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We define the quantum Wasserstein distance
such that the optimization of the coupling
is carried out over bipartite separable states
rather than bipartite quantum states in
general, and examine its properties. Sur-
prisingly, we find that the self-distance is
related to the quantum Fisher information.
We present a transport map corresponding
to an optimal bipartite separable state. We
discuss how the quantum Wasserstein distance
introduced is connected to criteria detecting
quantum entanglement. We define variance-
like quantities that can be obtained from the
quantum Wasserstein distance by replacing
the minimization over quantum states by a
maximization. We extend our results to a
family of generalized quantum Fisher infor-
mation quantities.

Dedicated to the memory of Dénes Petz on the occa-
sion of his 70th birthday.

1 Introduction
A classical Wasserstein distance is a metric between
probability distributions µ and ν, induced by the
problem of optimal mass transportation [1, 2]. It re-
flects the minimal effort that is required in order to
morph the mass of µ into the mass distribution of
ν. Methods based on the theory of optimal trans-
port and advantageous properties of Wasserstein met-
rics have achieved great success in several impor-
tant fields of pure mathematics including probabil-
ity theory [3, 4], theory of (stochastic) partial dif-
ferential equations [5, 6], variational problems [7, 8]
and geometry of metric spaces [9, 10, 11, 12]. In
recent years, there have been a lot of results con-
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cerning the description of isometries of Wasserstein
spaces, too [13, 14, 15, 16, 17, 18, 19]. Moreover,
optimal transport and Wasserstein metric are also
used as tools in applied mathematics. In particular,
there are applications to image and signal process-
ing [20, 21, 22], medical imaging [23, 24] and machine
learning [25, 26, 27, 28, 29, 30].

The non-commutative generalization, the so-called
quantum optimal transport has been at the center
of attention, as it lead to the definition of several
new and very useful notions in quantum physics.
The first, semi-classical approach of Życzkowski and
Slomczynski, has been motivated by applications in
quantum chaos [31, 32, 33]. The method of Biane
and Voiculescu is related to free probability [34],
while the one of Carlen, Maas, Datta, and Rouzé
[35, 36, 37, 38, 39] is based on a dynamical inter-
pretation. Caglioti, Golse, Mouhot, and Paul pre-
sented an approach based on a static interpretation
[40, 41, 42, 43, 44, 45]. Finally De Palma and Tre-
visan used quantum channels [46], and De Palma,
Marvian, Trevisan, and Lloyd defined the quantum
earth mover’s distance, i.e., the quantum Wasser-
stein distance order 1 [47], while Bistron, Cole, Eck-
stein, Friedland and Życzkowski formulated a quan-
tum Wasserstein distance based on an antisymmetric
cost function [48, 49, 50].

One of the key results of quantum optimal trans-
port is the definition of the quantum Wasserstein dis-
tance [31, 32, 33, 40, 41, 42, 43, 46, 47, 44, 45, 51, 52].
It has the often desirable feature that it is not nec-
essarily maximal for two quantum states orthogonal
to each other, which is beneficial, for instance, when
performing learning on quantum data [53]. Some of
the properties of the new quantities are puzzling, yet
point to profound relations between seemingly unre-
lated fields of quantum physics. For instance, the
quantum Wasserstein distance order 2 of the quan-
tum state from itself can be nonzero, while in the
classical case the self-distance is always zero. In par-
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ticular, as we have mentioned, the quantum Wasser-
stein distance has been defined based on a quantum
channel formalism [46], and it has been shown that
the square of the self-distance is equal to the Wigner-
Yanase skew information of the quantum state [54].
At this point the questions arises: Can other fields of
quantum physics help to interpret these results? For
example, is it possible to relate the findings above to
entanglement theory [55, 56, 57] such that we obtain
new and meaningful relations naturally?

Before presenting our results, let us summarize the
definitions of the quantum Wasserstein distance.

Definition 1. The square of the distance between
two quantum states described by the density matrices
ϱ and σ is given by De Palma and Trevisan as [46]

DDPT(ϱ, σ)2 = 1
2 min

ϱ12

N∑
n=1

Tr[(HT
n ⊗ 1 − 1 ⊗ Hn)2ϱ12],

s. t. ϱ12 ∈ D,

Tr2(ϱ12) = ϱT ,

Tr1(ϱ12) = σ, (1)

where AT denotes the matrix transpose of A, and
H1, H2, ..., HN are Hermitian operators 1, while D is
the set of density matrices, i.e., Hermitian matrices
fulfilling

ϱ12 = ϱ†
12, Tr(ϱ12) = 1, ϱ12 ≥ 0. (2)

In this approach, there is a bipartite density matrix
ϱ12, called coupling, corresponding to any transport
map between ϱ and σ, and vice versa, there is a trans-
port map corresponding to any coupling [46]. More-
over, it has been shown that for the self-distance of a
state [46]

DDPT(ϱ, ϱ)2 =
N∑

n=1
Iϱ(Hn) (3)

holds, where the Wigner-Yanase skew information is
defined as [54]

Iϱ(H) = Tr(H2ϱ) − Tr(H√
ϱH

√
ϱ). (4)

This profound result connects seemingly two very dif-
ferent notions of quantum physics, as it has been men-
tioned in the introduction.

The Wasserstein distance has also been defined in
a slightly different way.

Definition 2. Golse, Mouhot, Paul and Caglioti
defined the square of the distance as [40, 45, 43, 41,

1We use the convention that in the expression within the
trace in Eq. (1), Hn ⊗ 1 denotes an operator in which Hn acts
on subsystem 1 and 1 acts on subsystem 2.

42, 44]

DGMPC(ϱ, σ)2

= 1
2 min

ϱ12

N∑
n=1

Tr[(Hn ⊗ 1 − 1 ⊗ Hn)2ϱ12],

s. t. ϱ12 ∈ D,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = σ. (5)

In this paper, we will obtain new quantities by re-
stricting the optimization to separable states in the
above definitions. We will show that, in this case, the
square of the self-distance equals the quantum Fisher
information times a constant, while in Eq. (3) it was
related to the Wigner-Yanase skew information. The
quantum Fisher information is a central quantity in
quantum estimation theory and quantum metrology,
a field that is concerned with metrological tasks in
which the quantumness of the system plays an essen-
tial role [58, 59, 60, 61]. Recent findings show that the
quantum Fisher information is the convex roof of the
variance, apart from a constant factor [62, 63], which
allowed, for instance, to derive novel uncertainty re-
lations [64, 65], and will also be used in this article.

The paper is organized as follows. In Sec. 2, we
summarize basic facts connected to quantum metrol-
ogy. In Sec. 3, we summarize entanglement theory.
In Sec. 4, we show how to transform the optimiza-
tion over decompositions of the density matrix into
an optimization of an expectation value over separable
states. In Sec. 5, we show some applications of these
ideas for the Wasserstein distance. We define a novel
type of Wasserstein distance based on an optimization
over separable states. In Sec. 6, we define variance-like
quantities from the Wasserstein distance. In Sec. 7,
we discuss how such a Wasserstein distance and the
variance-like quantity mentioned above can be used to
construct entanglement criteria. In Sec. 8, we intro-
duce further quantities similar to the formulas giving
the Wasserstein distance, but they involve the vari-
ance of two-body quantities rather than the second
moment. In Sec. 9, we consider an optimization over
various subsets of the quantum states. In Sec. 10,
we extend our ideas to various generalized quantum
Fisher information quanitities.

2 Quantum metrology
Before discussing our main results, we review some of
the fundamental relations of quantum metrology. A
basic metrological task is estimating the small angle
θ in a unitary dynamics

Uθ = exp(−iHθ), (6)

where H is the Hamiltonian. The precision is limited
by the Cramér-Rao bound as [66, 67, 68, 69, 70, 58,
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60, 61, 71, 72, 59, 73]

(∆θ)2 ≥ 1
νFQ[ϱ, H] , (7)

where the factor 1/ν in Eq. (7) is the statistical
improvement when performing independent measure-
ments on identical copies of the probe state, and the
quantum Fisher information is defined by the formula
[66, 67, 68, 69, 70]

FQ[ϱ, H] = 2
∑
k,l

(λk − λl)2

λk + λl
|⟨k|H|l⟩|2, (8)

where the density matrix has the eigendecomposition

ϱ =
∑

k

λk|k⟩⟨k|. (9)

The quantum Fisher information is bounded from
above by the variance and from below by the Wigner-
Yanase skew information as

4Iϱ(H) ≤ FQ[ϱ, H] ≤ 4(∆H)2
ϱ, (10)

where if ϱ is pure then the equality holds for both
inequalities [68]. For clarity, we add that the variance
is defined as

(∆H)2
ϱ = ⟨H2⟩ϱ − ⟨H⟩2

ϱ, (11)

where the expectation value is calculated as

⟨H⟩ϱ = Tr(ϱH). (12)

The quantum Fisher information is the convex roof
of the variance times four [62, 63, 71]

FQ[ϱ, H] = 4 min
{pk,|Ψk⟩}

∑
k

pk(∆H)2
Ψk

, (13)

where the optimization is carried out over pure state
decompositions of the type

ϱ =
∑

k

pk|Ψk⟩⟨Ψk|. (14)

For the probabilities pk ≥ 0 and
∑

k pk = 1 hold, and
the pure states |Ψk⟩ are not assumed to be orthogonal
to each other.

Apart from the quantum Fisher information, the
variance can also be given as a roof [62, 63]

(∆H)2
ϱ = max

{pk,|Ψk⟩}

∑
k

pk(∆H)2
Ψk

. (15)

Note that convex and concave roofs of more compli-
cated expressions can also be computed. For instance,

min
{pk,|Ψk⟩}

∑
k

pk

N∑
n=1

(∆Hn)2
Ψk

≥ 1
4

N∑
n=1

FQ[ϱ, Hn],

(16)

and the expression

max
{pk,|Ψk⟩}

∑
k

pk

N∑
n=1

(∆Hn)2
Ψk

≤
N∑

n=1
(∆Hn)2

ϱ, (17)

are the convex and concave roofs, respectively, of the
sum of several variances over the decompositions of ϱ
given in Eq. (14). They play a role in the derivation of
entanglement conditions [64], and will also appear in
our results about the quantum Wasserstein distance.
We add that there is an equality in Eq. (17) for N = 2
[74, 75].

Finally, we note that the quantum Fisher informa-
tion can also be given with a minimization over purifi-
cations, which has been used, for instance, to study
quantum metrology in noisy systems [76, 77, 78]. The
relation of this finding to the expression in Eq. (13)
is discussed in Ref. [79].

3 Entanglement theory
Next, we review entanglement theory [55, 56, 57]. A
bipartite quantum state is separable if it can be given
as [80] ∑

k

pk|Ψk⟩⟨Ψk| ⊗ |Φk⟩⟨Φk|, (18)

where pk are for the probabilities, |Ψk⟩ and |Φk⟩ are
pure quantum states. We will denote the set of sepa-
rable states by S. The mixture of two separable states
is also separable, thus the set S is convex. If a quan-
tum state cannot be written as Eq. (18) then it is
called entangled.

A relevant subset of separable states are the sym-
metric separable states, which can be given as [81, 82]∑

k

pk|Ψk⟩⟨Ψk| ⊗ |Ψk⟩⟨Ψk|. (19)

We will denote the set of symmetric separable states
by S ′. The mixture of two symmetric separable states
is also symmetric and separable, thus the set S′ is also
convex. Clearly

S ′ ⊂ S. (20)

For such states for the expectation value

⟨Ps⟩ = 1 (21)

holds, where Ps is the projector to the symmet-
ric subspace defined by the basis vectors |nn⟩ and
(|nm⟩ + |mn⟩)/

√
2 for n ̸= m. Equivalently, any state

in S′ fulfills
F12ϱ = ϱF12 = ϱ, (22)

where F12 is the flip operator for which

F12|m⟩ ⊗ |n⟩ = |n⟩ ⊗ |m⟩ (23)

for all m, n.
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The set of quantum states with a positive partial
transpose (PPT) P consists of the states for which

ϱTk ≥ 0 (24)

holds for k = 1, 2, where Tk is a partial transposition
according to the kth subsystem. P is clearly a convex
set. Moreover, all separable states given in Eq. (18)
fulfill Eq. (24), thus

P ⊃ S (25)

holds. For two qubits and for a qubit-qutrit system,
i.e., for 2 × 2 and 2 × 3 systems the set of PPT states
equals the set of separable states [83, 84, 85].

It is generally very difficult to decide whether a
state is separable or not, while it is very simple to
decide whether the condition given in Eq. (24) is ful-
filled. Such conditions can be even part of semidefinite
programs used to solve various optimization problems
(e.g., Ref. [86]). Thus, often the set of PPT quantum
states, P is used instead of the separable states. Since
for small systems P = S, optimization problems over
separable states can be solved exactly for those cases.
For larger systems, by optimizing over states in P in-
stead of states in S, we get lower or upper bounds.

Finally, we will define the set of symmetric PPT
states P ′. States in this set are symmetric, thus
Eqs. (21) and (22) hold. For the various sets men-
tioned above, we have the relation

S ′ ⊂ P ′ ⊂ P, (26)

while for 2 × 2 and 2 × 3 systems, we have P ′ = S′.
Convex roofs and concave roofs play also a cen-

tral role in entanglement theory. The entanglement of
formation is defined as a convex roof over pure com-
ponents of the von Neumann entropy of the reduced
state [87, 88]

EF (ϱ) = min
{pk,|Ψk⟩}

∑
k

pkEE(Ψk), (27)

where the optimization is over the decompositions
given in Eq. (14), and the entanglement entropy of
the pure components is given as

EE(Ψk) = S[TrA(Ψk)], (28)

where S is the von Neumann entropy. EF (ϱ) is the
minimum entanglement needed to create the state.
On the other hand, the entanglement of assistance is
obtained as a concave roof [89, 90]

EA(ϱ) = max
{pk,|Ψk⟩}

∑
k

pkEE(Ψk). (29)

The above quantities correspond to the following
scenario. Let us assume that the bipartite quantum
state ϱ living on parties A and B is realized as the
reduced state of a pure state living on parties A, B

and C. Let us assume that party C makes a von Neu-
mann measurement resulting in a state |Ψk⟩ on A and
B, and it sends the measurement result k to A and
B. After repeating this on many copies of the three-
partite state, the average entanglement of A and B
will be ∑

k

pkEE(Ψk), (30)

where pk is the probability of the outcome k and and
for the |Ψk⟩ states Eq. (14) holds. If party C wants
to help the parties A and B to have a large average
entanglement, then Eq. (30) can reach the entangle-
ment of assistance given in Eq. (29). On the other
hand, the average entanglement is always larger than
or equal to the entanglement of formation given in
Eq. (27).

Next, we will introduce an entanglement condition
based on the sum of several variances [91, 92, 93, 94],
which will be used later in the article. Let us con-
sider a full set of traceless observables {Gn}d2−1

n=1 for
d-dimensional systems fulfilling

Tr(GnGn′) = 2δnn′ . (31)

Any traceless Hermitian observable can be obtained
as a linear combination of Gn. In other words, Gn are
the SU(d) generators. It is known that for pure states
(see e.g., Ref. [94])

d2−1∑
n=1

(∆Gn)2 = 2(d − 1) (32)

holds. Due to the concavity of the variance it follows
that for mixed states we have [94]

d2−1∑
n=1

(∆Gn)2 ≥ 2(d − 1). (33)

Let us now consider a d × d system. For a product
state, |Ψ⟩ ⊗ |Φ⟩, we obtain [91, 94]

d2−1∑
n=1

[∆(GT
n ⊗ 1 − 1 ⊗ Gn)]2Ψ⊗Φ

=
d2−1∑
n=1

(∆GT
n )2

Ψ +
d2−1∑
n=1

(∆Gn)2
Φ

= 4(d − 1), (34)

where in the last inequality we used that for pure
states Eq. (32) holds. We also used the fact that if

{Gn}d2−1
n=1 is a full set of observables with the prop-

erties mentioned above, then {GT
n }d2−1

n=1 is also a full
set of such observables. Then, for bipartite separable
states given in Eq. (18) [91, 92, 93, 94]

d2−1∑
n=1

[∆(GT
n ⊗ 1 − 1 ⊗ Gn)]2 ≥ 4(d − 1) (35)
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holds due to the concavity of the variance. Any state
that violates the inequality in Eq. (35) is entangled.
The left-hand side of Eq. (35) is zero for the maxi-
mally entangled state

|Ψme⟩ = 1√
d

d−1∑
k=0

|k⟩|k⟩. (36)

Thus, we say that the criterion given in Eq. (35) de-
tects entangled states in the vicinity of the state given
in Eq. (36).

Let us consider the d = 2 case concretely. Let us
choose {Gn}3

n=1 = {σx, σy, σz}. Equation (35) can
rewritten as

[∆(σx ⊗ 1 − 1 ⊗ σx)]2

+ [∆(σy ⊗ 1 + 1 ⊗ σy)]2

+ [∆(σz ⊗ 1 − 1 ⊗ σz)]2 ≥ 4, (37)

where σl are Pauli spin matrices defined as

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =
(

+1 0
0 −1

)
. (38)

The left-hand side of the inequality given in Eq. (37)
is zero for the state

1√
2

(|00⟩ + |11⟩). (39)

We can have a similar construction with only three
operators for any system size. Let us consider the
usual angular momentum operators jx, jy and jz, liv-
ing in a d-dimensional system, fulfilling

j2
x + j2

y + j2
z = j(j + 1)1, (40)

where d = 2j+1. In particular, let us define the matrix
[95]

jz = diag(−j, −j + 1, ..., j − 1, j). (41)

Then, we need the ladder operators

(j+)m,n = δm,n+1
√

j(j + 1) − (j − n)(j + 1 − n)
(42)

and j− = j†
+, where 1 ≤ m, n ≤ d and δkl is the well-

known Kronecker delta. Then, we define the x and y
components as

jx = j+ + j−

2 , jy = j+ − j−

2i
. (43)

After clarifying the operators used, we need the un-
certainty relation

(∆jx)2 + (∆jy)2 + (∆jz)2 ≥ j, (44)

which is true for all quantum states. Based on
Eq. (44), it can be proved that for separable states

we have [96, 97, 98, 94]

[∆(jT
x ⊗ 1 − 1 ⊗ jx)]2

+ [∆(jT
y ⊗ 1 − 1 ⊗ jy)]2

+ [∆(jT
z ⊗ 1 − 1 ⊗ jz)]2 ≥ 2j. (45)

c. f. Eq. (37). The left-hand side of the inequality
given in Eq. (45) is zero for the maximally entan-
gled state given in Eq. (36). It is easy to see that
Eq. (45) is a tight inequality for separable states, since
the | + j, +j⟩ state saturates it.

We now present a simple expression for which the
maximum for general states is larger than the maxi-
mum for separable quantum states. We know that for
separable states [99, 97]

⟨(σx ⊗ 1 − 1 ⊗ σx)2 + (σy ⊗ 1 − 1 ⊗ σy)2⟩ ≤ 6,
(46)

while the maximum for quantum states is 8 and it is
taken by the singlet state

1√
2

(|01⟩ − |10⟩). (47)

We add that the product state |01⟩x saturates the
inequality Eq. (46), where |.⟩x is a state given in the
x-basis. That is, for a qubit, the basis states in the
x-basis are

|0⟩x = 1√
2

(|0⟩ + |1⟩),

|1⟩x = 1√
2

(|0⟩ − |1⟩). (48)

Let us now determine a complementary relation.
We will find the minimum for separable states for the
left-hand side of Eq. (46). We need to know that for
separable states

[∆(σx ⊗1−1⊗σx)]2 +[∆(σy ⊗1−1⊗σy)]2 ≥ 2 (49)

holds. This can be seen as follows [91, 92]. We need
to know that for two-qubit quantum states

(∆σx)2 + (∆σy)2 ≥ 2 (50)

holds. For product states |Ψ⟩⊗|Φ⟩, the left-hand side
of Eq. (49) equals the sum of single system variances,
which can be bounded from below as

(∆σx)2
Ψ + (∆σy)2

Ψ + (∆σx)2
Φ + (∆σy)2

Φ ≥ 4. (51)

The bound for separable states given in Eq. (18) is
the same as the bound for product states, since the
variance is a concave function of the state. The left-
hand side of Eq. (49) is zero for the state

1√
2

(|01⟩ + |10⟩). (52)

The product state |11⟩x saturates the inequality
given in Eq. (49) and for that state

⟨σx ⊗ 1 − 1 ⊗ σx⟩ = 0,

⟨σy ⊗ 1 − 1 ⊗ σy⟩ = 0 (53)
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hold. Thus, for separable states

⟨(σx ⊗ 1 − 1 ⊗ σx)2 + (σy ⊗ 1 − 1 ⊗ σy)2⟩ ≥ 2 (54)

holds and it is even a tight inequality for separable
states, c. f. Eq. (46).

4 Optimization over the two-copy
space
In this section, we first review the formalism that
maps the optimization over the decompositions of the
density matrix to an optimization of an operator ex-
pectation value over bipartite symmetric separable
quantum states with given marginals [100] 2. Then,
we show that the same result is obtained if the opti-
mization is carried out over general separable quan-
tum states rather than symmetric separable states.

We start from writing the variance of a pure state
|Ψ⟩ as an operator expectation value acting on two
copies as

(∆H)2
Ψ = Tr(Ω|Ψ⟩⟨Ψ| ⊗ |Ψ⟩⟨Ψ|), (55)

where we define the operator

Ω = H2 ⊗ 1 − H ⊗ H. (56)

Based on Eq. (55), the expression of the quantum
Fisher information given in Eq. (13) can be rewritten
as [62, 100]

FQ[ϱ, H] =

4 min
{pk,|Ψk⟩}

∑
k

pkTr[Ω(|Ψk⟩⟨Ψk|)⊗2],

s. t. ϱ =
∑

k

pk|Ψk⟩⟨Ψk|. (57)

The sum can be moved into the trace and we obtain

FQ[ϱ, H] =

4 min
{pk,|Ψk⟩}

Tr
{

Ω
[∑

k

pk(|Ψk⟩⟨Ψk|)⊗2

]}
,

s. t. ϱ =
∑

k

pk|Ψk⟩⟨Ψk|. (58)

On the right-hand side in Eq. (58) in the square
bracket, we can recognize a mixed state living in the
two-copy space

ϱ12 =
∑

k

pk|Ψk⟩⟨Ψk| ⊗ |Ψk⟩⟨Ψk|, (59)

2For a reference in the literature, see Eq. (67) in Ref. [62] and
Eqs. (S23)-(S25) in Ref. [100]. In Eqs. (S23)-(S25) in Ref. [100],
there are some additional constraints for the expectation values
⟨Oi⟩ϱ, where Oi are some operators. For our discussion, they
are not needed.

States given in Eq. (59) are symmetric separable
states, thus ϱ12 ∈ S ′. We can rewrite the optimiza-
tion in Eq. (58) as an optmization over symmetric
separable states given in Eq. (59) as

FQ[ϱ, H] = min
ϱ12

4Tr(Ωϱ12),

s. t. ϱ12 ∈ S ′,

Tr2(ϱ12) = ϱ. (60)

Due to the optimization over symmetric separable
states, Tr1(ϱ12) = ϱ is fulfilled without adding it as
an explicit constraint.

Equation (60) contains an optimization over sym-
metric separable states, which cannot be computed
directly. However, we can consider an optimization
over a larger set, the set of symmetric PPT states,
which leads to an expression that can be obtained nu-
merically using semidefinite programming [101]

F (PPT)
Q [ϱ, H] = min

ϱ12
4Tr(Ωϱ12),

s. t. ϱ12 ∈ P ′,

Tr2(ϱ12) = ϱ. (61)

In general, the relation

F (PPT)
Q [ϱ, H] ≤ FQ[ϱ, H] (62)

holds, while for two qubits we have an equality, since
for that system size S ′ = P ′, as we discussed in Sec. 3.

Let us now change the operator to be optimized,
making it permutationally symmetric. Equation (60)
can be rewritten as

FQ[ϱ, H] = min
ϱ12

2Tr[(H ⊗ 1 − 1 ⊗ H)2ϱ12],

s. t. ϱ12 ∈ S ′,

Tr2(ϱ12) = ϱ. (63)

We will now show that the expression in Eq. (63)
remains true if we change the set over which we have
to optimize to the set of separable states.

Observation 1. The quantum Fisher information
can be obtained as an optimization over separable
states as

FQ[ϱ, H] = min
ϱ12

2Tr[(H ⊗ 1 − 1 ⊗ H)2ϱ12],

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = ϱ. (64)

Proof. Using

Tr[(H ⊗ 1 − 1 ⊗ H)2ϱ12]
= 2Tr(H2ϱ) − 2Tr[(H ⊗ H)ϱ12], (65)
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the right-hand side of Eq. (64) can be reformulated as

4Tr(H2ϱ) − 4 max
ϱ12

Tr[(H ⊗ H)ϱ12],

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = ϱ. (66)

Due to the permutational invariance of H ⊗ H and
that both marginals must be equal to ϱ, if a separa-
ble state given in Eq. (18) maximizes the correlation
⟨H ⊗ H⟩, then the separable state∑

k

pk|Φk⟩⟨Φk| ⊗ |Ψk⟩⟨Ψk|. (67)

also maximizes the correlation. Then, the mixture of
the above two separable states also maximize the cor-
relation with the given marginals, which can always
be written as

ϱ12 =
M∑

k=1
p̃k|Ψ̃k⟩⟨Ψ̃k| ⊗ |Ψ̃πk

⟩⟨Ψ̃πk
|, (68)

where πk for k = 1, 2, .., M is a permutation of
1, 2, ..., M for some M. Based on our arguments, it
is sufficient to look for the separable state that max-
imizes ⟨H ⊗ H⟩ in the form Eq. (68), and p̃k ≥ 0,∑

k p̃k = 1. Then, the correlation can be given as

Tr[(H ⊗ H)ϱ12] =
M∑

k=1
p̃khkhπk

, (69)

where we define the expectation values of H on |Ψ̃k⟩
as

hk = Tr(H|Ψ̃k⟩⟨Ψ̃k|). (70)
Based on the Cauchy-Schwarz inequality we have∑

k

p̃khkhπk
≤
√∑

k

p̃kh2
k

∑
k

p̃kh2
πk

≤ max
(∑

k

p̃kh2
k,
∑

k

p̃kh2
πk

)
. (71)

Thus, when we maximize Tr[(H ⊗ H)ϱ12] over sep-
arable states with the constraints for the marginals,
the maximum is taken by a symmetric separable state
given in Eq. (59). In this case both inequalities are
saturated in Eq. (71). ■

Based on Eq. (15), we can obtain the variance also
as a result of an optimization over a two-copy space.

Observation 2. The variance can also be obtained
as an optimization over symmetric separable states as

(∆H)2 = max
ϱ12

1
2Tr[(H ⊗ 1 − 1 ⊗ H)2ϱ12],

s. t. ϱ12 ∈ S ′,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = ϱ. (72)

Example 1. Note that if we replace the set of sym-
metric separable states by the set of separable states
in Eq. (72), then we get a different quantity, which
can be larger in some cases than (∆H)2. Let us see
a concrete example. For instance, if ϱ = 1/2 then
among symmetric separable states, the maximum is 1
and it is attained by the state

ϱ12 = 1
4
(
|00⟩⟨00| + |11⟩⟨11| + 2|Ψ+⟩⟨Ψ+|

)
, (73)

where the Bell state |Ψ+⟩ is given as

|Ψ+⟩ = 1√
2

(|01⟩ + |10⟩). (74)

The state given in Eq. (73) can be decomposed into
the mixture of symmetric product states as

1
4(|α+1⟩⟨α+1|+ |α−1⟩⟨α−1|+ |α+i⟩⟨α+i|+ |α−i⟩⟨α−i|),

(75)
where the symmetric product state is defined as

|αq⟩ = (|0⟩ + q|1⟩) ⊗ (|0⟩ + q|1⟩). (76)

Among separable states, the maximum is 2 and it is
attained by the state

ϱ12 = 1
2 (|01⟩⟨01| + |10⟩⟨10|) . (77)

Note that ϱ12 given in Eq. (77) is not symmetric.

5 Quantum Wasserstein distance
based on a separable coupling
Next, we will connect our result in Observation 1 to
results available in the literature mentioned in the in-
troduction. We will consider the quantum Wasser-
stein distance such that the optimization takes place
over separable states rather than over general bipar-
tite quantum states. We will consider such modifica-
tions of DGMPC(ϱ, σ)2 and DDPT(ϱ, σ)2, and examine
their properties.

Our first finding concerning the GMPC distance is
the following.

Definition 3. Modifying the definition in Eq. (5)
we can define a new type of GMPC distance such that
we restrict the optimization over separable states as

DGMPC,sep(ϱ, σ)2

= 1
2 min

ϱ12

N∑
n=1

Tr[(Hn ⊗ 1 − 1 ⊗ Hn)2ϱ12],

s. t. ϱ12 ∈ S,

Tr1(ϱ12) = ϱ,

Tr2(ϱ12) = σ. (78)
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We can see immediately two relevant properties of
the newly defined distance. Observation 1 showed
that for N = 1 for a given H1

DGMPC,sep(ϱ, ϱ)2 = 1
4FQ[ϱ, H1] (79)

holds. Moreover, based on Eqs. (5) and (78), we can
immediately see that

DGMPC(ϱ, σ)2 ≤ DGMPC,sep(ϱ, σ)2, (80)

since on the left-hand side of Eq. (80) there is a min-
imization over a larger set of quantum states than on
the right-hand side. Based on Eqs. (79) and (80), it
follows that for the self-distance for N = 1 for a given
H1 we obtain

DGMPC(ϱ, ϱ)2 ≤ 1
4FQ[ϱ, H1]. (81)

Now, our goal is to give an optimal transport
map (plan) corresponding to an optimal coupling of
DGMP C,sep(ϱ, σ)2. Note that there can be several op-
timal couplings. We look for a CPTP map Φ corre-
sponding to an optimal separable coupling ϱ12. Let us
assume that an optimal separable coupling equals the
separable state given in Eq. (18). Based on Defini-
tion 3, it has the following marginals. We obtain ϱ as
in Eq. (14), and for the state σ

σ =
∑

k

pk|Φk⟩⟨Φk|, (82)

holds. Let us consider the map [46]

Φ(X) =
∑

k

BkXB†
k. (83)

where the Kraus operators are given as

Bk = √
pkAkϱ−1/2, (84)

and ϱ−1 is the inverse of ϱ on its support.
For our particular transport problem, let us choose

Ak = |Φk⟩⟨Ψk|. (85)

It is clear that Φ is completely positive and it is trace
preserving, since∑

k

B†
kBk =

∑
k

pkϱ−1/2|Ψk⟩⟨Φk|Φk⟩⟨Ψk|ϱ−1/2

= ϱ−1/2
∑

k

pk|Ψk⟩⟨Ψk|ϱ−1/2

= ϱ−1/2ϱϱ−1/2 = 1. (86)

Since the map transforms ϱ to σ

Φ(ϱ) =
∑

k

√
pk|Φk⟩⟨Ψk|ϱ−1/2ϱϱ−1/2|Ψk⟩⟨Φk|√pk

=
∑

k

pk|Φk⟩⟨Φk| = σ, (87)

the CPTP map Φ given in Eq. (83) gives the optimal
transport map we were looking for.

Let us see some properties of the map we have just
found. If |Ψk⟩ are pairwise orthogonal to each other
then

Bk = Ak = |Φk⟩⟨Ψk| (88)

holds. In this case, the map can be realized by a von
Neumann measurement in the basis given by {|Ψk⟩},
with a subsequent unitary that transforms |Ψk⟩ to
|Φk⟩. It is instructive to look at the action of the map
on the state

ϱ0 =
∑

k

pk|Ψk⟩⟨Ψk|1 ⊗ |Ψk⟩⟨Ψk|2. (89)

Then, we obtain the optimal coupling ϱ12 as

(1 ⊗ Φ)(ϱ0) =
∑

k

pk|Ψk⟩⟨Ψk|1 ⊗ |Φk⟩⟨Φk|2. (90)

Hence, for every map of given by Eqs. (83), (84) and
(85) there is a corresponding coupling.

In summary, if we restrict the optimization for sepa-
rable states, then when computing DGMPC,sep(ϱ, σ)2,
for all ϱ and σ, there is a transport map correspond-
ing to all optimal couplings. Note that this was not
the case for DGMPC(ϱ, σ)2.

Let us now define another distance based on an op-
timization over separable states.

Definition 4. Based on the definition of
DDPT(ϱ, σ)2 given in Eq. (1), we can also define

DDPT,sep(ϱ, σ)2

= 1
2 min

ϱ12

N∑
n=1

Tr[(HT
n ⊗ 1 − 1 ⊗ Hn)2ϱ12],

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱT ,

Tr1(ϱ12) = σ. (91)

As an important property of DDPT,sep(ϱ, σ)2, we
can see that

DDPT(ϱ, σ)2 ≤ DDPT,sep(ϱ, σ)2 (92)

holds, since on the left-hand side of Eq. (92) there is a
minimization over a larger set of quantum states than
on the right-hand side.

Let us see now, what kind of map corresponds to
an optimal separable coupling ϱ12, when we calculate
DDPT,sep(ϱ, σ)2. Let us assume that an optimal sepa-
rable coupling is of the form

ϱ12 =
∑

k

pk|Ψ∗
k⟩⟨Ψ∗

k|1 ⊗ |Φk⟩⟨Φk|2. (93)

Based on Definition 4, we obtain ϱ as in Eq. (14), and
σ as in Eq. (82). It turns out that the map we need is
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just Φ(ϱ) defined in Eq. (83). It is instructive to look
at the action of the map on the state

ϱT1
0 =

∑
k

pk|Ψ∗
k⟩⟨Ψ∗

k|1 ⊗ |Ψk⟩⟨Ψk|2, (94)

where ϱ0 is defined in Eq. (89). Then, we obtain the
optimal coupling ϱ12 as

(1 ⊗ Φ)(ϱT1
0 ) =

∑
k

pk|Ψ∗
k⟩⟨Ψ∗

k|1 ⊗ |Φk⟩⟨Φk|2. (95)

Hence, for every map of given by Eqs. (83), (84) and
(85) there is a corresponding coupling.

It is instructive to relate our results to those of
Ref. [46]. In Ref. [46], the role of ϱT1

0 is played by
the purification. Moreover, if we compute the self-
distance and thus ϱ = σ, the map given in Eq. (83) is
not the identity map. On the other hand, in Ref. [46]
the map was the identity map in that case.

Interestingly, the two different distance measures,
defined with the transpose and without it, respec-
tively, are equal to each other.

Observation 3. The two quantum Wasserstein
distance measures are equal to each other

DDPT,sep(ϱ, σ)2 = DGMPC,sep(ϱ, σ)2. (96)

Proof. We need to know that for two matrices X
and Y acting on a bipartite system

Tr(XY ) = Tr(XTk Y Tk ) (97)

holds for k = 1, 2. Then, from Eq. (78) it follows that

DGMPC,sep(ϱ, σ)2

= 1
2 min

ϱ12

N∑
n=1

Tr[(HT
n ⊗ 1 − 1 ⊗ Hn)2ϱT1

12 ],

s. t. ϱT 1
12 ∈ S,

Tr2(ϱ12) = ϱT ,

Tr1(ϱ12) = σ. (98)

Then, we arrive at Eq. (91) by noticing that

ϱT1
12 ∈ S (99)

holds if and only if

ϱ12 ∈ S (100)

holds. ■
It is instructive to obtain a quantum state that

maximizes DDPT,sep(ϱ, ϱ)2 and DDPT(ϱ, ϱ)2 for N = 1
for a given H1 as follows. We know that

Iϱ(H1) ≤ FQ[ϱ, H1]/4 ≤ (∆H1)2
ϱ ≤ 1

4(hmax − hmin)2

(101)
holds. The first two inequalities are based on Eq. (10).
The third one can be obtained as follows. Simple
algebra shows that for the state

|Ψopt⟩ = 1√
2

(|hmin⟩ + |hmax⟩), (102)

Figure 1: Geometric representation of the quantum Wasser-
stein distance between a pure state ϱ and a mixed state σ
given in Example 2 for N = 1 with operator H1. In Eq. (105),
the Wasserstein distance square is 1/2 times the sum of three
terms, corresponding to the two uncertainties and (⟨H1⟩ϱ −
⟨H1⟩σ)2. Thus, not only the AB distance matters, but the
variances computed for the two states. The relevant points
are A(⟨H1⟩ϱ, 0, 0), B(⟨H1⟩σ, 0, 0), A′(⟨H1⟩ϱ,

√
(∆H1)2

ϱ, 0)
and B′(⟨H1⟩σ, 0,

√
(∆H1)2

σ). The quantum Wasserstein dis-
tance equals 1/

√
2 times the usual Euclidean distance be-

tween A′ and B′.

where |hmin⟩ (|hmax⟩) is the eigenstate of H1 with the
minimal eigenvalue hmin (maximal eigenvalue hmax) of
H1, the variance (∆H1)2 is maximal, and all inequal-
ities of Eq. (101) are saturated. Hence, the maximal
self-distance is achieved by |Ψopt⟩

DDPT,sep(|Ψopt⟩⟨Ψopt|, |Ψopt⟩⟨Ψopt|)2

= DDPT(|Ψopt⟩⟨Ψopt|, |Ψopt⟩⟨Ψopt|)2

= 1
4(hmax − hmin)2. (103)

Let us calculate DGMPC,sep(ϱ, σ)2 and the other
quantum Wasserstein distance measures for some con-
crete examples.

Example 2. Let us consider the case when ϱ =
|Ψ⟩⟨Ψ| is a pure state of any dimension and σ is
an arbitrary density matrix of the same dimension.
Then, when computing the various Wasserstein dis-
tance measures between ϱ and σ, the state ϱ12 in the
optimization is constrained to be the tensor product
of the two density matrices. Hence, for the distance
from a pure state,

DDPT(|Ψ⟩⟨Ψ|, σ)2

= DDPT,sep(|Ψ⟩⟨Ψ|, σ)2

= DGMPC,sep(|Ψ⟩⟨Ψ|, σ)2

= DGMPC(|Ψ⟩⟨Ψ|, σ)2

=
N∑

n=1

⟨H2
n⟩ϱ + ⟨H2

n⟩σ

2 − ⟨Hn⟩ϱ⟨Hn⟩σ

(104)
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holds. The last expression in Eq. (104) can be written
also as

1
2

N∑
n=1

[
(∆Hn)2

ϱ + (∆Hn)2
σ + (⟨Hn⟩ϱ − ⟨Hn⟩σ)2] ,

(105)
see Fig. 1.

Example 3. Let us consider the single-qubit states

ϱ = σ = 1
21. (106)

Let us take N = 1 and H1 = σz. Then, when com-
puting DGMPC,sep(ϱ, σ)2, the optimum is attained by
the separable state

ϱ12 = 1
2 |00⟩⟨00| + 1

2 |11⟩⟨11|, (107)

and for the self-distance we have

DGMPC,sep

(
1
21,

1
21
)2

= 0 (108)

holds. If H1 is a different operator then the state
ϱ12 corresponding to the minimum will be different.
It can be obtained from the state given in Eq. (107)
with local unitaries. For instance, for H1 = σx, the
optimum is attained by the separable state

ϱ12 = 1
2 |00⟩⟨00|x + 1

2 |11⟩⟨11|x. (109)

Example 4. Let us consider the two-qubit states
ϱ = σ = Dp, where the diagonal state is defined as

Dp =
(

p 0
0 1 − p

)
. (110)

Let us take N = 1 and H1 = σz. When computing
DGMPC,sep(ϱ, σ)2, he optimum is reached by the bi-
partite separable state

ϱ12 = p|00⟩⟨00| + (1 − p)|11⟩⟨11|. (111)

The self-distance is zero for all p

DGMPC,sep(Dp, Dp)2 = 0. (112)

Example 5. Let us consider the two single-qubit
mixed states

ϱ = 1
2 |1⟩⟨1|x + 1

2 · 12 , (113)

and
σϕ = e−i

σy
2 ϕϱe+i

σy
2 ϕ, (114)

ϕ is a real parameter. For N = 1, H1 = σz we plotted
DDPT,sep(ϱ, σϕ)2 and DDPT(ϱ, σϕ)2 in Fig. 2. The de-
tails of the numerical calculations are in Appendix A.
For ϕ = 0, σϕ = ϱ, hence it this case the two types of
distance equal the corresponding types of self-distance
of ϱ. That is, based on Eq. (3), we have

DDPT(ϱ, ϱ)2 = Iϱ(H1) = 1 −
√

3
2 ≈ 0.1340, (115)

Figure 2: (solid) DDPT,sep(ϱ, σϕ)2 and (dashed)
DDPT(ϱ, σϕ)2 for the states given in Eqs. (113) and
(114). The two curves coincide with each other on the
right-hand side of the vertical dotted line, where ϕ ≥ ϕ0 and
ϕ0 is given in Eq. (120).

and based on Eq. (79) and taking into account Ob-
servation 3, we have

DDPT,sep(ϱ, ϱ)2 = FQ[ϱ, H1]
4 = 1

4 . (116)

Here, we used the formula giving the quantum Fisher
information with the variance for pure states mixed
with white noise as [102, 103, 71, 104]

FQ

[
p|Ψ⟩⟨Ψ| + (1 − p)1

d
, H

]
= p2

p + 2(1 − p)d−1 4(∆H)2
Ψ, (117)

where d is the dimension of the system. For ϕ = π/2,

σπ/2 = 1
2 |1⟩⟨1| + 1

2 · 12 . (118)

Numerics show that

DDPT,sep(ϱ, σϕ)2 = DDPT(ϱ, σϕ)2 (119)

for

ϕ ≥ ϕ0 ≈ 0.2946π, (120)

while for smaller ϕ an entangled ϱ12 is cheaper than
a separable one.

We can relate DGMPC,sep(ϱ, σ)2 to the quantum
Fisher information.

Observation 4. For the modified GMPC distance
defined in Eq. (78) the inequality

DGMPC,sep(ϱ, σ)2 ≥ 1
8

N∑
n=1

FQ[ϱ, Hn]+1
8

N∑
n=1

FQ[σ, Hn]

(121)
holds, and for ϱ = σ and for N = 1 we have equality
in Eq. (121).
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Proof. We can rewrite the optimization problem in
Eq. (78) for separable states as

DGMPC,sep(ϱ, σ)2

= 1
2 min

{pk,|Ψk⟩,|Φk⟩}

N∑
n=1

∑
k

pk

[
(∆Hn)2

Ψk
+ (∆Hn)2

Φk

+ (⟨Hn⟩Ψk
− ⟨Hn⟩Φk

)2
]

≥ 1
2

[
min

{pk,|Ψk⟩}

N∑
n=1

∑
k

pk(∆Hn)2
Ψk

+ min
{qk,|Φk⟩}

N∑
n=1

∑
k

qk(∆Hn)2
Φk

]

≥ 1
2

[ N∑
n=1

min
{pk,|Ψk⟩}

∑
k

pk(∆Hn)2
Ψk

+
N∑

n=1
min

{qk,|Φk⟩}

∑
k

qk(∆Hn)2
Φk

]
, (122)

where for the first optimization the decomposition of
ϱ12 is given as Eq. (18), and we have the conditions

Tr2(ϱ12) = ϱ, Tr1(ϱ12) = σ. (123)

For the second optimization, the condition with ϱ is
given in Eq. (14). For the third optimization, the
condition is

σ =
∑

k

qk|Φk⟩⟨Φk|, (124)

where for the probabilities qk ≥ 0 and
∑

k qk = 1
hold. The fourth and fifth optimization are similar
to the second and the third one, however, the order
of the sum and the minimization is exchanged. From
Eq. (122), the statement follows using the formula giv-
ing the quantum Fisher information with the convex
roof of the variance in Eq. (13). ■

In Eq. (122), in the second and third lines we
can see that, when computing DGMPC,sep(ϱ, σ)2, the
quantity to be minimized is a weighted sum contain-
ing the variances of Hn for |Ψk⟩ and |Φk⟩, and the

expression (⟨Hn⟩Ψk
− ⟨Hn⟩Φk

)2
. The two variances,

(∆Hn)2
Ψk

and (∆Hn)2
Φk

, are zero if |Ψk⟩ and |Φk⟩ are

the eigenstates of Hn. The term (⟨Hn⟩Ψk
− ⟨Hn⟩Φk

)2

is zero if

⟨Hn⟩Ψk
= ⟨Hn⟩Φk

(125)

holds.
Based on Example 2 and the proof of Observation 4,

we find that the GMPC distance can be obtained with
an optimization over separable decompositions as

DGMPC,sep(ϱ, σ)2

= min
{pk,|Ψk⟩,|Φk⟩}

∑
k

pkDGMPC,sep(|Ψk⟩, |Φk⟩)2,

(126)

where for the optimization the decomposition of ϱ12 is
given as Eq. (18), and we have the conditions on the
marginals given in Eq. (123). This way, we computed
the distance for mixed states using the a formula for
the distance for pure states and an optimization. An
analogous expressions holds also for DDPT,sep(ϱ, σ)2.

Let us see now the consequences of the above ob-
servations for the self-distance, which, unlike in the
classical case, can be nonzero. It is obtained as

DGMPC,sep(ϱ, ϱ)2 = min
{pk,|Ψk⟩}

N∑
n=1

∑
k

pk(∆Hn)2
Ψk

,

(127)

and the condition for the minimization is given in
Eq. (14). Then, based on Eq. (80), it follows that
the self-distance for the GMPC distance is bounded
from above as

DGMPC(ϱ, ϱ)2 ≤ min
{pk,|Ψk⟩}

N∑
n=1

∑
k

pk(∆Hn)2
Ψk

.

(128)

Let us examine some properties of DGMPC,sep(ϱ, ϱ)2.
From Eq. (127) it follows that for the self-distance for
N = 1 for a given H1

DGMPC,sep(ϱ, ϱ)2 = 0 (129)

holds, if and only if

[ϱ, H1] = 0. (130)

After studying the self-distance, let us look now for
similar relations for the distance between two different
states. We find that for N = 1 for a given H1

DGMPC,sep(ϱ, σ)2 = 0 (131)

holds, if and only if

[ϱ, H1] = [σ, H1] = 0 (132)

is satisfied and if there is {pk, |Ψk⟩, |Φk⟩} correspond-
ing to the optimum such that Eq. (125) holds for all k.
In this case, if H1 has a non-degenerate spectrum then
|Ψk⟩ and |Φk⟩ are the eigenvectors of ϱ, σ and H1, and
thus even [ϱ, σ] = 0 holds. Finally, based on Observa-
tion 3, analogous relations hold for DDPT,sep(ϱ, σ)2.

Let us look for a relation between the distance
and the self-distance. From the first inequality in
Eq. (122), it follows that for any ϱ and σ

DGMPC,sep(ϱ, σ)2 ≥
1
2
[
DGMPC,sep(ϱ, ϱ)2 + DGMPC,sep(σ, σ)2]

(133)

holds.

Accepted in Quantum 2023-09-19, click title to verify. Published under CC-BY 4.0. 11



For a local dimension d > 2, the optimization
over separable states is difficult to carry out numeri-
cally. Thus, it is reasonable to define DDPT,PPT(ϱ, σ)2

and DGMPC,PPT(ϱ, σ)2 that need an optimization over
PPT states rather than separable states. It is possible
to prove that the two new quantities are equal to each
other.

Observation 5. The two quantum Wasserstein
distance measures are equal to each other

DDPT,PPT(ϱ, σ)2 = DGMPC,PPT(ϱ, σ)2. (134)

Proof. We have to follow ideas similar to the ones
in Observation 3. In particular, we need to use that
ϱ12 is a PPT quantum state if and only if ϱT1

12 is a
PPT quantum state. ■

In order to define further Wasserstein distance mea-
sures based on an optimization over other supersets of
separable states, we need to know the separability cri-
terion based on symmetric extensions [105, 106, 107].
A given bipartite state ϱAB is said to have a n : m
symmetric extension if it can be written as the re-
duced state of a multipartite state ϱA1..AnB1..Bm

,
which is symmetric under Ak ↔ Al for all k ̸= l and
under Bk′ ↔ Bl′ for all k′ ̸= l′. If we also require that
the state is PPT for all bipartitions, then the state
has a PPT symmetric extension. The requirement of
having a PPT symmetric extension for n = 1 and
m = 1 is equivalent to the PPT condition, while for
n > 1 or m > 1 the condition is stronger. Bipartite
separable states have such extensions for arbitrarily
large n and m, while the lack of such an extension for
some m and n signals the presence of entanglement.
In particular, a state is separable if and only if there
is an extension for any n and for m = 1.

Let us define DDPT,PPTn(ϱ, σ)2 and
DGMPC,PPTn(ϱ, σ)2 based on an optimization over
quantum states with a PPT symmetric extension for
given n and for m = 1.

DDPT,PPTn(ϱ, σ)2 ≤ DDPT,PPTn′(ϱ, σ)2 (135)

if n′ > n. Based on Observations 3 and 5, we can also
see that

DDPT,PPTn(ϱ, σ)2 = DGMPC,PPTn(ϱ, σ)2 (136)

for every n.

6 Variance-like quantities
When we compare the expression in Eq. (63) defin-
ing the quantum Fisher information and the other
expression in Eq. (72) defining the variance, we can
see that the main difference is that the minimization is
replaced by a maximization. We also showed a similar
relation between the entanglement of formation given
in Eq. (27), and the entanglement of assistance given
in Eq. (29). Based on this observation, we can de-
fine variance-like quantities from the various forms of

quantum Wasserstein distance by replacing the mini-
mization by maximization.

Such a variance-like quantity can be interpreted in
the framework of transport problems as follows. The
quantum Wasserstein distance determines the small-
est cost possible for the transport problem by a min-
imization. The variance-like quantities presented in
this section determine the largest cost possible for the
transport problem. Knowing the largest possible cost
is useful when judging how close the cost of a given
transport plan is to the optimal cost.

Let us now define the first variance-like quantity.
Definition 5. From the GMPC distance with an

optimization restricted over separable states given in
Eq. (78), we obtain the following variance like quan-
tity

VGMPC,sep(ϱ, σ)

= 1
2 max

ϱ12

N∑
n=1

Tr[(Hn ⊗ 1 − 1 ⊗ Hn)2ϱ12],

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = σ. (137)
Clearly, the inequality

VGMPC,sep(ϱ, σ) ≥ DGMPC,sep(ϱ, σ)2 (138)
holds, since since on the left-hand side of Eq. (138)
we maximize over a set of quantum states while on
the right-hand side we minimize over the same set.

We can define analogously VDPT,sep(ϱ, σ),
VGMPC(ϱ, σ), and VDPT(ϱ, σ), modifying the
definition of DDPT,sep(ϱ, σ)2, DGMPC(ϱ, σ)2, and
DDPT(ϱ, σ)2, respectively. In all these cases, a
relation analogous to the one in Eq. (138) can be
obtained.

The value of VGMPC,sep(ϱ, σ) is related to the vari-
ance.

Observation 6. The GMPC variance defined in
Eq. (137) is bounded from below as

VGMPC,sep(ϱ, σ) ≥ 1
2

N∑
n=1

(∆Hn)2
ϱ + (∆Hn)2

σ. (139)

Proof. We can rewrite the expression to be com-
puted for VGMPC,sep(ϱ, σ) as

1
2 max

ϱ12∈S

N∑
n=1

Tr[(Hn ⊗ 1 − 1 ⊗ Hn)2ϱ12]

= 1
2

N∑
n=1

(∆Hn)2
ϱ + (∆Hn)2

σ + (⟨Hn⟩ϱ − ⟨Hn⟩σ)2

− min
ϱ12∈S

Cϱ12 , (140)

where ϱ12 has marginals ϱ and σ, as given in Eq. (123),
and we define

Cϱ12 =
N∑

n=1
⟨Hn ⊗ Hn⟩ϱ12 − ⟨Hn⟩ϱ⟨Hn⟩σ. (141)

Accepted in Quantum 2023-09-19, click title to verify. Published under CC-BY 4.0. 12



Since the product state ϱ ⊗ σ is separable and fulfills
the conditions on the marginals, it is clear that

min
ϱ12∈S

Cϱ12 ≤ Cϱ⊗σ = 0. (142)

Substituting Eq. (142) into Eq. (140), using the fact
(⟨Hn⟩ϱ − ⟨Hn⟩σ)2 ≥ 0, we can prove the observation.
■

We can even obtain an upper bound.
Observation 7. The GMPC variance defined in

Eq. (137) is bounded from above as

VGMPC,sep(ϱ, σ) ≤
N∑

n=1
(∆Hn)2

ϱ + (∆Hn)2
σ

+ ⟨Hn⟩2
ϱ + ⟨Hn⟩2

σ. (143)

Proof. We can find an upper bound for the expres-
sion to be computed for VGMPC,sep(ϱ, σ) as

1
2 max

ϱ12∈S

N∑
n=1

Tr[(Hn ⊗ 1 − 1 ⊗ Hn)2ϱ12]

≤
N∑

n=1
⟨H2

n⟩ϱ + ⟨H2
n⟩σ, (144)

where ϱ12 has marginals ϱ and σ, as given in Eq. (123),
and we used that

H2
n ⊗ 1 + 1 ⊗ H2

n ≥ 2Hn ⊗ Hn. (145)

■
Let us see some concrete examples.
Example 6. Interestingly, the quantity

V := VGMPC,sep(ϱ, σ) (146)

can be larger or smaller than or equal to

V := 1
2 [VGMPC,sep(ϱ, ϱ) + VGMPC,sep(σ, σ)] , (147)

c. f. Eq. (133). We consider N = 1 and H1 = σz. The
three possibilities above are realized by the following
states. For the state

ϱ = |0⟩⟨0|,
σ = diag(0.25, 0.75), (148)

we have V > V. For the following state

ϱ = |0⟩⟨0|,
σ = diag(0.75, 0.25), (149)

we have V = V. Finally, for the following state

ϱ = 1/2,

σ =
(

0.75 0.40
0.40 0.25

)
, (150)

we have V < V. Let us look now for larger systems.
For systems with a local dimension d = 3 and for
H1 = diag(−1, 0, 1), N = 1 and for

ϱ = 1/3,

σ = diag(1, 0, 0), (151)

we have V < V. Note that in all examples where ϱ, σ
and H1 were all diagonal, there is an optimal diagonal
ϱ12, essentially corresponding to the classical case.

The two different variance-like quantities, defined
with the transpose and without it, respectively, are
equal to each other.

Observation 8. The two types of quantum
Wasserstein variance are equal to each other

VDPT,sep(ϱ, σ) = VGMPC,sep(ϱ, σ). (152)

Proof. The proof is analogous to that of Observa-
tion 3. ■

Let us calculate VDPT,sep(ϱ, σ) for some concrete
examples.

Example 7. Let us consider the case when ϱ =
|Ψ⟩⟨Ψ| is a pure state of any dimension and σ is
an arbitrary density matrix of the same dimension.
Then, when computing the various types of quantum
Wasserstein distance and quantum Wasserstein vari-
ance between ϱ and σ, the state ϱ12 in the optimiza-
tion is constrained to be the tensor product of the two
density matrices. Hence, it follows that

VDPT(|Ψ⟩⟨Ψ|, σ) = DDPT(|Ψ⟩⟨Ψ|, σ)2 (153)

holds, and analogous equations hold for the quan-
tities VDPT,sep(|Ψ⟩⟨Ψ|, σ), VGMPC,sep(|Ψ⟩⟨Ψ|, σ), and
VGMPC(|Ψ⟩⟨Ψ|, σ), where the Wasserstein distance
measures for this case are given in Eq. (104).

Example 8. For ϱ = σ = |Ψ⟩⟨Ψ|, and for N = 1
for a given H1 we obtain

VDPT(|Ψ⟩⟨Ψ|, |Ψ⟩⟨Ψ|) = (∆H1)2
Ψ. (154)

Example 9. Let us consider the single-qubit states
given in Eq. (106). Let us take N = 1 and H1 = σz.
Then, when computing VGMPC,sep(ϱ, σ), the optimum
is attained by the separable state

ϱ12 = 1
2 |01⟩⟨01| + 1

2 |10⟩⟨10|, (155)

[c. f. Eq. (107)] and we have

VGMPC,sep

(
1
21,

1
21
)

= 2. (156)

(See also Example 1.) If H1 is a different operator
then the state ϱ12 corresponding to the maximum will
be different. It can be obtained from the state given
in Eq. (155) with local unitaries. For instance, for
H1 = σx, the optimum is reached by the separable
state

ϱ12 = 1
2 |01⟩⟨01|x + 1

2 |10⟩⟨10|x, (157)

where |.⟩x is a state given in the x-basis.
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7 Quantum Wasserstein distance and
entanglement criteria
Example 5 highlighted that in certain cases the mini-
mum for separable states is larger than the minimum
for general states. In this case, entanglement can help
to decrease the quantum Wasserstein distance. In
this section, we analyze the relation of the quantum
Wasserstein distance and entanglement conditions on
the optimal ϱ12 couplings.

First, we make the following simple observation.
Observation 9. If

DDPT,sep(ϱ, σ)2 > DDPT(ϱ, σ)2 (158)

holds then all ϱ12 states that minimize the cost for a
given ϱ and σ, when computing DDPT(ϱ, σ)2, are en-
tangled. In short, all optimal ϱ12 states are entangled.
The situation is analogous if

DGMPC,sep(ϱ, σ)2 > DGMPC(ϱ, σ)2. (159)

Then, all optimal ϱ12 states for a given ϱ and σ, when
computing DGMPC(ϱ, σ)2, are entangled. Thus, we
can even use the quantum Wasserstein distance as an
entanglement criterion detecting entanglement in the
optimal ϱ12 states.

We can even consider conditions with the self-
distance. Based on Eqs. (3), (79), and (96), we find
that for the N = 1 case

DDPT,sep(ϱ, ϱ)2 > DDPT(ϱ, ϱ)2 (160)

is equivalent to a relation between the quantum Fisher
information and the Wigner-Yanase skew information

FQ[ϱ, H1]
4 > Iϱ(H1). (161)

Thus, the condition in Eq. (161) implies that
the optimal ϱ12 states, obtained when computing
DDPT(ϱ, ϱ)2, are all entangled.

Let us now use entanglement criteria to construct
relations for the quantum Wasserstein distance, that
can verify that the coupling ϱ12 is entangled. If the
inequality given in Eq. (35) holds for separable states,
so does the inequality

d2−1∑
n=1

⟨(GT
n ⊗ 1 − 1 ⊗ Gn)2⟩ ≥ 4(d − 1), (162)

since the left-hand side of Eq. (162) is never smaller
than the left-hand side of Eq. (35). Any state that
violates the inequality in Eq. (162) is entangled. It
can be shown that Eq. (162) is a tight inequality for
separable states as follows. Based on Eq. (34), we see
that for pure product states of the form

(|Ψ⟩⟨Ψ|)T ⊗ |Ψ⟩⟨Ψ|, (163)

for the second moments

d2−1∑
n=1

⟨(GT
n ⊗ 1 − 1 ⊗ Gn)2⟩ = 4(d − 1) (164)

holds since for this state

⟨GT
n ⊗ 1 − 1 ⊗ Gn⟩ = 0 (165)

for all n.
Next, we will define a quantum Wasserstein dis-

tance related to the entanglement condition in
Eq. (162).

Observation 10. Let us consider d-dimensional
systems with

Hn = Gn (166)

for n = 1, 2, ..., d2 − 1. If

D
{G1,G2,...,Gd2−1}
DPT (ϱ, σ)2 < 2(d − 1) (167)

holds, then all optimal ϱ12 states are entangled. Here,
for clarity, we give explicitly the observables used to
define the distance in the superscript.

Clearly, since when calculating DDPT,sep(ϱ, σ)2, we
optimize over separable states, we have

D
{G1,G2,...,Gd2−1}
DPT,sep (ϱ, σ)2 ≥ 2(d − 1). (168)

Thus, independently from what ϱ and σ are, their dis-

tance D
{G1,G2,...,Gd2−1}
DPT,sep (ϱ, σ)2 cannot be smaller than

a bound. This is true even if ϱ = σ.
Let us now use another entanglement condition to

construct relations for the quantum Wasserstein dis-
tance that can verify that the coupling is entangled.
We know that the inequality given in Eq. (45) holds
for separable states and it is tight. Based on these,
we can obtain the following bounds on the quantum
Wasserstein distance.

Observation 11. Let us choose the set of opera-
tors as

{Hn} = {jx, jy, jz}. (169)

Then, if the inequality

D
{jx,jy,jz}
DPT (ϱ, σ)2 < j (170)

holds, then all optimal ϱ12 states are entangled.
Clearly, since when calculating DDPT,sep(ϱ, σ)2, we

optimize over separable states, we have

D
{jx,jy,jz}
DPT,sep (ϱ, σ)2 ≥ j. (171)

Thus, again, independently from what ϱ and σ are,

their distance D
{jx,jy,jz}
DPT,sep (ϱ, σ)2 cannot be smaller

than a bound. This is true even if ϱ = σ.
So far we studied the relation of the quantum

Wasserstein distance to entanglement. Next, let us
consider the relation of VDPT(ϱ, σ) and VGMPC(ϱ, σ)
to entanglement.
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Observation 12. If

VDPT,sep(ϱ, σ) < VDPT(ϱ, σ) (172)

holds then all optimal ϱ12 states for a given ϱ and
σ, when computing VDPT(ϱ, σ), are entangled. The
situation is analogous if

VGMPC,sep(ϱ, σ) < VGMPC(ϱ, σ). (173)

Next, we will determine a set of Hn operators that
can be used efficiently to detect entanglement with
the quantum Wasserstein variance. For that, we need
to know that for separable states the inequality given
in Eq. (46) holds.

Observation 13. Let us consider an example with
d = 2 and {Hn} = {σx, σy}. If the condition

V
{σx,σy}

GMPC (ϱ, σ) > 3 (174)

holds, then all optimal ϱ12 states are entangled.
Clearly, since when calculating VDPT,sep(ϱ, σ), we op-
timize over separable states, we have

V
{σx,σy}

GMPC,sep(ϱ, σ) ≤ 3. (175)

Let us see now a complementary relation for
DGMPC(ϱ, σ)2 and DGMPC,sep(ϱ, σ)2. They will use
the same Hn operators that appear in Observation 13.
We need to know that for separable states the inequal-
ity given in Eq. (54) holds.

Observation 14. Let us consider d = 2 and
{Hn} = {σx, σy}. If

D
{σx,σy}
GMPC (ϱ, σ)2 < 1 (176)

then all optimal ϱ12 states are entangled. Clearly,
since when calculating DDPT,sep(ϱ, σ), we optimize
over separable states, we have

D
{σx,σy}
GMPC,sep(ϱ, σ)2 ≥ 1. (177)

Statements analogous to those of Observations 13
and 14 can be formulated, with identical bounds,
for VDPT(ϱ, σ)2, VDPT,sep(ϱ, σ)2, DDPT(ϱ, σ)2, and
DDPT,sep(ϱ, σ)2.

8 Optimization of the variance over
the two-copy space
In this section, we examine the quantity that we
obtain after replacing the second moment by a
variance in the optimization in the definition of
DGMPC,sep(ϱ, σ)2 given in Eq. (78) and in the defini-
tion of VGMPC,sep(ϱ, σ) in Eq. (137). Analogous ideas
work also for the other types of quantum Wasserstein
distance and quantum Wasserstein variance defined
before. We will show that such quantities have inter-
esting properties.

Definition 6. After replacing the second moment
by a variance in the optimization in the definition of
DGMPC,sep(ϱ, σ)2 given in Eq. (78), we define

D̃GMPC,sep(ϱ, σ)2

= 1
2 min

ϱ12

N∑
n=1

[∆(Hn ⊗ 1 − 1 ⊗ Hn)]2ϱ12
,

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = σ. (178)

Let us see some properties of the quantity we have
just introduced. In general, for mixed states,

D̃GMPC,sep(ϱ, σ)2 = DGMPC,sep(ϱ, σ)2

− 1
2
∑

n

(⟨Hn⟩ϱ − ⟨Hn⟩σ)2

(179)

holds, hence clearly

D̃GMPC,sep(ϱ, σ)2 ≤ DGMPC,sep(ϱ, σ)2. (180)

Due to the relation in Eq. (179), for the self-distance
we have

D̃GMPC,sep(ϱ, ϱ)2 = DGMPC,sep(ϱ, ϱ)2, (181)

where DGMPC,sep(ϱ, σ)2 is given in Eq. (78).
We can write the expression to be optimized as

N∑
n=1

[∆(Hn ⊗ 1 − 1 ⊗ Hn)]2ϱ12

=
N∑

n=1
[(∆Hn)2

ϱ + (∆Hn)2
σ] − 2Cϱ12 , (182)

where ϱ12 has marginals ϱ and σ, as given in Eq. (123),
and we define Cϱ12 as in Eq. (141). For pure states,
ϱ = |Ψ⟩⟨Ψ| and σ = |Φ⟩⟨Φ|, we have C = 0, and hence

D̃GMPC,sep(|Ψ⟩⟨Ψ|, |Φ⟩⟨Φ|)2

= 1
2

[
D̃GMPC,sep(|Ψ⟩⟨Ψ|, |Ψ⟩⟨Ψ|)2

+ D̃GMPC,sep(|Φ⟩⟨Φ|, |Φ⟩⟨Φ|)2
]
. (183)

We can present lower bounds on the distance.
Observation 15. The modified GMPC distance

defined in Eq. (178) is bounded from below as

D̃GMPC,sep(ϱ, σ)2 ≥ 1
8

N∑
n=1

FQ[ϱ, Hn]+1
8

N∑
n=1

FQ[σ, Hn],

(184)
while for ϱ = σ we have equality for N = 1 in
Eq. (184).
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Proof. We can rewrite the optimization problem in
Eq. (178) based on Eqs. (122) and (179) as

D̃GMPC,sep(ϱ, σ)2

= 1
2 min

{pk,|Ψk⟩,|Φk⟩}

N∑
n=1

∑
k

pk

[
(∆Hn)2

Ψk
+ (∆Hn)2

Φk

+ (⟨Hn⟩Ψk
− ⟨Hn⟩Φk

)2 − (⟨Hn⟩ϱ − ⟨Hn⟩σ)2
]

≥ 1
2

[
min

{pk,|Ψk⟩}

N∑
n=1

∑
k

pk(∆Hn)2
Ψk

+ min
{qk,|Φk⟩}

N∑
n=1

∑
k

qk(∆Hn)2
Φk

]

≥ 1
2

[ N∑
n=1

min
{pk,|Ψk⟩}

∑
k

pk(∆Hn)2
Ψk

+
N∑

n=1
min

{qk,|Φk⟩}

∑
k

qk(∆Hn)2
Φk

]
, (185)

where we used in the first inequality that for real xk∑
k

pkx2
k ≥

(∑
k

pkxk

)2

(186)

holds due to the fact that f(x) = x2 is convex. In
Eq. (185), in the first optimization the decomposition
of ϱ12 is given as Eq. (18), and we have the conditions
given in Eq. (123). For the second optimization, the
condition is Eq. (14). For the third optimization, the
condition is given in Eq. (124), where for the probabil-
ities qk ≥ 0 and

∑
k qk = 1 hold. The fourth and fifth

optimization are similar to second and the third one,
however, the order of the sum and the minimization
is exchanged. From Eq. (185), the statement follows
using the formula that obtains the quantum Fisher
information with a convex roof of the variance given
in Eq. (13). ■

We can define another variance-like quantity.
Definition 7. Analogously, we can define the

quantity that we obtain after replacing the second
moment by a variance in the optimization in the def-
inition of VGMPC,sep(ϱ, σ)2 in Eq. (137), as

ṼGMPC,sep(ϱ, σ)

= 1
2 max

ϱ12

N∑
n=1

[∆(Hn ⊗ 1 − 1 ⊗ Hn)]2ϱ12
,

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = σ. (187)

Let us see now some properties of ṼGMPC,sep(ϱ, σ).
In general,

ṼGMPC,sep(ϱ, σ) = VGMPC,sep(ϱ, σ)

− 1
2
∑

n

(⟨Hn⟩ϱ − ⟨Hn⟩σ)2 (188)

holds, hence clearly

ṼGMPC,sep(ϱ, σ) ≤ VGMPC,sep(ϱ, σ). (189)

Analogously to Eq. (183), for pure states

ṼGMPC,sep(|Ψ⟩⟨Ψ|, |Φ⟩⟨Φ|)

= 1
2

[
ṼGMPC,sep(|Ψ⟩⟨Ψ|, |Ψ⟩⟨Ψ|)

+ ṼGMPC,sep(|Φ⟩⟨Φ|, |Φ⟩⟨Φ|)
]

(190)

holds.
Example 10. Let us consider the case when

ϱ = |Ψ⟩⟨Ψ| is a pure state of any dimension and σ
is an arbitrary density matrix of the same dimension.
Then, when computing the various types of quantum
Wasserstein distance and quantum Wasserstein vari-
ance between ϱ and σ, the state ϱ12 in the optimiza-
tion is constrained to be the tensor product of the
two density matrices. Hence, based on Eqs. (179) and
(188), it follows that

D̃GMPC,sep(|Ψ⟩⟨Ψ|, σ) =

ṼGMPC,sep(|Ψ⟩⟨Ψ|, σ) = 1
2

N∑
n=1

(∆Hn)2
Ψ + (∆Hn)2

σ

(191)

holds, c. f. Observation 6.
Finally, one can define similarly D̃DPT,sep(ϱ, σ)2,

D̃GMPC(ϱ, σ)2, D̃DPT(ϱ, σ)2, ṼDPT,sep(ϱ, σ),
ṼGMPC(ϱ, σ), and ṼDPT(ϱ, σ).

9 Optimization over other subsets of
physical states
So far we considered Wasserstein distance based on an
optimization over all bipartite physical states, sepa-
rable states, PPT states, and states with a PPT sym-
metric extension considered in Sec. 5. In this section
we examine other convex sets of quantum states. We
will also discuss some relevant couplings. By optimiz-
ing over a convex set different from the ones we have
considered, we will obtain a Wasserstein distance with
a different self-distance.

Let us consider the set of couplings for which the
quantum discord is zero [108, 109, 110]. If we assume
that

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = σ (192)

hold, then an element of the set is of the form

ϱ12 =
∑

k

λk|k⟩⟨k| ⊗ σk, (193)
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where the eigendecomposition of ϱ is given in Eq. (9)
and

σ =
∑

k

λkσk. (194)

Clearly, such states given in Eq. (193) form a convex
set. Such states are called classical-quantum since
in subsystem 1 we have a mixture of states that are
pairwise orthogonal to each other [110]. We will de-
note the set of such states as C1. For such couplings,
the map given in Eq. (83) needs only a von Neumann
measurement.

Another possibility is the quantum-classical states,
which we will denote by C2. Such states are of the
form ∑

k

λ′
kϱk ⊗ |k′⟩⟨k′|, (195)

where the eigendecomposition of σ is

σ =
∑

k

λ′
k|k′⟩⟨k′|, (196)

and for the density matrices ϱk

ϱ =
∑

k

λ′
kϱk (197)

holds. A minimization over C1 or C2 will lead to a
larger value than a minimization over separable cou-
plings. An optimization over C1 or C2 can efficiently
be carried out using semidefinite programming for any
system size. We can also consider the set of states that
are classical-classical, which are the members of both
C1 and C2.

Let us consider now the case of the GMPC self-
distance, when ϱ = σ. Then, a relevant coupling which
is the elements of C1 and C2 is

ϱcc =
∑

k

λk|k⟩⟨k| ⊗ |k⟩⟨k|, (198)

where the eigendecomosition of ϱ is given in Eq. (9).
For the coupling in Eq. (198), for N = 1 the equals∑

k

λk(∆H1)2
|k⟩ ≤ (∆H1)2

ϱ. (199)

So far, we have been obtaining results for the GMPC
distance. Analogous statements hold for the DPT dis-
tance.

Another relevant case is the product state coupling

ϱ12 = ϱ ⊗ σ. (200)

Then, we can define the distances given in Eqs. (5)
and (1) for product states as

DGMPC,prod(ϱ, σ)2 = DDPT,prod(ϱ, σ)2

= 1
2

N∑
n=1

Tr[(Hn ⊗ 1 − 1 ⊗ Hn)2ϱ ⊗ σ]

= 1
2

N∑
n=1

[
(∆Hn)2

ϱ + (∆Hn)2
σ + (⟨Hn⟩ϱ − ⟨Hn⟩σ)2] ,

(201)

Set of
quantum states

GMPC
self-distance

DPT
self-distance

General ≤ FQ[ϱ, H1]/4 Iϱ(H1)
quantum states
PPT states, ≤ FQ[ϱ, H1]/4 ≤ FQ[ϱ, H1]/4
PPTn states
Separable
states

FQ[ϱ, H1]/4 FQ[ϱ, H1]/4

ϱcc given
∑

k λk(∆H1)2
|k⟩

∑
k λk(∆H1)2

|k⟩
in Eq. (198)
Product state (∆H1)2

ϱ (∆H1)2
ϱ

Table 1: Self-distance obtained for the Wasserstein distance
considering an optimization over various subsets of the bi-
partite quantum states for N = 1.

c. f. Eq. (105). For the self-distance, the relation

DGMPC,prod(ϱ, ϱ) = DDPT,prod(ϱ, ϱ) =
N∑

n=1
(∆Hn)2

ϱ

(202)
holds.

In Table 1, we summarized the self-distances ob-
tained for the Wasserstein distance considering an op-
timization over various subsets of the bipartite quan-
tum states and N = 1. For the quantities in the Table,
the inequality given in Eq. (10) holds. As expected, a
minimization over a larger set will not lead to a larger
value and often will lead to a smaller value.

We can consider an optimization over other con-
vex sets of states. For instance, a convex set can be
characterzied by constraints like

(∆Ak)2 ≥ ck (203)

or by the linear constraints

⟨Bk⟩ ≥ dk, (204)

where Ak and Bk are operators, ck and dk are con-
stants. Other possibilities are the convex set of states
with negativity not larger than a given bound [86],
and the convex set of states not violating certain en-
tanglement conditions. These conditions can be in-
corporated into the numerical optimization. We can
also consider the convex set of states with a local hid-
den variable model [55, 56, 57].

10 Alternative definition of the
Wasserstein distance such that the
self-distance equals various generalized
quantum Fisher information quantities
In this section, we will modify the definition of
the Wasserstein distance such that the self-distance
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equals a quantity different from the ones we con-
sidered so far. In particular, we would like that it
equals various generalized quantum Fisher informa-
tion quantities. The Wigner-Yanase skew information
and the quantum Fisher information are two members
of this family.

The basic idea of Refs. [111, 112] is that for each
standard matrix monotone function f : R+ → R+,
a generalized variance and a corresponding quantum
Fisher information are defined. The notion standard
means that f must satisfy

f(1) = 1, (205a)
f(t) = tf(t−1). (205b)

For a review on generalized variances, generalized
quantum Fisher information quantities and covari-
ances see Ref. [113]. Moreover, it is also useful to
define the mean based on f as

mf (a, b) = af

(
b

a

)
(206)

and use it instead of f. The normalization condition
given in Eq. (205a) corresponds to the condition

mf (a, a) = a (207)

for the means. The requirement given in Eq. (205b)
corresponds to

mf (a, b) = mf (b, a). (208)

A list of generalized quantum Fisher information
quantities generated by various well-known means
mf (a, b) can be found in Refs. [111, 112].

Using the normalization suggested by Ref. [62], we
arrive at a family of generalized quantum Fisher in-
formation quantities F f

Q[ϱ, H] such that (i) for pure
states, we have

Ff
Q[|Ψ⟩, H] = 4(∆H)2

Ψ. (209)

(ii) For mixed states, F f
Q[ϱ, H] is convex in the state.

The generalized variance varf
ϱ(H) fulfills the follow-

ing two requirements. (i) For pure states, the gener-
alized variance equals the usual variance

varf
Ψ(H) = (∆H)2

Ψ. (210)

(ii) For mixed states, varf
ϱ(H) is concave in the state.

A family of generalized quantum Fisher information
and generalized variance fulfilling the above require-
ments are [62]

Ff
Q[ϱ, H] = 2

∑
k,l

mf (1, 0)
mf (λk, λl)

(λk − λl)2|Hkl|2,

(211a)

varf
ϱ(H) = 1

2
∑
k,l

mf (λk, λl)
mf (1, 0) |Hkl|2

− 1
2mf (1, 0)

∣∣∣∑λkHkk

∣∣∣2 , (211b)

where the matrix elements of H in the eigenbasis of ϱ
are denoted as

Hkl = ⟨k|H|l⟩. (212)

Ff
Q[ϱ, H]/4 has been called metric-adjusted skew in-

formation [114].
Note that the definition of the variance in

Eq. (211b) requires that mf (1, 0) ≡ f(0) is nonzero.
In such cases f is called regular [115].

The usual quantum Fisher information and the
usual variance corresponds to

fmax(x) = 1 + x

2 , (213)

and the arithmetic mean

mfmax(a, b) = a + b

2 . (214)

Note that fmax(x) is the largest among standard ma-

trix monotone functions. Due to this, Ffmax
Q [ϱ, H]

is the largest among Ff
Q[ϱ, H] and varfmax

ϱ (H) is the

smallest among varf
ϱ(H).

The Wigner-Yanase skew information corresponds
to

fWY(x) = (
√

x + 1)2

4 , (215)

and the mean

mfWY(a, b) = (
√

a +
√

b)2

4 . (216)

Note that we get 4 times the usual Wigner-Yanase
skew information due to the chosen normalization

FfWY
Q [ϱ, H] = 4Iϱ(H). (217)

We now show a method to express the various gen-
eralized quantum Fisher information quantities with
each other.

Observation 16. Let us define for given f the
following matrix in the eigenbasis of ϱ

(Xf )kl = ⟨k|X|l⟩ =

√
mf (1, 0)

mf (λk, λl)
. (218)

Then, any generalized quantum Fisher information
can be expressed as

Ff1
Q [ϱ, H] = Ff2

Q [ϱ, Qf1,f2 ◦ H], (219)

where ”◦” denotes element-wise or Hadamard product
defined as

A ◦ B =
∑
k,l

⟨k|A|l⟩⟨k|B|l⟩|k⟩⟨l|, (220)

where |k⟩ and |l⟩ are the eigenvectors of the density
matrix, and the coefficient for converting one type of
quantum Fisher information into another ons is given
as

(Qf1,f2)kl =
{ (Xf1 )kl

(Xf2 )kl
, if λk ̸= λl,

0, if λk = λl.
(221)
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Proof. The statement can be verified by direct com-
parison of the definition of the quantum Fisher infor-
mation given in Eqs. (211a) and (219). ■

It is interesting to compute the matrix needed for
f1 = fmax and f2 = fWY. We obtain, in the basis of
the eigenvectors of ϱ,

(Qfmax,fWY)kl =
{ (Xfmax )kl

(XfWY )kl
=

√
λk+

√
λl√

λk+λl
, if λk ̸= λl,

0, if λk = λl.

(222)
Here note that in Eq. (222), the denominator of the
fraction with λk and λl is positive if λk ̸= λl. With the
matrix in Eq. (222), we can use the Wigner-Yanase
skew information to obtain a the quantum Fisher in-
formation

FQ[ϱ, H] = 4Iϱ(Qfmax,fWY ◦ H). (223)

Next, we compute the matrix needed for f1 = fWY
and f2 = fmax. We obtain, in the basis of the eigen-
vectors of ϱ,

(QfWY,fmax)kl =
{ (XfWY )kl

(Xfmax )kl
=

√
λk+λl√

λk+
√

λl
, if λk ̸= λl,

0, if λk = λl.

(224)
Then, we can also obtain the Wigner-Yanase skew
information with the quantum Fisher information as

Iϱ(H) = 1
4FQ[ϱ, QfWY,fmax ◦ H]. (225)

Next, we show how the various generalized quan-
tum Fisher information quantities can be expressed
as a convex roof over the decompositions of the den-
sity matrix.

Observation 17. The various generalized quan-
tum Fisher information quantities can be expressed
as a convex roof as

Ff
Q[ϱ, H] = 4 min

{pk,|Ψk⟩}

∑
k

pk[∆(Yf ◦ H)]2Ψk
, (226)

where the optimization is over pure state decomposi-
tions given in Eq. (14), and in the basis of the eigen-
vectors of ϱ we define

(Yf )kl

=
{

(Xf )kl

(Xfmax )kl
=
√

mf (1,0)
mf (λk,λl) (λk + λl), if λk ̸= λl,

0, if λk = λl.

(227)

Proof. It follows from Observation 16 defining
(Xf )kl and the definition of the quantum Fisher in-
formation with the convex roof of the variance given
in Eq. (13). ■

Next, we show how the various generalized quan-
tum Fisher information quantities can be expressed
as an optimization in the two-copy space.

Observation 18. The generalized quantum Fisher
information can be obtained as an optimization over
separable states

Ff
Q[ϱ, H] = min

ϱ12
2Tr[(Yf ◦ H ⊗ 1 − 1 ⊗ Yf ◦ H)2ϱ12],

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = ϱ. (228)

Proof. It follows from Observation 1 defining the
quantum Fisher information with an optimization
over bipartite separable quantum states and Obser-
vation 16 defining (Xf )kl. ■

Let us calculate a concrete example. For instance,
for obtaining the Wigner-Yanase skew information
times four as an optimization over separable states,
we should use

(YfWY)kl = (QfWY,fmax)kl, (229)

where QfWY,fmax is defined in Eq. (224).
Observation 19. We can obtain the various quan-

tum Fisher information quantities as an optimization
over general quantum states, rather than over sepa-
rable states, as

Ff
Q[ϱ, H](ϱ)

= min
ϱ12

2Tr{[(Zf ◦ H)T ⊗ 1 − 1 ⊗ Zf ◦ H]2ϱ12},

s. t. ϱ12 ∈ D,

Tr2(ϱ12) = ϱT ,

Tr1(ϱ12) = ϱ, (230)

where in the basis of the eigenvectors of ϱ we define

(Zf )kl =
{ (Xf )kl

(XfWY )kl
, if λk ̸= λl,

0, if λk = λl.
(231)

Proof. We use the definition of DDPT(ϱ, σ)2 given
in Eq. (1) and the equation relating it to the Wigner-
Yanase skew information given in Eq. (3), together
with Eq. (219). ■

Let us again calculate a concrete example. For in-
stance, for obtaining the quantum Fisher information
as an optimization over general quantum states, we
should use

(Zfmax)kl = Qfmax,fWY , (232)

where Qfmax,fWY is defined in Eq. (222).
Based on these, we can define various Wasserstein

distance measures, for which the self-distance equals
various quantum Fisher information quantities.

Definition 8. A family of Wasserstein distance
measures can be defined based on an optimization
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over separable states as

Df
GMPC,sep(ϱ, σ)2

= 1
2 min

ϱ12
Tr[(Yf ◦ H ⊗ 1 − 1 ⊗ Yf ◦ H)2ϱ12],

s. t. ϱ12 ∈ S,

Tr2(ϱ12) = ϱ,

Tr1(ϱ12) = σ. (233)

Based on Observation 18, for the self-distance

Df
GMPC,sep(ϱ, ϱ)2 = 1

4Ff
Q[ϱ, H] (234)

holds.
Definition 9. A family of Wasserstein distance

measures can be defined based on an optimization
over general quantum states as

Df
DPT(ϱ, σ)2

= 1
2 min

ϱ12
Tr{[(Zf ◦ H)T ⊗ 1 − 1 ⊗ Zf ◦ H]2ϱ12},

s. t. ϱ12 ∈ D,

Tr2(ϱ12) = ϱT ,

Tr1(ϱ12) = σ. (235)

Based on Observation 19, for the self-distance

Df
DPT(ϱ, ϱ)2 = 1

4Ff
Q[ϱ, H] (236)

holds. It would be interesting to examine the prop-
erties of the quantities defined in Definitions 8 and
9.

11 Conclusions
We discussed how to define the quantum Wasserstein
distance as an optimization over bipartite separable
states rather than an optimization over general quan-
tum states. With such a definition, the self-distance
becomes related to the quantum Fisher information.
We introduced also variance-like quantities in which
we replaced the minimization used in the definition of
the quantum Wasserstein distance by a maximization,
and examined their properties. We discussed the rela-
tion of our findings to entanglement criteria. We ex-
amined also the quantity obtained after we considered
optimizing the variance rather than the second mo-
ment in the usual expression of the quantum Wasser-
stein distance. Finally, we extended our results to
the various generalized quantum Fisher information
quantities. The details of the numerical calculations
are discussed in Appendix A.
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A Details of the numerical calculations
We used MATLAB [116] for numerical calculations.
We used the semidefinite solver MOSEK [117] and
the front-end YALMIP [118]. We also used the
QUBIT4MATLAB package [119, 120]. DDPT(ϱ, σ)2

given in Definition 1 and DGMPC(ϱ, σ)2 given in Def-
inition 2 can be obtained using semidefinite pro-
gramming. DGMPC,sep(ϱ, σ)2 in Definition 3 and
DDPT,sep(ϱ, σ)2 in Definition 4 need an optimization
over separable states. The optimization over sep-
arable states can be carried out numerically using
semidefinite programming for two qubits, since in this
case the set of PPT states equals the set of separable
states.

We included the routines computing the var-
ious quantum Wasserstein distance measures as
wdistsquare GMPC ppt.m, wdistsquare GMPC.m,
wdistsquare DPT ppt.m, and wdistsquare DPT.m.
We included the various types of the variance-
like quantities as wvar GMPC ppt.m, wvar GMPC.m,
wvar DPT ppt.m, and wvar DPT.m. The usage of these
routines is demonstrated in example wdistsquare.m.
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relative entropy, optimal transport and Fisher

information: A quantum HWI inequality”.
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[71] Géza Tóth and Iagoba Apellaniz. “Quantum
metrology from a quantum information science
perspective”. J. Phys. A: Math. Theor. 47,
424006 (2014).
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[111] Dénes Petz. “Covariance and Fisher informa-
tion in quantum mechanics”. J. Phys. A: Math.
Gen. 35, 929 (2002).

[112] Paolo Gibilisco, Fumio Hiai, and Dénes Petz.
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[118] J. Löfberg. “YALMIP : A Toolbox for Modeling
and Optimization in MATLAB”. In Proceed-
ings of the CACSD Conference. Taipei, Tai-
wan (2004).
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