrology. In section 3, we discuss, how our optimization problem can be viewed
as a maximization over a convex set of Hamiltonians. We review the notion of metrological gain.
In section 4, we present various methods to optimize the quantum Fisher information over a local
Hamiltonian. In section 5, we consider optimization problems in quantum information that can be
solved in a similar way. For instance, we determine the bound entangled quantum states that maximally
violate the CCNR criterion for entanglement detection [30, 31].

2. Background

In this section, we review entanglement theory and quantum metrology.

2.1. Entanglement theory
In this section, we summarize basic notions of entanglement theory [1, 2]. A bipartite quantum state is
called separable if it can be written as a mixture of product states as [55]

ϱsep =
∑
k

pkϱ
(k)
1 ⊗ ϱ

(k)
2 , (1)

where pk are probabilities. If a quantum state cannot be decomposed as in equation (1), then the state is
entangled.

Deciding whether a quantum state is entangled is a hard task in general. However, there are some
necessary conditions for separability, that are easy to test. If these conditions are violated then the state is
entangled.

One of the most important conditions of this type is the condition based on the positivity of the
partial transpose (PPT). For a bipartite density matrix given as

ϱ=
∑
kl,mn

ϱkl,mn|k⟩⟨l| ⊗ |m⟩⟨n| (2)

the partial transpose according to first subsystem is defined by exchanging subscripts k and l as

ϱT1 =
∑
kl,mn

ϱlk,mn|k⟩⟨l| ⊗ |m⟩⟨n|. (3)

It has been shown that for separable quantum states [56, 57]

ϱT1 ⩾ 0 (4)

holds. Thus, if ϱT1 has a negative eigenvalue then the quantum state is entangled. For 2× 2 and 2× 3
systems, the PPT condition detects all entangled states [57]. For systems of size 3× 3 and larger, there
are PPT entangled states [58, 59]. They are also quantum states that are called bound entangled since
their entanglement cannot be distilled to singlet states with local operations and classical communica-
tion. Some of the bound entangled states are detected as entangled by the CCNR criterion [30, 31].

2.2. Quantummetrology
In this section, we summarize basic notions of quantum metrology such as the quantum Fisher informa-
tion and the Cramér-Rao bound. We will also discuss the multi-parameter case.

The fundamental task of quantum metrology is the following. We have a probe state or an initial
state ϱ, that evolves according to the dynamics

ϱθ = UθϱU
†
θ, (5)

where the unitary is given as

Uθ = exp(−iHθ) . (6)

3
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Here H is the Hamiltonian of the evolution, and θ is a parameter. Then, the metrological precision in
estimating θ is bounded by the Cramér-Rao bound [60–70]

(∆θ)
2 ⩾ 1

νFQ [ϱ,H]
, (7)

where ν is the number of independent repetitions, and FQ[ϱ,H] is the quantum Fisher information,
defined as [60–64]

FQ [ϱ,H] =
∑
k,l

Q2
kl|Hkl|2. (8)

Here, we consider a density matrix with the following eigendecomposition

ϱ=
∑
k

λk|k⟩⟨k|, (9)

the constant coefficients Qkl depend only on the eigenvalues of the probe state, and are given as

Qkl :=

√
2
(λk −λl)

2

λk +λl
, (10)

whenever the denominator is not zero. The matrix elements of the Hamiltonian in the basis of the
eigenvectors of the density matrix are given as

Hkl = ⟨k|H|l⟩. (11)

The quantum Fisher information in equation (8) can be written in a different form that will be useful in
our calculations as

FQ [ϱ,H] =
∑
kl

Q2
kl

[
(Hr

kl)
2
+
(
Hi

kl

)2]
, (12)

where the superscripts r and i denote the real and imaginary parts, respectively.
After defining the quantum Fisher information, it is important to stress its basic properties, namely,

that it is convex in the state, and it is bounded from above by the variance as

FQ [ϱ,H]⩽ 4(∆H)2, (13)

where for pure states there is an equality in equation (13).
Moreover, there is an important inequality for the quantum Fisher information with the error

propagation formula [71–73]

(∆θ)
2
M =

(∆M)
2

⟨i [M,H]⟩2
⩾ 1

FQ [ϱ,H]
, (14)

which gives us, essentially, the precision of the θ parameter estimation, provided that we measure in
the eigenbasis of the observable M. It can be shown that the uncertainty (∆θ)2M is the smallest, and
thus the bound in equation (14) is the best if we choose M to be the so-called symmetric logarithmic
derivative

Mopt = 2i
∑
k,l

λk −λl

λk +λl
|k⟩⟨l|⟨k|H|l⟩, (15)

which fulfills

i [ϱ,H] =
1

2

{
ϱ,Mopt

}
, (16)

where {X,Y}= XY+YX is the anticommutator. In this case, the inequality in equation (14) is saturated.
For pure states |Ψ⟩, the symmetric logarithmic derivative is given as [68]

Mopt,Ψ = 2i [|Ψ⟩⟨Ψ|,H] . (17)
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So far we discussed the case of estimating a single parameter. Let us consider now the estimation of
several parameters when the unitary dynamics is given by

exp

(
−i
∑
n

H(n)θ(n)

)
, (18)

where H(n) is the Hamiltonian corresponding to the parameter θ(n). The Cramér-Rao bound can be gen-
eralized to this case as

C− ν−1F−1 ⩾ 0, (19)

where the inequality in equation (19) means that the left-hand side is a positive semidefinite matrix, C is
now the covariance matrix with elements

Cmn = ⟨θ(m)θ(n)⟩− ⟨θ(m)⟩⟨θ(n)⟩, (20)

and F is the Fisher matrix, and its elements are given as

Fmn ≡ FQ

[
ϱ,H(m),H(n)

]
. (21)

Here, the quantum Fisher information with two operators is given as

FQ [ϱ,A,B] =
∑
k,l

Q2
klAklB

∗
kl ≡ Tr [(Q ◦Q ◦A)B] , (22)

where ◦ denotes elementwise or Hadamard product. After straightforward algebra, the following equival-
ent formulation can be obtained

FQ [ϱ,A,B] =
∑
kl

Q2
kl

[
Ar
klB

r
kl +Ai

klB
i
kl

]
. (23)

If ϱ has low rank, then, based on equation (10), the Q matrix is sparse, which can greatly simplify the
calculation of equation (23). In contrast to the single parameter case, the generalized Cramér-Rao bound
in equation (19) cannot be always saturated even in the limit of many repetitions.

3. Basic notions for optimizing the metrological performance

When maximizing the quantum metrological performance over a Hamiltonian, we have to consider two
important issues.

First, not all Hamiltonians are easy to realize. In particular, local Hamiltonians are much easier to
realize with a high precision than Hamiltonians with an interaction term. Local Hamiltonians appear
most typically in quantum metrology forming the basis of linear interferometers. Thus, we will restrict
the optimization for such Hamiltonians given as

H=H1 ⊗12 +11 ⊗H2, (24)

where Hn are single-subsystem operators. In the rest of the paper, H will denote such local
Hamiltonians. Moreover, we will use L to denote the set of local Hamiltonians. With this, the considered
metrological process is shown schematically in figure 1.

Second, we have to note that for the quantum Fisher information

FQ [ϱ, cH] = |c|2FQ [ϱ,H] (25)

holds, where c is a constant. Thus, it is easy to improve the metrological performance of any
Hamiltonian by multiplying it by a constant factor. In order to obtain a meaningful optimization
problem, we have to consider a formulation of such a problem where such a ‘trick’ cannot be used to
increase the quantum Fisher information to infinity. One option could be to divide the quantum Fisher
information with the square of some norm or seminorm of the Hamiltonian, for which

||cH||= |c| · ||H||. (26)

5
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Figure 1. Scheme of the metrological process considered here. We start by preparing a given bipartite probe state ϱ that under-

goes the unitary dynamics Uθ = e−iHθ . The output state is ϱθ = UθϱU
†
θ , where θ is the parameter that we try to estimate. It

is assumed that the HamiltonianH that generates the unitary dynamics is local (i. e.,H∈ L). A HamiltonianH on a bipartite
system is said to be local if it can be written asH= H1 ⊗12 +11 ⊗H2, where H1 (H2) is a Hamiltonian on the first (second)
subsystem. Such Hamiltonians do not contain interaction terms between the two parties. In this setting, for a given probe state ϱ,
we look for the optimal local Hamiltonian such that the output state provides the best possible metrological precision in estim-
ating the parameter θ.We will discuss in the text, how to quantify the metrological performance of a quantum state with a given
local Hamiltonian.

In principle, several norms for the normalization, for instance, the Hilbert–Schmidt norm

||X||HS =
√

Tr(XX†) (27)

can be considered. In this paper, we argue that it is advantageous to compare the metrological perform-
ance of a state to the best performance of separable states. Therefore, we will divide the quantum Fisher
information of the state by the maximum quantum Fisher information achievable by separable states
given as for some H ∈ L as [10, 74]

F (sep)
Q (H) =

∑
n=1,2

[σmax (Hn)−σmin (Hn)]
2
, (28)

where σmax(X) and σmin(X) denote the maximal and minimal eigenvalues, respectively.

3.1. Seminorm for local Hamiltonians
Let us now present the details of our arguments. We will examine some properties of the maximum
of the quantum Fisher information for separable states given in equation (28). Let us consider first the
quantity

δ (X) = σmax (X)−σmin (X) , (29)

where σmin(X) and σmax(X) denote the smallest and largest eigenvalues of X, respectively. Simple algebra
shows that [75, 76]

FQ [ϱ,X]⩽ δ2 (X) . (30)

With equation (29), the maximum of the quantum Fisher information for separable states, F (sep)
Q , can

be expressed as

F (sep)
Q (H)≡ δ2 (H1)+ δ2 (H2) . (31)

Next, let us prove some important properties of δ(X).

Observation 1. We know that δ(X) is a seminorm. While this is shown in reference [75], for completeness
and since the steps of the proof will be needed later, we present a brief argument to prove it.

Proof. We need the well-known fact that for Hermitian matrices A and B

σmax (A+B) ⩽ σmax (A)+σmax (B) ,

σmin (A+B) ⩾ σmin (A)+σmin (B) , (32)

hold, following fromWeyl’s inequality [77]. Based on these, we will now prove that δ(X) has all the proper-
ties of a seminorm [78, 79], examining the three properties one by one.

(i) Subadditivity or the triangle inequality holds since

δ (A+B)⩽ δ (A)+ δ (B) (33)

6
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for all A,B based on equation (32).
(ii) Absolute homogeneity holds since

δ (cX) = |c|δ (X) (34)

for all c and X.
(iii) Non-negativity holds since δ(X)⩾ 0 holds for all X. If X is a zero matrix then δ(X) = 0.However,

δ(X) = 0 does not imply that X is a zero matrix, thus δ(X) is not a norm, only a seminorm [78, 79].

Next, let us prove some important properties of the maximal quantum Fisher information for separ-
able states.

Observation 2. The expression with the square root of the maximum for separable states√
F (sep)

Q (H) (35)

is a seminorm forH ∈ L.

Proof. We will now follow steps similar to those in the proof of observation 1, showing that the three prop-
erties of seminorms are satisfied.

(i) Let us consider a local Hamiltonian that is the sum of two local Hamiltonians

H=H ′ +H ′ ′, (36)

where the two local Hamiltonians are given as

H ′ = H ′
1 ⊗12 +11 ⊗H ′

2,

H ′ ′ = H ′ ′
1 ⊗12 +11 ⊗H ′ ′

2 . (37)

Then, the following series of inequalities prove the subadditivity property√
δ2 (H ′

1 +H ′ ′
1 )+ δ2 (H ′

2 +H ′ ′
2 )

⩽
√
[δ (H ′

1)+ δ (H ′ ′
1 )]

2
+ [δ (H ′

2)+ δ (H ′ ′
2 )]

2

⩽
√

δ2 (H ′
1)+ δ2 (H ′

2)+
√
δ2 (H ′ ′

1 )+ δ2 (H ′ ′
2 ). (38)

The first inequality in equation (38) is due to the subadditivity of δ(X) and the monotonicity of
√
x2 + y2 in

x and y. The second inequality is based on the relation√
(x1 + x2)

2
+(y1 + y2)

2 ⩽
√
x21 + y21 +

√
x22 + y22, (39)

which can be proved by straightforward algebra.
(ii) Absolute homogeneity, √

F (sep)
Q (cH) = |c|

√
F (sep)

Q (H) (40)

for any real c follows directly from the expression for F (sep)
Q (H) with δ(Hn) in equation (31), using the abso-

lute homogeneity property of δ given in equation (34)

(iii) Non-negativity can be proven using the expression for F (sep)
Q (H) with δ(Hn) in equation (31) and

the non-negativity of δ.

Note that F (sep)
Q (H) = 0 holds if and only if H= c1, where c is a real constant. Thus, in a certain

sense, F (sep)
Q (H ′ −H ′ ′) plays a role of distance between local Hamiltonians H ′ and H ′ ′ such that the

distance is zero if H ′ −H ′ ′ is the identity times some constant. In this case, the two matrices are not
identical, but from the point of view of quantum metrology they act the same way.

Let us see some consequences of the observation. As any seminorm,
√

F (sep)
Q (H) is convex in the

local Hamiltonian. Due to that, F (sep)
Q (H) is also convex.

7
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3.2. Metrological gain
Based on these ideas, we define the metrological gain for a given local Hamiltonian H ∈ L and for a
given quantum state ϱ as [23]

gH (ϱ) =
FQ [ϱ,H]

F (sep)
Q (H)

. (41)

In equation (41), we normalize the quantum Fisher information with a square of a seminorm of
local Hamiltonians. Then, we would like to obtain the gain based on an optimization over all local
Hamiltonians as

g(ϱ) =max
H∈L

gH (ϱ) . (42)

Note that g(ϱ) is invariant under local unitaries Un, thus

g(ϱ ′) = g(ϱ) , (43)

where the transformed state is defined as

ϱ ′ = (U1 ⊗U2)ϱ
(
U†

1 ⊗U†
2

)
. (44)

Many entanglement measures, for instance, the Entanglement of Formation has the above property [1].
We consider local Hamiltonians, as we have discussed at the beginning of section 3. While we do

not study it in this work, it would also be interesting to consider non-local Hamiltonians for a similar
definition. However, computing the analogous quantity for that case is difficult, since calculating the
maximum of an operator expectation value for separable states is a hard task [1]. Possibly, one can try
to calculate the maximum for quantum states with a positive partial transpose (PPT) instead, which is
an upper bound on the maximum for separable states, and it can be obtained via semidefinite program-
ming (e. g., references [10, 80]).

Maximizing gH over H is difficult since both the numerator and denominator depend on H. Let us
consider a subset of Hamiltonians of the type equation (24) such that

σmin (Hn) =−cn, σmax (Hn) = +cn (45)

for n= 1,2. Then, the maximum of the quantum Fisher information for separable states is

F (sep)
Q (H) = 4

(
c21 + c22

)
. (46)

We can define the metrological gain for Hamiltonians that fulfill equation (45) as

gc1,c2 (ϱ) = max
H∈Lc1,c2

FQ [ϱ,H]

4(c21 + c22)
, (47)

where we call Lc1,c2 the set of local Hamiltonians satisfying equation (45). Finally, the maximal gain over
all possible local Hamiltonians is given as

g(ϱ) =max
c1,c2

gc1,c2 . (48)

Note that g(ϱ) is convex in ϱ [23].
Based on equation (47), we can see that computing gc1,c2(ϱ) is the same as maximizing the quantum

Fisher information for the given set of Hamiltonians. We can do that by requiring that

cn1±Hn ⩾ 0, (49)

where n= 1,2 and cn > 0 is some constant. This way we make sure that

σmin (Hn)⩾−cn, σmax (Hn)⩽+cn, (50)

for n= 1,2. Since we maximize a convex function over a convex set, the optimum is taken on the
boundary of the set where the eigenvalues of Hn are ±cn. In this case, H2

n = c2n1.

8
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Figure 2. The convex set of local Hamiltonians fulfilling equation (49).Hp is a ‘mixture’ ofH ′ andH ′ ′ as given by
equation (51).

Note that the constraints in equation (49) determine a convex set of Hamiltonians. That is, if two
Hamiltonians, H ′ and H ′ ′, are of the form equation (24) with the constraints given in equation (49),
then their convex combination, i.e.

Hp = pH ′ +(1− p)H ′ ′ (51)

with 0⩽ p⩽ 1 is also of that form, as shown in figure 2. This can be seen from equation (32).
Thus, we need to deal with convex sets, similarly, as convex sets appear in the separability problem

of quantum states [1, 55]. In appendix A, in order to understand better the role of convexity in this
case, we define a subset of separable quantum states similar to the local Hamiltonians we consider in
this Paper, and examine its properties.

In summary, we argue that the metrological gain, defined by equation (41), is a natural way to char-
acterize the metrological performance of quantum states as it identifies states that perform better metro-
logically than all the separable states. Moreover, it considers local Hamiltonians, which are probably the
least demanding to realize experimentally. Finally, we also showed that the maximum of the quantum
Fisher information for separable states is an important quantity. Its square root is a seminorm over
local Hamiltonians. The maximum of the quantum Fisher information for separable states is used in
the definition of the metrological gain to normalize the quantum Fisher information.

The metrological gain is also defined in the multiparticle case. It has been shown that, for the metro-
logical gain the inequality [24]

g(ϱ)⩽ k (52)

holds, where k is the entanglement depth. It is assumed that the local Hamiltonians have identical max-
imal and minimal eigenvalues, which is fulfilled in typical many-particle systems [24]. Thus, the advant-
age of using the metrological gain to characterize the performance of the setup is that it is directly
related to multipartite entanglement. Moreover, maximal metrological gain is possible only with a max-
imal entanglement depth.

We remark that there are other quantities to characterize the metrological performance. One can
consider the difference of the quantum Fisher information and its maximum for separable states, and
include the possibility of non-unitary dynamics from the point of view of resource theories. Considering
the difference rather than the fraction makes the mathematical treatment easier. This way, all entangled
states turn out to be a useful resource [25]. One can also consider the difference of the quantum Fisher
information and a bound that depends on the state, where the difference is positive only for entangled
states [26–29]. The advantage of this approach is that the quantity can be computed analytically.

4. Method for maximizing the quantum Fisher information over local Hamiltonians

In the previous section, we have shown that maximizing the metrological gain is essentially reduced to
maximizing the quantum Fisher information with some constraints on the local Hamiltonian given in
equation (49), that is, computing

max
H∈Lc1,c2

FQ [ϱ,H] , (53)

where we remember that Lc1,c2 is the set of local Hamiltonians fulfilling equation (45). Thus, in
this section we will present methods that can maximize the quantum Fisher information with such
constraints.

9
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4.1. See-saw optimization based on a bilinear form
In reference [23], a method was presented to maximize the quantum Fisher information over local
Hamiltonians for a given quantum state. It is an iterative method, that needs to compute the symmet-
ric logarithmic derivative equation (15) at each step and is based on quantum metrological considera-
tions. In this section, we will present a simpler formulation based on general ideas in optimization the-
ory. Later, this will also make it possible to find provably the global maximum of the quantum Fisher
information.

The quantum Fisher information given in equation (12) is a weighted sum of squares of the real and
imaginary parts of the elements of the Hamiltonian. It can further be written as

v⃗TR⃗v, (54)

where R contains the Qkl’s and v⃗ contains the Hr
kl’s and the Hi

kl’s. The matrix R is a positive semidefinite
symmetric matrix with real values. For the case of the quantum Fisher information, it is even a diagonal
matrix. We will also consider other problems where it is a general positive semidefinite symmetric mat-
rix. Minimizing such an expression over v⃗ is a problem that can efficiently be solved. In general, minim-
izing a convex function under constraints is a task appearing often in quantum metrology. For instance,
there are efficient ways to obtain the minimum of the quantum Fisher information over a given set of
states [81–83]. On the other hand, maximizing the expression given in equation (54) over v⃗ is difficult.
A usual way of maximizing such an expression is as follows [84–86]. We replace the optimization over v⃗
by a simultaneous optimization of the vectors v⃗ and w⃗ of a bilinear form as

max
v⃗

v⃗TR⃗v=max
v⃗,w⃗

v⃗TRw⃗. (55)

This can be a basis for a see-saw-type optimization.
For completeness, let us prove equation (55) for the case of R being a general positive semidefinite

symmetric matrix. It is easy to see that the right-hand side is never smaller than the left-hand side. Now
let us prove that the right-hand side is never larger than the left-hand side. Let us start from

(⃗v− w⃗)TR (⃗v− w⃗)⩾ 0. (56)

Hence, follows that

v⃗TR⃗v+ w⃗TRw⃗⩾ v⃗TRw⃗+ w⃗TR⃗v= 2⃗vTRw⃗, (57)

where the equality is due to the fact that R is symmetric. Then, at least one of the following two
inequalities hold

v⃗TR⃗v ⩾ v⃗TRw⃗,

w⃗TRw⃗ ⩾ v⃗TRw⃗. (58)

After including an optimization over v⃗ and w⃗, the equality given in equation (55) follows.
Based on the relation in equation (55), we can write the following.

Observation 3. The quantum Fisher information can be maximized with an ISS method. We need to use
the formula maximizing over local Hamiltonians

max
H∈Lc1,c2

FQ [ϱ,H] = max
H,K∈Lc1,c2

∑
kl

Q2
kl

[
Hr

klKr
kl +Hi

klKi
kl

]
≡ max

H,K∈Lc1,c2

Tr [(Q ◦Q ◦H)K] . (59)

Based on equation (59), we can carry out the following algorithm. Initially, we chooseH randomly. Then,
we maximize over the matrix K while keepingH fixed. Such an optimization can be carried out, for
instance, by semidefinite programming [87] or by simple matrix algebraic calculations, see appendix B.
Then, we maximize overH while keeping K fixed. Then, we optimize again over K, etc. This process is
illustrated in figure 3. Note that we do not have to verify that the random initial Hamiltonian fulfills the
constraints given in equation (49), since a random initial HamiltonianH and cH for any c> 0 as initial
Hamiltonian will lead to the same optimal K. (An alternative formulation of the optimization problem is
in appendix C. With similar methods, we also analyze the optimization over a quantum state rather than
over the Hamiltonian appendix D.)

10
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Figure 3. Based on the formula given in equation (59), we can optimize the quantum Fisher information over local
Hamiltonians for a fixed probe state with an iterative see-saw (ISS) method.

Based on equation (23), we can see that equation (59) can be expressed as

max
H∈Lc1,c2

FQ [ϱ,H] = max
H,K∈Lc1,c2

FQ [ϱ,H,K] . (60)

This gives a meaningful physical interpretation of the see-saw method.
Since FQ[ϱ,H] is convex in Hr

kl and Hi
kl, if we maximize it over a convex set of Hamiltonians, then

it will take the maximum at the boundary of the set. This optimization is a hard task, as we have dis-
cussed. We have to start from several random initial conditions, and only in some of the cases we will
find a solution.

We tested our method, together with the method of reference [23]. We used MATLAB [91] and
semidefinite programming using MOSEK [92] and the YALMIP package [93]. We also used the
QUBIT4MATLAB package [94, 95].

We tested the method for a number of quantum states. We considered the isotropic state of two d-
dimensional qudits defined as

ϱ
(p,d)
AB = (1− p) |Ψme⟩⟨Ψme|+ p

1

d2
, (61)

where |Ψme⟩ is the maximally entangled state and p is the fraction of the white noise. In particular,
we considered p= 0.1 and d= 2. For such states, the optimal Hamiltonian is known analytically [23].

We also considered two copies of the state with p= 0.1 and d= 3 given as ϱ(0.1,3)AB ⊗ ϱ
(0.1,3)
A′B ′ , where the

bipartite system consists of the parties AA′ and BB ′. We also considered some bound entangled states
that have been examined in the literature, and are often used to test various algorithms. Such states have
a nontrivial structure, are highly mixed, but can be metrologically useful. We looked at the 3× 3 state
based on an unextendible product basis (UPB) [88, 89], the 3× 3 Horodecki state for a= 0.3 [59], the
4× 4 metrologically useful bound entangled state in reference [10], and the 6× 6 private state given
in reference [11, 90]. The results are shown in table 1. The success probability of the method of refer-
ence [23] is similar, however, the formulation used in this paper makes it possible to design methods
that provably find the optimum [96].

4.2. Quadratic programming with quadratic constraints
In the previous section, we considered methods that aim to maximize the quantum Fisher information
over the Hamiltonian numerically. In practice, they are very efficient. Still, it is not certain that they find
the global optimum and they might find a smaller value. In this section, we present methods that always
find the global optimum. However, they work only for small systems. We also present simple approxim-
ations of such methods called relaxation. They find either the maximum or a value larger than that. The

11
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Table 1.Maximum of the quantum Fisher information and the Wigner–Yanase skew information with the see-saw method for
c1 = c2 = 1 for various quantum states described in the text. The results for quadratic programming for various levels of approximation
are also shown. ‘UPB’ refers to an unextendible product basis state discussed in the main text [88, 89]. ‘Met. useful PPT’ denotes the
metrologically useful PPT state considered in reference [10], whereas ‘Private PPT’ denotes the PPT state based on private states given
in references [11, 90].

max FQ[ϱ,H] max 4Iϱ

Quantum state Dim. See-saw Level 1 Level 2 See-saw Level 1 Level 2

ϱ
(0.1,2)
AB from equation (61) 2 13.6421 13.6421 13.6421 10.3338 10.3338 10.3338

ϱ
(0.1,3)
AB ⊗ ϱ

(0.1,3)
A′B ′ 9 13.8828 14.0568 — 13.4330 13.6009 —

Horodecki, a= 0.3 [59] 3 4.8859 5.1280 4.8859 4.8020 4.9910 4.8020
UPB [88, 89] 3 5.6913 6.1667 5.6913 5.6913 6.1667 5.6913
Met. useful PPT [10] 4 9.3726 9.3726 — 9.3726 9.3726 —
Private PPT [11, 90] 6 10.1436 10.1436 — 10.1436 10.1436 —

method given in section 4.1 looking for the maximum with the see-saw and the methods discussed in
this Section can be used together. The gap between the two results give information about the location
of the maximum. If the two methods find the same value, then it is the global maximum.

The basic idea of the method of moments can be understood as follows. According to the Shor
relaxation [97, 98], the maximization of equation (54) is replaced by the maximization of

Tr(RX) , (62)

where the Hermitian X is constrained as

X⩽ v⃗⃗vT. (63)

Note that equation (63) can easily be coded in semidefinite programming. We can also add further and
further conditions on X that lead to lower and lower values for the maximum. Similar relaxation tech-
niques have been used in entanglement theory to detect entanglement, non-locality [99], to obtain the
maximum of an operator for separable states [100], or even to determine the ground state energy in
spin one-half Heisenberg models [101].

For our problem, we used the method of moments [102].

Observation 4. The maximization of quantum Fisher information can be carried out with the method of
moments. In this case, the conditions of equation (49) are replaced by

H2
n = c2n1, (64)

for n= 1,2, which makes sure that all eigenvalues of Hn are±cn. The results of the first level relation can be
improved if we add the constraints

Tr(Hn) =mncn (65)

for n= 1,2, wheremn =−d,−d+ 2, . . .,d− 2,d, where this way we set the number of+cn’s to a given value
in the diagonal of Hn. In quadratic programming, we can also use the constraint

H2
1 +H2

2 ⩽ 1. (66)

After simple considerations, we can find that equation (66) is equivalent to equation (64) for all cn values.
Thus, we do not need to carry out calculations for a range of cn values. A somewhat weaker constraint,
which is computationally simpler is

Tr
(
H2

1 +H2
2

)
⩽ 1. (67)

We tested our methods for the same states we considered in section 4.1. For the 2× 2 example, on
a laptop computer, we could carry out calculations at level 1,2 and 3. Even level 1 gave the exact result.
For the 3× 3 examples, we could carry out calculations at level 1 and 2, and level 2 gave the correct res-
ult. For the 4× 4 and 6× 6 examples, the level 1 calculation gave already the correct result. The results
are shown in table 1. A detailed explanation of the method via a concrete example is in appendix E.
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5. Other problems in which sums of quadratic expressions must be maximized over a
convex set

In this section, we consider optimization problems in quantum information science that can be formu-
lated similarly to the maximization of the quantum Fisher information.

5.1. Optimization over various subsystems alternatingly
In quantum information, see-saw methods have already been used [103–107]. Problems related to entan-
glement in multipartite systems seem to be ideal for such methods. For instance, a typical problem is
maximizing an operator expectation value for a product state

ϱ= ϱ1 ⊗ ϱ2. (68)

Then, we can maximize alternatingly over ϱ1 and over ϱ2.

5.2. Maximization of theWigner–Yanase skew information
The Wigner–Yanase skew information is defined as [108]

Iϱ (H) = Tr
(
H2ϱ

)
−Tr(H√

ϱH√
ϱ) . (69)

Here, we optimize over H. It is clear how to maximize equation (69) with a see-saw method.

max
H,K∈Lc1,c2

Iϱ (H) = Tr

[
1

2
(HK+KH)ϱ

]
−Tr(H√

ϱK√
ϱ) . (70)

Here, instead of HK we use 1
2 (HK+KH), since the latter is Hermitian. The expectation value of a

non-Hermitian matrix could be complex. Then, the method finds the maximum based on the deriva-
tion presented in equations (56), (57), and (58). Maximizing the Wigner–Yanase skew information can
be used to lower bound the quantum Fisher information based on [108]

FQ [ϱ,H]⩾ 4Iϱ (H) . (71)

The results are shown in table 1. From a comparison with the results for the quantum Fisher inform-
ation, we can see that for the last three of the five examples, there is an equality in equation (71).
This has been known for the last two examples [10, 11]. For these states, we also have an equality
in equation (13) with the optimal Hamiltonian, that is, the quantum Fisher information equals four
times the variance. Surprisingly, for the fourth example, the UPB state, we do not have an equality in
equation (13), which we can check with direct calculation.

5.3. Searching for the eigenstate with maximal/minimal eigenvalue
In this section, we discuss how to look for the largest eigenvalue of a positive semidefinite Hermitian
matrix with a see-saw method similar to the one discussed in section 4.1. Interestingly, the see-saw is
guaranteed to converge in this case.

We need the relation that converts the maximization over a quadratic form into a maximization over
a bilinear expression as

max
|Ψ⟩

⟨Ψ|A|Ψ⟩= max
|Ψ⟩,|Φ⟩

⟨Ψ|A|Φ⟩, (72)

where A is a Hermitian matrix and the right-hand side of equation (72) can immediately be used to
define a see-saw algorithm.

Let us now consider the Cauchy–Schwarz inequality

⟨Ψ |AΦ⟩⩽
√
⟨AΦ |AΦ⟩⟨Ψ |Ψ⟩=

√
⟨AΦ |AΦ⟩, (73)

where we took into account that ⟨Ψ |Ψ⟩= 1. The inequality is saturated for

|Ψ⟩= |AΦ⟩/
√

⟨AΦ |AΦ⟩. (74)

Based on these considerations, the see-saw procedure is given as follows.
(i) Choose some random |Φ⟩ unit vector.
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(ii) Maximize over |Ψ⟩ and |Φ⟩ alternatingly. First, |Ψ⟩ is chosen based on equation (74). Then, in
the alternate step, we use

|Φ⟩= |AΨ⟩/
√

⟨AΨ |AΨ⟩. (75)

With these steps, we realized the power method for finding the largest eigenvalue of a positive self-
adjoint operator, which is a classic iterative algorithm in numerical linear algebra [109, 110]. The itera-
tion is known to converge as long as the starting vector (|Φ⟩ in our case) overlaps with the eigenvector
corresponding to the maximal eigenvalue of A. If A is not positive semidefinite, then the method con-
verges to the eigenvalue with the largest absolute value. Note that the problem could have also been
solved with a one shot semidefinite program without iteration.

5.4. Maximization of the Hilbert–Schmidt norm
In this section, we look at the problem of maximizing a matrix norm with a method similar to the one
discussed in section 4.1. Let us consider the Hilbert–Schmidt norm given in equation (27), for which the
maximization can be rewritten

max
X∈S

||X||2HS = max
X,Y∈S

Tr
(
XY†) , (76)

where S is some set of matrices. A straightforward see-saw optimization can be formulated based on
equation (76). If S is the set of density matrices then the maximization of the Hilbert–Schmidt norm
is just the maximization of the purity Tr(ϱ2) or the minimization of the linear entropy S lin(ϱ) = 1−
Tr(ϱ2).

For instance, we can consider obtaining

max
ϱ : Tr

(
O(k)ϱ

)
= e(k),

k = 1,2, . . .,M

Tr
(
ϱ2
)
, (77)

where ϱ is a density matrix, O(k) are operators, and e(k) are constants. The constraints require that the
expectation values of the O(k) operators equal the constants e(k). The optimization problem will lead to
pure states if there are pure states satisfying the condition. The optimization can be solved with the see-
saw method as follows

max
ϱ1,ϱ2 : Tr

(
O(k)ϱn

)
= e(k),

n = 1,2, k = 1,2, . . .,M

Tr(ϱ1ϱ2) , (78)

where ϱ1 and ϱ2 are density matrices. The see-saw method shows a rapid convergence. In fact, it con-
verges typically in a single step. The problem can also be solved with the method of moments. After
examining this simple case, in addition to the linear constraints, we can have more complicated con-
straints on the quantum state. For instance, we can consider PPT states or states with a given negativity
[10].

We add that in entanglement theory, the optimization over pure product states of bipartite and mul-
tipartite systems is an important task. This can be carried out if we require that the reduced density
matrices are pure [100]. In this case, the purity of the reduced states ϱn appears among the constraints
as

Tr
(
ϱ2n
)
= 1. (79)

We add that optimization over pure states and rank constrained optimization is possible with other
methods using semidefinite programming [111, 112].

5.5. Maximization of the trace norm
Another important norm in quantum physics, the trace norm is defined as

||X||tr = Tr
(√

XX†
)
. (80)

Observation 5. The trace norm of a Hermitian matrix given in equation (80) can be maximized with a see-
saw method.
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Table 2. The largest values for ||R(ϱ)||tr for d× d PPT states for various d. The results were obtained by numerical maximization.

Dimension d1 × d2 Maximum of ||R(ϱ)||tr

2× 2 1
2× 4 1
3× 3 1.1891
3× 4 1.2239
4× 4 1.5
5× 5 1.5
6× 6 1.5881

Proof. In order to obtain an optimization over a bilinear form, we use the dual relation between the trace
norm and the spectral (operator) norm [77, 113], based on which

||X||tr = max
Y∈Rm×m:YYT⩽1

Tr
(
XTY

)
. (81)

The maximization of ||X||tr over a set S can then be written as

max
X∈S

||X||tr =max
X∈S

max
Y∈Rm×m:YYT⩽1

Tr
(
XTY

)
, (82)

which can be calculated by a see-saw similar to the ones discussed before. We have to maximize Tr(XTY)
alternatingly by X and Y.

In entanglement theory, the trace norm is used to define the CCNR criterion for entanglement
detection [30, 31]. The criterion says that for every bipartite separable state ϱ, i.e. states of the form
given in equation (1), we have

||R(ϱ) ||tr ⩽ 1, (83)

where R(ϱ) is the realigned matrix obtained by a certain permutation of the elements of ϱ. If
equation (83) is violated then the state is entangled. Clearly, the larger the left-hand side of
equation (83), the larger the violation of equation (83).

The CCNR criterion can detect weakly entangled quantum states, called bound entangled states, that
have a positive partial transpose. From this point of view, it is a very relevant question to search for
PPT states which violate equation (83) the most. This can be done by maximizing ||R(ϱ)||tr over PPT
states. We carried out a numerical optimization using semidefinite programming (e. g., optimization
over PPT states has been considered in references [10, 80]). We present the maximum of ||R(ϱ)||tr for
PPT states for various dimensions in table 2. The state for the 4× 4 case could be determined analytic-
ally, see appendix F.

6. Conclusions

We discussed how to maximize the metrological gain over local Hamiltonians for a bipartite quantum
system. We presented methods that exploit the fact that the quantum Fisher information can be writ-
ten as a bilinear expression of the elements of the Hamiltonian, if the Hamiltonian is given in the basis
of the density matrix eigenstates. We showed an ISS method that can maximize the quantum Fisher
information for large systems. We showed another method based on quadratic programming. With this
so-called relaxation method we can confirm whether the maximum found by the ISS method is indeed a
global one for small systems.

We tested the two approaches on concrete examples, which include one and two copies of the iso-
tropic state of two d-dimensional qudits and some important bound entangled states, like, for instance,
the 3× 3 Horodecki state. These examples also show that we have provided a simple, systematic and
efficient method for maximizing the metrological performance (i.e. the metrological gain) of bipartite
quantum states with local Hamiltonians. Our work can straightforwardly be generalized to multiparticle
systems.

We also considered several similar problems that can be solved based on such ideas, for instance,
obtaining the maximum violation of the CCNR criterion for states with a positive partial transpose,
maximizing various norms, searching for the extremal eigenvalues of Hermitian matrices, and also max-
imizing the Wigner–Yanase skew information. Thus, we demonstrated that ISS methods can be used bey-
ond metrological performance optimization in other important quantum information applications.
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Appendix A. Special set of separable states similar to the set of local Hamiltonians

In this appendix, we consider a set of separable states that are analogous to local Hamiltonians, namely
states of the form

ϱ= p

(
ϱ1 ⊗

1

d2

)
+(1− p)

(
1

d1
⊗ ϱ2

)
, (A1)

where 0⩽ p⩽ 1, d1 and d2 are the dimensions of the two Hilbert spaces.
First, for completeness, we explicitly show that the set of states of the form given in equation (A1) is

convex. Let

ϱ(k) = pk

(
ϱ
(k)
1 ⊗ 1

d2

)
+(1− pk)

(
1

d1
⊗ ϱ

(k)
2

)
(A2)

for k= I,II, be two such states. Let us consider a density matrix being the mixture of ϱ(I) and ϱ(II)

ϱ= rϱ(I) +(1− r)ϱ(II), (A3)

where 0⩽ r⩽ 1. We shall show, that there exist ϱ1, ϱ2 and p such that ϱ can be written in the form
given in equation (A1). Let us consider the unnormalized density matrices

ϱ ′
1 = rpIϱ

(I)
1 +(1− r)pIIϱ

(II)
1 ,

ϱ ′
2 = r(1− pI)ϱ

(I)
2 +(1− r)(1− p II)ϱ

(II)
2 , (A4)

Let us also define their traces as

t1 = Tr(ϱ ′
1) , t2 = Tr(ϱ ′

2) . (A5)

Then, with ϱ1 = ϱ ′
1/t1, ϱ2 = ϱ ′

2/t2, p= t1, ϱ can be formally written as in equation (A1). We add that
both ϱ1 and ϱ2 are density matrices: combinations of positive self-adjoint matrices with positive coeffi-
cients, thus positive, and of unit trace. What remains is to check that t1 + t2 = 1, which holds.

Let us now consider the recovery of ϱ1 and ϱ2 from a state of the form (A1). As a first step, the
reduced density matrices are

ϱred1 = Tr2ϱ= pϱ1 +(1− p)
1

d1
,

ϱred2 = Tr1ϱ= (1− p)ϱ2 + p
1

d2
.

(A6)
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It is possible to solve equations (A6) for ϱ1 and ϱ2 as

ϱ1 =
1

p

(
ϱred1 − 1− p

d1
1

)
,

ϱ2 =
1

1− p

(
ϱred2 − p

d2
1

)
.

(A7)

However, if p is not known, the recovery is not unique. Equations (A7) yield a solution for any p, for
which ϱ1 ⩾ 0 and ϱ2 ⩾ 0 hold, constraining p as

1− d1σmin

(
ϱred1

)
⩽ p⩽ d2σmin

(
ϱred2

)
. (A8)

Note, that the bounds (A8) also ensure that 0⩽ p⩽ 1. Based on equation (A8), a necessary condition
for the existence of some allowed p is

1− d1σmin

(
ϱred1

)
⩽ d2σmin

(
ϱred2

)
, (A9)

otherwise the state cannot be written in the form given in equation (A1). It can also happen that
equation (A8) allows a single p value. For instance, if one of the reduced density matrices ϱred1 or ϱred2

is not of full rank, only p= 1 or p= 0, respectively, is possible.
Based on these, if a density matrix ϱ is given only, and one needs to know if it is of the form (A1),

one needs to choose a parameter p fulfilling the bounds (A8), calculate ϱ1 and ϱ2, and afterwards verify,
if formula (A1) reproduces the density matrix given. If it works for one allowed p value, it will work for
the others as well, thus we need to try it only once. Thus, we can always decide whether a state is of the
form equation (A1), while it is not possible to decide efficiently whether a quantum state is separable or
not [1–4].

Straightforward algebra shows that for states of the form equation (A2) and for traceless A and B
Hermitian operators the relation

⟨A⊗B⟩= 0 (A10)

holds. Note that equation (A10) does not mean that there are no correlations, since

⟨A⊗B⟩− ⟨A⊗1⟩⟨1⊗B⟩ (A11)

is not necessarily zero. Let us now consider a full basis of traceless Hermitian matrices in the two
subsystem

{
G(k)
1

}s1

k=1
,
{
G(k)
2

}s2

k=1
, (A12)

with the number of elements given as

sn = d2n − 1 (A13)

for n= 1,2. We assume that the basis matrices are pairwise orthogonal to each other

Tr
(
G(k)
n G(l)

n

)
= 2δkl, (A14)

where n= 1,2 and δkl is the Kronecker symbol. Matrices G(k)
1 and G(l)

2 are the SU(d) generators for d=
d1, and d= d2, respectively. Then, any density matrix ϱ can be expressed as a linear combination as
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ϱ=
1

d1d2
1⊗1+

1

2d2

∑
k

λ
(k)
1 G(k)

1 ⊗1

+
1

2d1

∑
k

λ
(k)
2 1⊗G(k)

2 +
1

4

∑
k,l

Kk,lG
(k)
1 ⊗G(l)

2 , (A15)

for 1⩽ k⩽ s1 and 1⩽ l⩽ s2. Here, λ
(k)
1 , λ

(l)
2 , and Kk,l are real coefficients that form the elements of the

coherence vector of the system that describes the state of the system equivalently to the density matrix
[114]. Due to equation (A10), most of the d21d

2
2 − 1 elements of the coherence vector are zero since

Kk,l = ⟨G(k)
1 ⊗G(l)

2 ⟩= 0 (A16)

holds for all k, l. Thus, the number of nonzero elements is at most s1 + s2. The remaining elements of
the coherence vector are given as

λ
(k)
1 = ⟨G(k)

1 ⊗1⟩,

λ
(k)
2 = ⟨1⊗G(k)

2 ⟩. (A17)

The following statement can straightforwardly be proven. If the state fulfills the condition in
equation (A16) then it can be written in the form given in equation (A1). Thus, we can decide whether
a state is of the form given in equation (A1) based on verifying that equation (A16) holds.

Appendix B. See-saw algorithmwith and without semidefinite programming

In this appendix, we discuss how to implement a single step of the ISS method given in section 4.1.
Based on observation 3, we need to obtain

max
H∈Lc1,c2

Tr [(Q ◦Q ◦Hold)H] . (B1)

Here Hold is the previous guess or the initial random guess. H is of the form equation (24), where Hn

fulfill equation (49) for n= 1,2. This can be solved by semidefinite programming.
Equation (B1) can also be solved without semidefinite programming. The quantity to be maximized

in equation (B1) can be written as

FQ [ϱ,H] = Tr(W1H1)+Tr(W2H2) (B2)

where Wn is given as

Wn = Tr{1,2}\n (Q ◦Q ◦Hold) . (B3)

Let us write down the eigendecomposition of Wn as

Wn = UnDnU
†
n, (B4)

where Un is unitary and Dn is diagonal. We define the diagonal matrix

(
D̃n

)
k,k

= cks
[
(Dn)k,k

]
, (B5)

where s(x) = 1 if x⩾ 0, and −1 otherwise. With these the optimal Hamiltonians are given by

H(opt)
n = UnD̃nU

†
n (B6)

for n= 1,2. From these, we can obtain the new Hold and go to the next iteration step. Note that a sim-
ilar scheme was presented in another context in reference [23].
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Figure 4. Plot of g(x, x̃) as defined in equation (C2) for q= 1. In the insets, curves for x0 = 0 and x̃0 = 0.5 are shown on the
sides, while the middle inset is for x̃= x. Red lines in the main figure correspond to the three insets. By inspection we can see
that g(x, x̃) is not concave.

Appendix C. Alternative method to optimize quadratic functions

In this appendix, we present an alternative of the method given in section 4.1. We need the optimiza-
tion over a constrained and an unconstrained quantity, while in the method of section 4.1, we need to
optimize over two constrained quantities.

Let us try to maximize the convex function

f(x) = 4q2x2 (C1)

on a convex set. We could check the extreme point of the set, however, we look for a method that can
easily be generalized to a larger number of variables.

We introduce another function with an auxiliary variable x̃ that is easier to maximize. The linear
function tangent to f (x) at the point x= x̃ is given as

g(x, x̃) = t(x̃)+
df

dx

∣∣∣∣
x=x̃

× x=−4q2x̃2 + 8q2x̃x, (C2)

where the quantity

t(x̃) = f(x̃)− df

dx

∣∣∣∣
x=x̃

x̃ (C3)

is the value of the linear function at x= 0, which equals −1 times the Legendre transform of f (x) [81,
115–118]. We can maximize f (x) given in equation (C1) as

max
x∈X

f(x) =max
x∈X

max
x̃

g(x, x̃) , (C4)

where X is a convex set of real numbers, and y is real. g(x, x̃) is plotted in figure 4 for q= 1.
Then the maximization can be carried out as follows.
(i) Choose a random x.
(ii) Maximize g(x, x̃) over x̃ for a fixed x. We have to use the condition for maximum

∂g(x, x̃)

∂x̃
= 8q2 (x− x̃) = 0. (C5)

Hence, we have to set the auxiliary variable x̃ to

x̃= x. (C6)

(iii) Maximize g(x, x̃) over x for a fixed x̃. The maximum will be taken at an extreme point of X .
After completing step (iii), go to step (ii).
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The function g(x, x̃) is linear in x, concave in x̃. The Hessian matrix of the second order derivatives
is

D=

(
0 8q2

8q2 −8q2

)
. (C7)

The eigenvalues of the Hessian are

λ± =
(
±4

√
5− 4

)
q2. (C8)

One of the eigenvalues is positive for any q> 0. Thus, g(x, x̃) is not concave in (x, x̃) since the Hessian
has positive eigenvalues. Thus, it is not guaranteed that we will find a unique maximum of a concave
function.

Let us now generalize these ideas to several variables. Let us assume that H ∈ Lc1,c2 and ϱ is a density
matrix. Then, we can write that

max
H∈Lc1,c2

FQ [ϱ,H] = max
H∈Lc1,c2

max
H̃

G
(
H,H̃

)
, (C9)

where G(H,H̃) is defined as

G
(
H,H̃

)
=
∑
kl

Q2
kl

[
H̃r

kl

(
2Hr

kl −H̃ r
kl

)
+ H̃i

kl

(
2Hi

kl −H̃ i
kl

)]
. (C10)

Note the difference compared to the bilinear form in equation (59): The optimization over H̃kl is
unconstrained.

Appendix D. Optimization over the state rather than the Hamiltonian

In this appendix, we will analyze the method optimizing the quantum Fisher information over the
quantum state, rather than over the Hamiltonian, described in reference [12, 13, 15]. We would like to
examine whether it finds the global optimum. It turns out that the see-saw used for optimization is sim-
ilar to that of appendix C. Thus, we will apply an analysis similar to the one presented in appendix C.

Let us review the method briefly. We need to maximize the error propagation formula

max
ϱ

FQ [ϱ,H] =max
ϱ

max
M

1/(∆θ)
2
M

=max
ϱ

max
M

⟨i [H,M]⟩2/(∆M)
2

=max
ϱ

max
M

⟨i [H,M]⟩2/⟨M2⟩, (D1)

where the last equality stands, since M operators for which ⟨M⟩ϱ = 0 maximize both (∆M)2 and ⟨M2⟩,
and for such operators (∆M)2 = ⟨M2⟩. Then, maximizing a fraction over M such that M appears both
in the numerator and the denominator is a difficult task. Thus, a variational approach has been used to
obtain the optimum as [12]

max
ϱ

FQ [ϱ,H] =max
ϱ

max
M

max
α

{
−α2⟨M2⟩+ 2α⟨i [H,M]⟩

}
. (D2)

For the maximum [12]

∂

∂α

(
−α2⟨M2⟩+ 2α⟨i [H,M]⟩

)
=−2α⟨M2⟩+ 2⟨i [H,M]⟩= 0 (D3)

holds. Then, for the optimum α= ⟨i[H,M]⟩/⟨M2⟩ and substituting this into equation (D2), we obtain
the right-hand side of equation (D1). If we carry out the optimization over α and M then we find that
the optimum is taken when M equals the symmetric logarithmic derivative and α= 1.

In order to decrease the number of parameters we need to optimize, the optimization in
equation (D2) can be rewritten as

max
ϱ

FQ [ϱ,H] =max
ϱ

max
M′

{
−⟨(M ′)

2⟩+ 2⟨i [H,M ′]⟩
}
, (D4)

where M′ takes the role of αM. Note that the function in equation (D4) is concave in M′ and linear
in ϱ.
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The expression in equation (D4) can be used to define a two-step see-saw algorithm that will find
better and better quantum states. First we choose a random state. Then, maximize the expression over
M ′. One can show that the maximum is taken by setting M′ to be the symmetric logarithmic derivative
given in equation (15) [12]. Then, we optimize over ϱ. Then, we go back to the step maximizing over
M ′, and so on. The optimization seems to work very well, converging almost always in practice.

After reviewing the powerful method in references [12, 13, 15], the question arises: do we always
find the global maximum? For that we need that the expression maximized in equation (D4) is strictly
concave in (ϱ,M ′). Let us see a concrete example. Let us consider a single qubit with a density matrix

ϱ=
1

2
(1+σxx) , (D5)

where the allowed values for the real parameter x are given by

xmin ⩽ x⩽ xmax, (D6)

and [xmin,xmax] is a subset of the [−1,1] interval. Clearly,

⟨σx⟩ϱ = x. (D7)

We will carry out an optimization of the quantum Fisher information over the convex set of states
defined above. Let us now consider the Hamiltonian

H= σz. (D8)

Then, we set M′ to the symmetric logarithmic derivative defined in equation (15) to

M ′ = σyy, (D9)

where y is the auxiliary, real parameter. The expression maximized in equation (D4) equals

h(x,y) =−y2 + 4xy, (D10)

which is maximized for a given x if y= 2x. Then, we can eliminate y and obtain

FQ [ϱ,H] = 4x2. (D11)

The Hessian matrix of the second order derivatives of the expression in equation (D10) is

D=

(
0 4
4 −2

)
. (D12)

Since one of the two eigenvalues of the Hessian is negative, the other is positive, the expression in
equation (D10) is not concave in x and y. In fact, equation (D10) is concave in y and linear in x, but
not concave in (x,y). The function h(x,y) given in equation (D10) is plotted in figure 5, which makes
it possible to understand the convexity properties of equation (D10). Thus, the expression maximized in
equation (D4) is in general not concave in (ϱ,M ′).

Following the ideas of appendix C and applying the Legendre transform [81, 115–118], the equation
of the tangent to the function given in equation (D11) is

h(x, x̃) =−4x̃2 + 8x̃x. (D13)

One can use an optimization over x̃ to obtain

FQ [ϱ,H] =max
x̃

h(x, x̃) = 4x2. (D14)

Now, by substituting x̃= y/2 into equation (D13) we arrive at equation (D10). Following the ideas of
appendix C, we can also see that equation (D4) is also based on linearizing FQ[ϱ,H] at a given ϱ, which
leads to a tangent plane, and then maximizing the quantum Fisher information over that tangent plane.

Let us consider a maximization of equation (D10) without further constraints such that xmin =−1
and xmax =+1. We start from a random ϱ, which in our case means to start with a random x. Let us
consider the case that x> 0. Then, we will have y= 2x> 0. Then, when optimizing over x in the next
step, we get x=+1. Let us now consider the case that x< 0. Then, we will have y= 2x< 0. Then, when
optimizing over x, we get x=−1. Thus, we will find the correct maximum, independently from the ini-
tial state. The reason is that the Fisher information is invariant under the transformation x→−x.

21



Quantum Sci. Technol. 11 (2026) 015042 Á Lukács et al

Figure 5. Plot of h(x,y) as defined in equation (D10). In the insets, curves for x0 = 0 and y0 = 0.5 are shown on the sides, while
the middle inset is for y= x. Red lines in the main figure correspond to the three insets. By inspection, we can see that h(x,y) is
not concave.

Observation 6. In the single-qubit case, the see-saw always reaches the global maximum for any initial state,
if we optimize over the full set of physical quantum states.

Proof. Let us consider a single qubit in a general state

ϱ=
1

2

(
1+ rxσx + ryσy + rzσz

)
, (D15)

and a general single-qubitM′ as

M ′ =mxσx +myσy +mzσz. (D16)

With these, the quantum Fisher information can be given as

FQ [ϱ,H] = max
mx,my,mz

4
(
myrx −mxry

)
−m2

x −m2
y −m2

z . (D17)

The maximum is taken atmx =−2ry,my = 2rx, andmz = 0. After eliminatingmk we obtain

FQ [ϱ,H] = 4
(
r2x + r2y

)
, (D18)

which takes the global maximum for all points for which r2x + r2y = 1 and rz = 0. Based on these we see
that starting from any random initial state, we always reach the global maximum, except for the case when
rx = ry = 0, when we obtainmx =my =mz = 0.However, such states form a zero measure set, thus small
additive noise with a random quantum state leads out of the set, and then the algorithm finds the global
maximum.

In the more general case of larger systems, the quantum Fisher information is not a quadratic func-
tion of the density matrix elements anymore [119, 120]. However, even in this case, if ϱopt is maximizing
the quantum Fisher information FQ[ϱ,H], then

ϱ ′
opt = exp(−iK)ϱopt exp(+iK) (D19)

also maximizes it, where [H,K] = 0. Thus, even though the final state of the iteration depends on the
initial state, the algorithm finds the global maximum. We tested the optimization problem for physical
quantum states of various sizes (2× 2, 3× 3,..., 12× 12). In this case, looking for the maximum of ϱ in
equation (D4) means identifying the eigenstate with the maximal eigenvalue of the operator [12]

G(M ′) =−(M ′)
2
+ 2i [H,M ′] . (D20)
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For a pure state |Ψ⟩, the symmetric logarithmic derivative for a given Hamiltonian is given in
equation (17). Substituting it into M′, we obtain

GΨ = 4
(
{ϱ,H}⟨H⟩ϱ − ϱ⟨H2⟩ϱ +

{
ϱ,H2

}
− 3HϱH

)
, (D21)

where ϱ= |Ψ⟩⟨Ψ|.
If the initial state |Ψ⟩ is an eigenvector of H, then GΨ = 0, i. e., a matrix with zero elements. Thus,

the next state of the iteration obtained as the eigenvector of GΨ with the largest eigenvalue will be a ran-
dom vector.

If the initial state |Ψ⟩ is

|Ψ⟩= 1√
2

(
|hk⟩+ e−iϕ|hl⟩

)
, (D22)

then we have

GΨ = (hk − hl)
2 [2(e+iϕ|hk⟩⟨hl|+ e−iϕ|hl⟩⟨hk|

)
−|hk⟩⟨hk| − |hl⟩⟨hl|] . (D23)

Here, hk and hl denote the eigenvalues of H, while |hk⟩ and |hl⟩ are corresponding eigenvectors. The
eigenvector of equation (D23) with the largest eigenvalue is the state given in equation (D22).

Let us see now the steady states of the see-saw. For such states,

GΨ|Ψ⟩= 4(H−⟨H⟩)2 |Ψ⟩= λ|Ψ⟩ (D24)

holds, where λ is the maximal eigenvalue of GΨ given in equation (D21). Thus, every steady state must
fulfill the condition given in equation (D24) for some λ. Let us consider first the case that H has a non-
degenerate spectrum. Let us look for the eigenvectors of the operator

4(H− c)2 , (D25)

where c is a constant. For c= (hk + hl)/2, the solution is of the form α|hk⟩+β|hl⟩, where α and β are
constants. For these states, ⟨H⟩= |α|2hk + |β|2hl. For all c, all eigenstates |hk⟩ of H are solutions. The
solutions for which ⟨H⟩= c are states of the type |hk⟩, and states given in equation (D22).

The case of |hk⟩ we discussed in relation to equation (D21). We find that states of the type given
in equation (D22) are stable points of the iteration. However, based on numerics, we find that a small
perturbation outside of the subspace {|hk⟩, |hl⟩} will move the iteration away from the state, unless we
are in the state

|Ψopt⟩=
1√
2

(
|hmin⟩+ e−iϕ|hmax⟩

)
, (D26)

which is stable under perturbations. Here, ϕ is a real number and |hmin⟩ and |hmax⟩ are the eigenvectors
with the minimum and maximum eigenvalues of H. If H has a degenerate maximal or minimal eigen-
value, then the steady states can also be obtained straightforwardly.

The steady states maximize

⟨GΨ⟩Ψ = 4(∆H)
2
Ψ. (D27)

Thus, the mechanism of the see-saw resembles the power iteration discussed in section 5.3, however,
now we maximize the variance of an operator. It has been shown that the iteration leads to states with a
variance (∆H)2 that does not decrease [12]. Together with our argument that the steady states all max-
imize the variance, we can see that the iteration always finds the global maximum. We verified this claim
based on extensive numerical tests [121].

Next, we can consider the set of quantum states obtained via a physical map Λ(ϱ) [12]. The first
example is the states from the globally depolarizing map. We have to look for the eigenvector with the
maximum eigenvalue in the following eigenequation [12]

Λ† (Gϱn) |Ψ⟩= λ|Ψ⟩, (D28)

where for computing Gϱn , we used the symmetric logarithmic derivative of the noisy input state ϱn given
as

ϱn = Λ(|Ψ⟩⟨Ψ|) = p|Ψ⟩⟨Ψ|+(1− p)
1

d
. (D29)
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The symmetric logarithmic derivative for Λ(|Ψ⟩⟨Ψ|) is given as qM ′, where M′ is the symmetric logar-
ithmic derivative for the noiseless pure state, q= p/[p+ 2(1− p)/d], and q= 1 corresponds to no noise.
Hence, we obtain

Gϱn (M
′) =−q2 (M ′)

2
+ q2i [H,M ′] , (D30)

cf Equation (D20). The adjoint map is

Λ† (A) = pA+(1− p)
1

d
Tr(A) . (D31)

Then, we arrive at

Λ† (Gϱn) =−pq2 (M ′)
2
+ pq2i [H,M ′] + (1− p)

1

d
Tr(Gϱn) . (D32)

Hence, substituting M′ with the symmetric logarithmic derivative given for pure states in equation (17),
for Λ†(Gϱn)|Ψ⟩ we obtain

Λ† (Gϱn) |Ψ⟩=
[
4pq(1− q)(∆H)

2
ϱ + 4pq

(
H−⟨H⟩ϱ

)2
+

1− p

d
Tr(Gϱn)

]
|Ψ⟩. (D33)

The part that contributes to finding the eigenvector is

4pq
(
H−⟨H⟩ϱ

)2
, (D34)

cf Equation (D24). After a derivation similar to the previous one, we find again that the algorithm is
maximizing (∆H)2ϱ and the same states maximize it as before. Thus, based on the same arguments, the
algorithm always finds the global maximum.

Next, we present a case when the algorithm might not find the global optimum, while admittedly
the example is not a very practical one, and is constructed to test the method. Let us consider a concrete
iteration on a subset of physical quantum states of the type given in equation (D5), and assume −1⩽
xmin < 0< xmax ⩽ 1, which can be incorporated in the optimization as the condition

xmin ⩽ ⟨σx⟩ϱ ⩽ xmax. (D35)

The inequality in equation (D35) can be added as conditions to an optimization using semidefinite
programming. Alternatively, we can also define a set of quantum states fulfilling equation (D35) via the
map

Λ1D (ϱ) = pP (Px,−1ϱPx,−1 + Px,+1ϱPx,+1)

+ px,−1Px,−1 + px,+1Px,+1 (D36)

from the set of quantum states, where Px,+1 and Px,−1 are projectors to the eigenstates of σx. The min-
imal and maximal value for ⟨σx⟩ϱ, respectively, are

xmin =−pP + px,+1 − px,−1,

xmax = pP + px,+1 − px,−1. (D37)

Based on these, we can obtain the probabilities given with xmin and xmax as px,−1 = (1− xmax)/2, px,+1 =
(1+ xmin)/2, and pP = 1− px,−1 − px,+1.

We start from a random ϱ, that is, we start with a random x. Let us consider the case that x> 0.
Then, we will have y= 2x> 0. Then, when optimizing over x in the next step, we get x= xmax. Let us
now consider the case that x< 0. Then, we will have y= 2x< 0. Then, when optimizing over x, we get
x= xmin. Thus, depending on the sign of the random initial x, we will arrive at x= xmin or at x= xmax,
which is not necessarily the global optimum.

Considering a single qubit in a general state, conditions such as

xmin ⩽ ⟨σx⟩ϱ ⩽ xmax,

ymin ⩽ ⟨σy⟩ϱ ⩽ ymax, (D38)

where ymin and ymax are real numbers giving the bounds of the allowed region for ⟨σy⟩ϱ, can result in
reaching different local optima starting from different initial states, even if small random perturbations
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are added. The proof is similar to the proof of the one-dimensional case discussed before. For example if
xmin = ymin =−1, xmax = ymax = 0.15, and the initial state is

ϱ ′ =
1

2

(
1+ 0.05σx + 0.05σy − 0.02σz

)
, (D39)

then the optimization leads to rx = xmax, ry = ymax, and, based on equation (D18), we have FQ[ϱ,H] =
4(x2max + y2max) = 0.18. Thus, it does not reach the maximal value 4.00.

The inequalities in equation (D38) can be added as conditions to an optimization using semidefinite
programming. Alternatively, we can also define a set of quantum states via the physical map, e. g.,

Λqubit (ϱ) = pIϱ+
1

2
(1− pI)

(
Px,−1 + Py,−1

)
, (D40)

where Px,−1 is the projector to the eigenstate of σx with eigenvalue −1, and Py,−1 is the projector to the
eigenstate of σy with eigenvalue −1. For states coming from this map,

−pI
2
− 1

2
⩽ ⟨σx⟩ϱ ⩽

3pI
2

− 1

2
,

−pI
2
− 1

2
⩽ ⟨σy⟩ϱ ⩽

3pI
2

− 1

2
(D41)

holds. If the optimization is carried out over the quantum states coming from the map Λqubit(ϱ) then
the maximum found will depend on the initial state.

More practical, relevant subsets of physical quantum states are PPT states in a bipartite system.
Metrology with such states have been studied using semidefinite programming [10]. A family of bipart-
ite PPT entangled states have been found numerically maximizing the quantum Fisher information [10].
Here, semidefinite programming was used to maximize over the set of PPT quantum states. Later, PPT
states having the same quantum Fisher information have been found analytically, which is a strong
indication that the method found the global maximum [11].

In multiparticle systems, one can consider states that are PPT with respect to all bipartitions. Such
four-qubit states have been studied [10]. Such states form a very complicated set, and thus they are good
candidates to test the method with a difficult task. We find that the maximum found in such systems
might depend on the initial state. However, after starting from a couple of random initial values the iter-
ation finds the global maximum.

One might think that the semidefinite solvers can cause the dependence on the initial states. It is
possible to consider a subset of physical quantum states such that semidefinite solvers are not needed.
Such a set is the set of states with a symmetric extension of a given order [122]. We considered the
optimization over 2-symmetric extendible states and we also found a dependence on the initial state
[123].

The optimization over PPT states can be reformulated with PPT-inducing channels acting on the
set of quantum states [124], which are similar to entanglement breaking maps [125]. The set of the 2-
symmetric extendible states can be obtained from the set of all quantum states with a physical map.

In summary, in most relevant multi-qudit problems, the method seems to converge extremely well,
which is very likely due to the fact that the global maximum is taken by many states. It is also important
that several auxiliary variables are added. When considering states passing through a physical map, the
symmetry properties of the map determine how well the method converges. It would be interesting to
prove that the approach always converges for several classes of relevant problems.

Appendix E. An example for using the moment method to upper bound the quantum
Fisher information

In this appendix, we exemplify the use of the moment method discussed in section 4.2 to upper bound
the quantum Fisher information for a fixed d× d state ϱ. We will focus on d= 2, however, the method
generalizes straightforwardly to any d> 2.

Let us first recap the optimization problem. Fix a 2× 2 state ϱ with the eigendecomposition as in
equation (9). According to equation (8), our task is to maximize

FQ [ϱ,H] =
∑
k,l

Q2
kl|Hkl|2 (E1)
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over bipartite local Hamiltonians of the form given in equation (24), where we impose the condition

Tr
(
H2

1

)
+Tr

(
H2

2

)
= 4. (E2)

The matrix elements of H in the eigenbasis of ϱ are given by Hkl = ⟨k|H|l⟩. Let us denote by F (max)
Q

the maximum value in equation (E1) over local Hamiltonians. Note that the above condition is a relax-

ation of the stricter one given in equation (64) for n= 1,2 with c21 + c22 = 2. Therefore, F (max)
Q in gen-

eral defines only an upper bound to the true maximum of the quantum Fisher information. The con-
stant coefficients Qkl depend only on the eigenvalues of the probe state ϱ and are given by equation (10)
whenever the denominator is nonzero.

Now we apply the following steps to bring the problem to an SDP.
(i) Build an orthonormal basis of Hermitian d× d matrices. For d= 2, we choose the four normal-

ized Pauli matrices σ̂i =
1√
2
σi, where σ0 is the 2× 2 identity, and the rest are σx, σy, and σz.

(ii) Represent the local Hamiltonian operators as

H1 =
4∑

i=1

vi σ̂i−1,

H2 =
4∑

i=1

vi+4 σ̂i−1

(E3)

with real coefficients vi, i = 1, . . . ,8, forming the vector |v⟩ ∈ R8. With this choice we have

⟨v|v⟩= Tr
(
H2

1

)
+Tr

(
H2

2

)
= 4, (E4)

that is, we recover the condition in equation (E2).
(iii) For each (k, l), define the matrices Skl = TrB|k⟩⟨l| and Tkl = TrA|k⟩⟨l|, and from them construct

the complex vector |zkl⟩ ∈ C8 compactly as

|zkl⟩=
[
Tr(Sklσ̂0) ,Tr(Sklσ̂x) ,Tr

(
Sklσ̂y

)
,Tr(Sklσ̂z) ,

Tr(Tklσ̂0) ,Tr(Tklσ̂x) ,Tr
(
Tklσ̂y

)
,Tr(Tklσ̂z)

]
T.

(E5)

(iv) In terms of |zkl⟩ we can write the complex matrix element as

Hkl = ⟨k|H|l⟩= Tr(SklH1)+Tr(TklH2) = ⟨zkl|v⟩. (E6)

(v) Hence the quantum Fisher information is

FQ [ϱ,H] =
∑
k,l

Q2
kl|Hkl|2

=
∑
k,l

Q2
kl⟨v|zkl⟩⟨zkl|v⟩= ⟨v|R|v⟩, (E7)

where the operator

R= ℜ

(∑
kl

|zkl⟩⟨zkl|

)
(E8)

is a real symmetric 8× 8 matrix, and we used that |v⟩ is real valued.
This leads us to the optimization problem

F (max)
Q :=maxv∈R8 ⟨v|R|v⟩

subject to ⟨v|v⟩= 4.
(E9)

Thus, we arrived at an optimization task of the form given in equation (54). However, we can reformu-
late this problem as an SDP

F (max)
Q :=maxX∈S8 Tr(RX)

subject to X⩾ 0,

Tr(X) = 4,

rank(X) = 1,

(E10)

where we can identify X= |v⟩⟨v|.
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Dropping the non-convex rank constraint rank(X) = 1 yields a convex SDP [see also equations (62)
and (63)]. However, it can be shown that the optimum of this relaxed SDP is attained at the rank-one
matrix X∗ = |vmax⟩⟨vmax|, where |vmax⟩ is any unit eigenvector of R associated with the largest eigenvalue
λmax(R) [97, 98]. Hence the solution to the task (E9) is |v∗⟩= 2|vmax⟩, and the optimal objective value is

F (max)
Q = ⟨v∗|R|v∗⟩= 4λmax (R) . (E11)

As an illustrative example, let us apply the above procedure to calculate F (max)
Q [ϱ,H] for the two-

qubit isotropic state ϱ0.1,2AB from equation (61) (see also the first line of table 1). In this case, the matrix
R from equation (E8) evaluates to

R=
162

95



0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 1 0 0 0 1


. (E12)

The eigenvalues of this symmetric matrix are

{λk}8k=1 = (162/95){2,2,2,0,0,0,0,0} . (E13)

Hence, by equation (E11), we obtain

F (max)
Q

[
ϱ0.1,2AB ,H

]
= 4λmax (R) =

1296

95
≃ 13.6421. (E14)

One of the eigenvectors corresponding to the maximal eigenvalue can be written as

|vmax⟩= [0,a,0,b,0,a,0,b]T, (E15)

where a≃ 0.1625 and b=
√

1
2 − a2 ≃ 0.6882. Note that since λmax(R) is three-fold degenerate, any unit

vector in the corresponding eigenspace gives an optimal |vmax⟩.
From this choice we obtain |v∗⟩= 2|vmax⟩, and by equation (E3) the optimal Hamiltonian is given by

the bipartite Hamiltonian given in equation (24) with

H1 =H2 =
√
2

(
b a
a −b

)
. (E16)

Incidentally, we find H2
1 =H2

2 = 1, which also satisfies the original (non-relaxed) constraint of
equation (64). Thus, in this case the upper bound in (E14) is achievable, and the bound is tight.

Appendix F. Bound entangled state violating the CCNR criterionmaximally

In this appendix, we present the 4× 4 bound entangled state for which the violation of the CCNR cri-
terion given in equation (83) is maximal. The state is

ϱCCNR =
4∑

i=1

pi |Ψi⟩⟨Ψi|AB ⊗ ϱ
(i)
A′B ′ , (F1)

where the probabilities are

p1 = p2 = p3 = 1/6,

p4 = 1/2, (F2)

where the four Bell states are defined as
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|Φ±⟩= 1√
2
(|00⟩± |11⟩) ,

|Ψ±⟩= 1√
2
(|01⟩± |10⟩) , (F3)

and the components for A′ and B′ are given as

ϱ
(1)
A′B ′ = |Ψ+⟩⟨Ψ+|,

ϱ
(2)
A′B ′ = |Ψ−⟩⟨Ψ−|,

ϱ
(3)
A′B ′ = |Φ+⟩⟨Φ+|,

ϱ
(4)
A′B ′ =

(
1− |Φ−⟩⟨Φ−|

)
/3. (F4)

For the state in equation (F1), we have

||R(ϱCCNR) ||tr = 1.5. (F5)

Using the method of section 4, we find that the state is not useful metrologically. We created a MATLAB
routine that defines ϱCCNR presented in this paper. It is part of the QUBIT4MATLAB package [94, 95].
The routine BES_CCNR4x4.m defines the state given in equation (F1). We also included a routine that
shows the usage of BES_CCNR4x4.m. It is called example_BES_CCNR4x4.m.
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[15] Macieszczak K, Fraas M and Demkowicz-Dobrzański R 2014 Bayesian quantum frequency estimation in presence of collective

dephasing New J. Phys. 16 113002
[16] Jarzyna M and Demkowicz-Dobrzański R 2015 True precision limits in quantum metrology New J. Phys. 17 013010
[17] Escher B, de Matos Filho R and Davidovich L 2011 General framework for estimating the ultimate precision limit in noisy

quantum-enhanced metrology Nat. Phys. 7 406
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