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We work out the general theory of one-pa-
rameter families of partial entanglement prop-
erties and the resulting entanglement depth-
like quantities. Special cases of these are the
depth of partitionability, the depth of pro-
ducibility (or simply entanglement depth) and
the depth of stretchability, which are based
on one-parameter families of partial entan-
glement properties known earlier. We also
construct some further physically meaningful
properties, for instance the squareability, the
toughness, the degree of freedom, and also
several ones of entropic motivation. Metro-
logical multipartite entanglement criteria with
the quantum Fisher information fit naturally
into this framework. Here we formulate these
for the depth of squareability, which therefore
turns out to be the natural choice, leading to
stronger bounds than the usual entanglement
depth. Namely, the quantum Fisher informa-
tion turns out to provide a lower bound not
only on the maximal size of entangled subsys-
tems, but also on the average size of entangled
subsystems for a random choice of elementary
subsystems. We also formulate criteria with
convex quantities for both cases, which are
much stronger than the original ones. In par-
ticular, the quantum Fisher information puts
a lower bound on the average size of entangled
subsystems. We also argue that one-parameter
partial entanglement properties, which carry
entropic meaning, are more suitable for the
purpose of defining metrological bounds.
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1 Introduction
One of the possible ways of characterizing the multi-
partite entanglement in an n-partite quantum system
is producibility, given by the size of the largest entan-
gled subsystem [1, 2]. A pure state is k-producible, if
the largest entangled subsystem is of size at most k,
that is, if it can be given by a state vector of the form

|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψm⟩, (1)

where |ψi⟩ are state vectors of the disjoint subsys-
tems of size at most k [1, 2]. A mixed state ρ is k-
producible if it can be given as a mixture of pure
k-producible states. Note that a k-producible state
is k′ producible for all k′ ≥ k, so the minimal value
of k for which the state is k-producible is the char-
acteristic property of the state, called the entangle-
ment depth, D(ρ). The entanglement depth can be
detected by collective measurements [1, 3–5] or by
correlation measurements [2]. If the density matrix
is known in small systems, semidefinite programming
can also be used [6]. There is also a general theory
that bounds the entanglement depth based on the ex-
pectation value of witness operators [7].

There have been many groundbreaking experiments
putting a lower bound on the entanglement depth of a
quantum system, aiming to produce larger and larger
entanglement depth, reaching the thousands [3, 8–
15]. Number-resolving detectors have recently been
developed that will further increase the entanglement
depth obtained in these systems [16, 17]. At this
point, an important question arises. A system of 100
particles of entanglement depth D = 20 can be real-
ized in various ways. The two extreme cases are when
all 20-particle groups are fully entangled, given by the
state vector [ 1√

2
(
|0⟩⊗20 + |1⟩⊗20)]⊗5

, (2a)

and when there is a single 20-particle group that is
fully entangled while the rest of the particles are fully
separable, given by the state vector[ 1√

2
(
|0⟩⊗20 + |1⟩⊗20)]⊗ |0⟩⊗80. (2b)

Clearly, we would like to distinguish these two cases
and also many but not too many further cases in-
between, by generalizing the concept of entanglement
depth.

To handle such questions, we define one-parameter
partial entanglement properties, which we call f -
entanglement, given by generator functions f (Sec-
tion 2). The values of the generator functions,
usually denoted with k, ‘parametrize’ the classifi-
cation. We also introduce different entanglement
measures, quantifying these properties, the (k, f)-
entanglement of formation and the relative entropy
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of (k, f)-entanglement (Appendix A), and the f -
entanglement depth and the f -entanglement depth of
formation (Section 3). The point here is that among
the exponentially growing number of possibilities of
partial entanglement [18, 19], we single out some ex-
pressive ones, which can be ordered consecutively, and
the place in this ordering reflects the strength of that
kind of entanglement.

For example, we already have the partitionability,
producibility and stretchability of entanglement, de-
fined by the number of subsystems separable from
each other, the size of the largest entangled subsys-
tem, and the difference of these two, respectively [20].
Now we introduce among others the squareability of
entanglement, the entanglement toughness or the en-
tanglement degree of freedom, defined by the sum of
squares of the sizes of entangled subsystems, the size
of the smallest entangled subsystem, and the effec-
tive number of elementary subsystems needed for the
description of the state, respectively (Section 4). All
of these (except producibility) clearly distinguish the
cases (2a) and (2b), and they give rather different
characterizations of the states.

A fundamental relation between quantum metrol-
ogy and entanglement is the metrological entangle-
ment criterion [21]

FQ(ρ, Jz)/n ≤ 1 (3)

for all fully separable states, where FQ is the quantum
Fisher information, characterizing metrological preci-
sion, hence playing a central role in quantum metrol-
ogy [22–24]. FQ can be bounded from below based
on measurements on the quantum state [25–34]. The
criterion above gives a sufficient condition of entangle-
ment, that is, if the bound (3) is violated then there
must be some entanglement in the system. Later this
turned out to be a special case of the metrological
entanglement criterion [22–24, 35, 36]

FQ(ρ, Jz)/n ≤ D(ρ), (4a)

which is now an inequality between two quantities,
one from quantum entanglement theory, the other
from quantum metrology, and it gives a more detailed
characterization of entanglement. Here D is the (pro-
ducibility) entanglement depth, as before. A general-
ization of the bound (4a) gives bounds on the possi-
ble values of combinations of the depth of producibil-
ity and of partitionability, and also of the depth of
stretchability [37], by which the respective aspects of
multipartite entanglement [37] could be verified in ex-
perimental data [10, 11, 27–34, 38–44]. The meaning
of the bound (4a) is that a low level of multipartite
entanglement in the system restricts the metrological
precision; or, from the opposite point of view, a high
precision indicates the presence of strong multipartite
entanglement.

The bound (4a) can be tight in some situations,
however, there are some relevant cases when it is very

far from being tight. For instance, let us consider a
pure state of entanglement depth D mixed with un-
correlated noise orthogonal to it. For such a possibly
weakly entangled state the quantum Fisher informa-
tion is much smaller than nD. However, the quantum
Fisher information is the convex roof extension of the
variance [45, 46], by which we derive the convex bound

FQ(ρ, Jz)/n ≤ DoF(ρ) ≤ D(ρ), (4b)

which is much stronger than the original bound (4a).
Here DoF(ρ) is the entanglement depth of formation,
which is defined as the convex roof extension of the
entanglement depth. It is enlightening to formulate
this in parallel to a similar formulation of the entan-
glement depth D(ρ). For pure states, both are just
the entanglement depth, being the size of the largest
entangled subsystem. For mixed states, for any pure
decomposition, we form the maximum, or the aver-
age of the depth in the decomposition, then D(ρ) and
DoF(ρ) are the minimum of these with respect to the
decompositions in the two cases, respectively. The
bound (4b) tells us that not only the entanglement
depth D(ρ) is bounded from below, as in (4a), but
also the average entanglement depth for every possi-
ble decomposition DoF(ρ). That is, if there are pure
states of entanglement depth smaller than FQ/n in
the mixture, then there also has to be pure states of
entanglement depth larger than FQ/n, with weight
enough to compensate the lower depth states.

These metrological bounds fit naturally into the
framework of one-parameter partial entanglement
properties, and the bounds (4) are also particular
cases of our general results (Section 5). First, we
show in general that for states of any given partial
separability property, the direct bound on the quan-
tum Fisher information is given simply by the square-
ability of that property (Section 5.2). This leads to
an identity if that property itself is the squareabil-
ity, suggesting that entanglement squareability is the
natural multipartite entanglement property from the
point of view, or for the purposes of quantum metrol-
ogy. For f -entanglement, for all states, the bound
on the quantum Fisher information leads to a func-
tion of the f -entanglement depth, which turns out to
be the depth of an induced one-parameter property
(Sections 5.3-5.4). This, again leads to an identity
if that property itself is the squareability, then the
upper bound turns out to be simply the squareabil-
ity entanglement depth Dsq(ρ), which turns out to be
stronger than (4a),

FQ(ρ, Jz) ≤ Dsq(ρ). (5a)

Again, exploiting the key result that the quantum
Fisher information is the convex roof extension of the
variance [45, 46], the original bounds can be strength-
ened to convex bounds, being the convex roof exten-
sions of the original bounds (Sections 5.5-5.6). For the
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case of squareability, the upper bound is the square-
ability depth of formation, which turns out to be
stronger than (5a),

FQ(ρ, Jz) ≤ DoF
sq (ρ) ≤ Dsq(ρ). (5b)

From the general construction, applied to the case of
the usual producibility and entanglement depth, the
bounds (4) in terms of usual depths turn out to be
weaker than the bounds (5) in terms of squareability
depths, and we have

nDoF(ρ) ≤ nD(ρ)

≤ ≤
FQ(ρ, Jz) ≤ DoF

sq (ρ) ≤ Dsq(ρ)

(6)

altogether. So the strongest bound is given in terms
of the squareability entanglement depth of formation
DoF

sq (ρ), which turns out to be n times the average
size of the entangled subsystems (ASES), which is the
average size of the subsystem a randomly chosen par-
ticle belongs to, where the particle is selected based
on a uniform distribution (Section 5.7).

Beyond these, we also consider the question which
particular one-parameter partial entanglement prop-
erties are useful for the formulation of the aforemen-
tioned metrological bounds (Section 5.9), or, which
particular one-parameter partial entanglement prop-
erties can be detected by these metrological crite-
ria. This is motivated by the observation that, for
instance, entanglement toughness does not lead to
meaningful metrological bounds (other than for bisep-
arability), while many other one-parameter proper-
ties do. We formulate this question precisely, and ar-
gue for that the dominance-monotonicity is, although
not being necessary neither sufficient, favorable to im-
pose on the one-parameter property to be metrologi-
cally useful (Section 5.10). The dominance-monotone
properties possess entropic meaning, expressing the
mixedness of the sizes of subsystems separable from
one another.

2 Permutation invariant partial sep-
arability and one-parameter entangle-
ment properties
In this section we quickly recall the structure of the
permutation invariant partial entanglement proper-
ties [20]; then we work out the general description
of the one-parameter entanglement properties, which
we call f -entanglement. Note that we use a simpli-
fied notation, dropping the ‘-sep’ from the subscript,
Dυ̂ ≡ Dυ̂-sep used in the general case [20] to distin-
guish correlation and entanglement. This is because
we do not consider correlations here [19], although the
construction could be carried out also for multipartite
correlations.

2.1 State spaces and classes
Let us have n ≥ 2 elementary subsystems, and let
X ⊆ {1, 2, . . . , n} and |X| denote an arbitrary subsys-
tem and its size. For the quantum theoretical descrip-
tion of each elementary subsystem l ∈ {1, 2, . . . , n},
let us have the Hilbert space Hl of uniform di-
mension 2 ≤ d := dim(Hl) < ∞, then we have
HX =

⊗
l∈X Hl for any subsystem X, of dimen-

sion dim
(
HX

)
= d|X|. For the whole system, we

use the notation H =
⊗n

l=1 Hl for the Hilbert space,
P = {|ψ⟩⟨ψ| | |ψ⟩ ∈ H, ∥ψ∥ = 1} for the space of pure
states, and D = Conv(P) for the whole space of states
(pure and mixed together), which is the convex hull
of pure states, and we have P = Extr(D), the set of
extremal points of the state space D.

On the first level, we may form mixtures of states
which are separable with respect to splits consist-
ing of subsystems of (possibly different) fixed sizes.
Such properties are labeled by integer partitions of
n [47, 48], ξ̂ = {x1, x2, . . . , x|ξ̂|}, which are multi-
sets, containing the x ∈ ξ̂ parts x ∈ N, such that∑

x∈ξ̂ x = n. |ξ̂| denotes the number of parts in ξ̂.
The set of the integer partitions is denoted with P̂I.
(A multiset is a set allowing multiple instances of its
elements. It is the structure [20] naturally arising
here: the number of subsystem sizes varies, and the
order of those is not relevant in this description, so
m-tuples should not be used; on the other hand, mul-
tiple subsystems of the same size arise, so sets could
not be used either. Note that we do not distinguish
in the writing of sets and multisets, sets of integers
are always understood as multisets.)

The integer partition υ̂ is called finer than or equal
to ξ̂, denoted as υ̂ ⪯ ξ̂, if ξ̂ can be obtained as par-
tial summations of υ̂. This is a proper partial order,
called refinement, derived from the refinement of set
partitions [20]. (For more details, see Appendix E.1,
for illustrations, see Figure 1.)

A pure state is ξ̂-separable, if it is the projector
to the product of state vectors of subsystems of sizes
x ∈ ξ̂. The space of those states is

Pξ̂ :=
{

|ψ⟩⟨ψ| ∈ P
∣∣∣ |ψ⟩ =

|ξ̂|⊗
j=1

|ψXj
⟩
}
, (7a)

where |ψXj ⟩ ∈ HXj and Xj-s are disjoint subsystems
of size |Xj | = xj ∈ ξ̂. A general state is ξ̂-separable, if
it is the mixture of pure ξ̂-separable states. The space
of those states [18, 20, 49–54] is

Dξ̂ := Conv
(
Pξ̂

)
, (7b)

and we have [20]

Pξ̂ = Extr
(
Dξ̂

)
. (7c)

The state space Dξ̂ is closed under LOCC. Note that
if a state is υ̂-separable, then it is also ξ̂-separable for
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all coarser ξ̂, that is,

υ̂ ⪯ ξ̂ ⇐⇒ Pυ̂ ⊆ Pξ̂, (8a)

υ̂ ⪯ ξ̂ ⇐⇒ Dυ̂ ⊆ Dξ̂, (8b)

so the refinement in P̂I encodes the inclusion hierarchy
of the state spaces [18, 20].

For example, the pure states given by state vec-
tors (2a) and (2b) are {20, 20, 20, 20, 20}-separable,
and the latter is additionally {20, 1, 1, . . . , 1}-
separable. On the other hand, the projectors onto the
state vectors 1√

2

(
|0⟩⊗100 + |1⟩⊗100) and |0⟩⊗100 are ⊤-

separable, and the latter is additionally ⊥-separable,
given by the coarsest and the finest integer partitions

⊤ = {n} ∈ P̂I, (9a)
⊥ = {1, 1, . . . , 1} ∈ P̂I, (9b)

labeling trivial separability and full separability, re-
spectively. Note also that these permutation invari-
ant properties do not distinguish among, e.g., pure
states given by the state vectors 1√

2

(
|000⟩ + |011⟩

)
,

1√
2

(
|000⟩ + |101⟩

)
and 1√

2

(
|000⟩ + |110⟩

)
, all of these

are {2, 1}-separable.
On the second level, we would like to form mix-

tures of states of different, possibly incompatible ξ̂-
separability in a general way. This is a natural need,
since properties like producibility cannot be given by a
single ξ̂ in general. For example, in the case of n = 4,
both {3, 1}-separable and {2, 2}-separable states are
needed to form 3-producible states (see later), while
{3, 1} ⪯̸ {2, 2} and {3, 1} ⪰̸ {2, 2}. Exploiting (8),
such properties are labeled by down-sets (also called
order-ideals) [20, 55] of integer partitions, which are
sets ξ̂ = {ξ̂1, ξ̂2, . . . , ξ̂|ξ̂|} closed downwards, that is,
if ξ̂ ∈ ξ̂ and υ̂ ⪯ ξ̂, then υ̂ ∈ ξ̂. For example, in the
case of n = 4, the down-set labeling 3-producibility
is {{3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}} (see Figure 1),
on the other hand, {{3, 1}, {2, 2}} is not a down-set,
since it is not closed downwards, it does not contain,
e.g., {2, 1, 1} ⪯ {2, 2}. The set of the integer partition
down-sets is denoted with P̂II.

The down-set υ̂ is called finer than or equal to ξ̂,
denoted as υ̂ ⪯ ξ̂, if and only if υ̂ ⊆ ξ̂. We call this
partial order refinement too [20]. (For illustrations,
see Figure 1.)

A pure state is ξ̂-separable, if it is ξ̂-separable for a
ξ̂ ∈ ξ̂. The space of those states [18, 20, 51, 53] is

Pξ̂ :=
⋃
ξ̂∈ξ̂

Pξ̂. (10a)

A general state is ξ̂-separable, if it is the mixture of
pure ξ̂-separable states, that is, being the mixture
of ξ̂-separable states for (usually different) partitions

ξ̂ ∈ ξ̂. The space of those states is

Dξ̂ := Conv
(
Pξ̂

)
= Conv

(⋃
ξ̂∈ξ̂

Dξ̂

)
, (10b)

and we have [20]

Pξ̂ = Extr
(
Dξ̂

)
=
⋃
ξ̂∈ξ̂

Extr
(
Dξ̂

)
. (10c)

The state space Dξ̂ is closed under LOCC. Note that
if a state is υ̂-separable, then it is also ξ̂-separable for
all coarser ξ̂, that is,

υ̂ ⪯ ξ̂ ⇐⇒ Pυ̂ ⊆ Pξ̂, (11a)

υ̂ ⪯ ξ̂ ⇐⇒ Dυ̂ ⊆ Dξ̂, (11b)

so the refinement in P̂II encodes the inclusion hierar-
chy of the state spaces [18, 20].

For example, the (principal) down-set {⊥} and
↓{⊤} ≡ P̂I label full separability and trivial separa-
bility again. (Here ↓{. . .} denotes the down-closure
of the set {. . .}, it contains all the elements finer
than or equal to the elements of {. . .}, so it is al-
ways a down-set. For example, ↓{{2, 2, 1}, {3, 1, 1}} =
{{2, 2, 1}, {3, 1, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}, see also
Figure 1.) All the other partial separability prop-
erties lie between these two, for example, the down-
set containing all the nontrivial partitions ↓{{m,n −
m} | m = 1, 2, . . . ⌊n/2⌋} ≡ P̂I \ {⊤} labels bisepa-
rability. (For further examples, see Section 2.2 and
Figure 1.) In the subsequent sections we will consider
one-parameter families of partial separability proper-
ties, which fit also in this second level.

On the third level, we would like to describe states
having some partial separability properties, and not
having some other ones; leading to a disjoint cover-
ing of the whole state space D, i.e., classification of
states [18, 20, 56]. First of all, to be able to formulate
also coarser classifications, we select the partial sep-
arability properties P̂II* ⊆ P̂II with respect to which
the classification is carried out. Exploiting (11), such
class properties are labeled by up-sets (also called
order-filters) [20, 55] of integer partition down-sets,
which are sets ξ̂ = {ξ̂1, ξ̂2, . . . , ξ̂|ξ̂|} ⊆ P̂II* closed up-

wards, that is, if ξ̂ ∈ ξ̂ and υ̂ ∈ P̂II* such that υ̂ ⪰ ξ̂,
then υ̂ ∈ ξ̂. The set of the up-sets of integer partition
down-sets is denoted with P̂III*.

The up-set υ̂ is called coarser than or equal to ξ̂,
denoted as υ̂ ⪯ ξ̂, if and only if υ̂ ⊆ ξ̂. We call this
refinement too [20].

A general state is strictly ξ̂-separable, if it is sep-
arable with respect to all ξ̂ ∈ ξ̂, and entangled with

respect to all ξ̂ ∈ ξ̂ = P̂II* \ ξ̂. The class of those
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states is

Cξ̂ :=
( ⋂

ξ̂
′∈ξ̂

D
ξ̂

′

)
∩
(⋂

ξ̂∈ξ̂

Dξ̂

)
=
(⋂

ξ̂∈ξ̂

Dξ̂

)
\
( ⋃

ξ̂
′∈ξ̂

D
ξ̂

′

)
.

(12)
(This gives the labeling scheme for the possible in-
tersections of the state spaces Dξ̂, see Appendix A
of [56].) Because of the LOCC-closedness of the state
spaces Dξ̂, the refinement gives necessary condition
for LOCC convertibility [18, 20] as

Cυ̂ −→
LOCC

Cξ̂ =⇒ υ̂ ⪯ ξ̂, (13)

where the left-hand side is a shorthand notation for
that there exist an LOCC map Λ : D → D and a state
ρ ∈ Cυ̂ such that Λ(ρ) ∈ Cξ̂. That is, LOCC map can
bring to a class only if it is ‘finer-than-or-equally-fine’
with respect to partial separability.

Examples are given in [20] for the general case, and
will be shown in Sections 2.2 and 2.3 for the one-
parameter case. (We will also use the notation ↑{. . .},
which is the up-closure of the set {. . .}, it contains all
the elements coarser than or equal to the elements of
{. . .}, so it is always an up-set.)

2.2 Examples of f -entanglement properties
Here we recall three notable one-parameter families
of properties [18–20], the k-partitionability (for k ∈
[1, n]Z), the k-producibility (for k ∈ [1, n]Z) and the k-
stretchability (for k ∈ [−(n− 1), n− 1]Z \ {±(n− 2)}),
serving as examples for both the general construc-
tion above, and also for the one-parameter families of
properties in the subsequent sections. These proper-
ties are defined by the down-sets of integer partitions,
where the number of parts is at least k,

ξ̂k-part :=
{
ξ̂ ∈ P̂I

∣∣ |ξ̂| ≥ k
}
, (14a)

the size of the largest part is at most k,

ξ̂k-prod :=
{
ξ̂ ∈ P̂I

∣∣ max(ξ̂) ≤ k
}
, (14b)

and the difference of these is at most k,

ξ̂k-str :=
{
ξ̂ ∈ P̂I

∣∣ max(ξ̂) − |ξ̂| ≤ k
}
, (14c)

respectively. These are all down-sets (this is illustra-
tive to derive directly, although it also follows from
the monotonicity of the generator functions (23) in
the general construction later), and these form chains,
that is,

k ≥ k′ ⇐⇒ ξ̂k-part ⪯ ξ̂k′-part, (15a)

k ≤ k′ ⇐⇒ ξ̂k-prod ⪯ ξ̂k′-prod, (15b)

k ≤ k′ ⇐⇒ ξ̂k-str ⪯ ξ̂k′-str. (15c)

(For illustrations, see Figure 1, which also explains
why the values ±(n−2) are missing from the possible

values of k in the case of stretchability: all the parti-
tions differs from ⊤ and ⊥ both in the number of parts
and the size of the largest part.) These lead to the
k-partitionably separable (also called k-partitionable,
or k-separable [18–20, 51, 53]) states, which can be
mixed by using states which can be separated into at
least k subsystems; k-producibly separable (also called
k-producible [2, 18–20, 52, 57, 58]) states, which can
be mixed by using entanglement inside subsystems of
size at most k; and k-stretchably separable states [20],
which can be mixed by using entanglement of Dyson-
rank at most k; the spaces of which are

Dk-part := Dξ̂k-part
, (16a)

Dk-prod := Dξ̂k-prod
, (16b)

Dk-str := Dξ̂k-str
, (16c)

closed under LOCC, forming nested subsets

k ≥ k′ ⇐⇒ Dk-part ⊆ Dk′-part, (17a)
k ≤ k′ ⇐⇒ Dk-prod ⊆ Dk′-prod, (17b)
k ≤ k′ ⇐⇒ Dk-str ⊆ Dk′-str, (17c)

by (11b) and (15). We have Dn-part = D1-prod =
D−(n−1)-str, containing the fully separable states,
D2-part = D(n−1)-prod = D(n−3)-str, containing the
biseparable states, D1-part = Dn-prod = D(n−1)-str =
D, containing all the states. There are some further
coincidences among the partitionability, producibility
and stretchability properties, as can be read off from
Figure 1, but these three one-parameter properties are
different for the most values of k.

The strict partitionability, producibility and
stretchability properties are given by the up-sets

ξ̂
k-part

:= ↑
{

ξ̂k-part
}

=
{

ξ̂k′-part
∣∣ k ≥ k′}, (18a)

ξ̂
k-prod

:= ↑
{

ξ̂k-prod
}

=
{

ξ̂k′-prod
∣∣ k ≤ k′}, (18b)

ξ̂
k-str

:= ↑
{

ξ̂k-str
}

=
{

ξ̂k′-str
∣∣ k ≤ k′}, (18c)

by (15), forming chains,

k ≤ k′ ⇐⇒ ξ̂
k-part

⪯ ξ̂
k′-part

, (19a)

k ≥ k′ ⇐⇒ ξ̂
k-prod

⪯ ξ̂
k′-prod

, (19b)

k ≥ k′ ⇐⇒ ξ̂
k-str

⪯ ξ̂
k′-str

. (19c)

These lead to the strictly k-partitionably separable
states, the strictly k-producibly separable states and
the strictly k-stretchably separable states [20], the
classes (12) of which are

Ck-part := Cξ̂
k-part

=
{

Dn-part for k = n,

Dk-part \ D(k+1)-part else,

(20a)

Ck-prod := Cξ̂
k-prod

=
{

D1-prod for k = 1,
Dk-prod \ D(k−1)-prod else,

(20b)
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Figure 1: The down-sets (14) corresponding to partitionability, producibility and stretchability, illustrated on the posets P̂I
for n = 2, 3, 4, 5, 6. (The integer partitions ξ̂ ∈ P̂I are represented by their Young diagrams, and the refinement order ⪯ is
denoted by consecutive arrows, which are pointing from the finer partition to the coarser one. The refinement is a partial
order, that is, not every pair of partitions are connected by arrows. The integer partitions describing trivial separability (9a)
and full separability (9b) are the ⊤ and ⊥ elements of the poset P̂I, drawn in the upper right and lower left corners of these
plots, respectively. The three kinds of down-sets (14) contain the Young diagrams below the green, to the left from the yellow,
and below the gray dashed lines. These are down-sets, that is, the borders of any of them are crossed by arrows in only one
direction. These three kinds of down-sets (14) form chains (15) for the indexing k, that is, the dashed lines (borders) of the
same color do not cross one another.)

Ck-str := Cξ̂
k-str

=


D−(n−1)-str for k = −(n− 1),
D−(n−3)-str \ D−(n−1)-str for k = −(n− 3),
D(n−1)-str \ D(n−3)-str for k = (n− 1),
Dk-str \ D(k−1)-str else,

(20c)

having a simple structure with respect to LOCC,

Ck-part −→
LOCC

Ck′-part =⇒ k ≤ k′, (21a)

Ck-prod −→
LOCC

Ck′-prod =⇒ k ≥ k′, (21b)

Ck-str −→
LOCC

Ck′-str =⇒ k ≥ k′, (21c)

by (19) and (13). The elements of the class
Ck-prod, the strictly k-producibly separable states (k-

producibly separable but not (k − 1)-producibly sep-
arable) are also called states of entanglement depth
k [1, 3, 59]. We have Cn-part = C1-prod = C−(n−1)-str,
containing the fully separable states, C2-part =
C(n−1)-prod = C(n−3)-str, containing the strictly bisepa-
rable states, C1-part = Cn-prod = C(n−1)-str, containing
the genuinely multipartite entangled states. There are
some further coincidences among the strict partition-
ability, producibility and stretchability properties, as
can be read off from Figure 1, but these three strict
one-parameter properties are different for the most
values of k.

2.3 f -entanglement properties in general
In general, one-parameter partial separability prop-
erties, like partitionability, producibility and stretch-
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ability, can be given by sub- or super-level sets of
monotone functions over the integer partitions. Let
a generator function be a function assigning a real
number to all the integer partitions

f : P̂I −→ R, (22a)

where P̂I is the set of integer partitions. The function
f is either increasing or decreasing monotone,

υ̂ ⪯ ξ̂ =⇒ f(υ̂) ⋚ f(ξ̂). (22b)

Although f is decreasing if and only if −f is increas-
ing, we keep using both kinds of generator functions,
since both arise naturally in the construction. For ex-
ample, for partitionability, producibility and stretch-
ability (14), the generator functions are

h(ξ̂) := |ξ̂|, (23a)
w(ξ̂) := max(ξ̂), (23b)
r(ξ̂) := max(ξ̂) − |ξ̂|, (23c)

respectively, the height (decreasing), width (increas-
ing) and (Dyson-) rank (increasing) of the Young dia-
gram representing the partition [20]. In the following,
like in (22b), the upper and lower relation signs are
always understood for the increasing and decreasing
cases, respectively. The values of the generator func-
tions, usually denoted with k ∈ f(P̂I) = {f(ξ̂) | ξ̂ ∈
P̂I}, will then ‘parametrize’ the one-parameter clas-
sification. Note that these values are not integers in
general, contrary to our main examples (23).

Note that, if a generator function f : P̂I → R
is composed with a monotone function g : R → R,
the resulting function g ◦ f is also a generator func-
tion (22), the monotonicity of which is flipped if g is
decreasing.

Because of the monotonicity (22b), the extremal
values of f are f(⊥) and f(⊤), that is,

f(⊥) ⋚ f(ξ̂) ⋚ f(⊤). (24)

Note that, as also in our main examples (23), the
function f is not injective in general, that is, f
may take the same value for different partitions, and
|f(P̂I)| ≤ |P̂I|. For later use, we extend f to P̂II as

f(ξ̂) :=
{

maxξ̂∈ξ̂ f(ξ̂) if f is increasing,
minξ̂∈ξ̂ f(ξ̂) if f is decreasing.

(25a)

This is then monotone for the refinement of the second
level of the construction, increasing/decreasing if the
original f is increasing/decreasing for the refinement
of the first level (22b),

υ̂ ⪯ ξ̂ =⇒ f(υ̂) ⋚ f(ξ̂), (25b)

which is easy to check by definition (25a). This is an
extension in the sense that f(↓{ξ̂}) = f(ξ̂), by (22).

Also for later use, let us have the notation for the
level sets (inverse image) and sub/super-level sets of
the generator function f : P̂I → R for k ∈ f(P̂I),

f−1(k) :=
{
ξ̂ ∈ P̂I

∣∣ f(ξ̂) = k
}
, (26a)

f⋚(k) :=
{
ξ̂ ∈ P̂I

∣∣ f(ξ̂) ⋚ k
}
. (26b)

For any generator function f , for any given k ∈ f(P̂I),
the monotonicity (22b) leads to that

ξ̂k,f := f⋚(k) ≡
{
ξ̂ ∈ P̂I

∣∣ f(ξ̂) ⋚ k
}

(27)

is a nonempty down-set, ξ̂k,f ∈ P̂II, describing a one-
parameter partial separability property, which we call
(k, f)-separability. These form chains in P̂II,

k ⋚ k′ ⇐⇒ ξ̂k,f ⪯ ξ̂k′,f , (28)

by the definition (27). Let us denote these chains as
P̂II,f :=

{
ξ̂k,f

∣∣ k ∈ f(P̂I)
}

⊆ P̂II. We also have

f(ξ̂k,f ) = k (29)

simply by (25a) and (27).
In this general one-parameter case, for the gen-

erator function f and the value k ∈ f(P̂I), let the
(k, f)-separable states, or ‘states of f -separability k’,
be those given by the nonempty down-set ξ̂k,f ∈
P̂II,f ⊆ P̂II in the general construction (10). These
are the mixtures of pure ξ̂-separable states for which
f(ξ̂) ⋚ k, the space of which is

Dk,f := Dξ̂k,f
≡ Conv

(
Pk,f

)
≡ Conv

(
Pξ̂k,f

)
, (30a)

and we have

Pk,f := Pξ̂k,f
≡ Extr

(
Dk,f

)
≡ Extr

(
Dξ̂k,f

)
, (30b)

where
Pk,f ≡

⋃
ξ̂∈P̂I:

f(ξ̂)⋚k

Pξ̂ ≡
⋃

ξ̂∈P̂II:
f(ξ̂)⋚k

Pξ̂ (30c)

by (10) and (25a). The state space Dk,f is closed
under LOCC, and both form nested subsets,

k ⋚ k′ ⇐⇒ Pk,f ⊆ Pk′,f , (31a)
k ⋚ k′ ⇐⇒ Dk,f ⊆ Dk′,f , (31b)

by (11) and (28). (For illustrations, see Figure 2.)
Note that the whole state spaces arise for the value
k = f(⊤), that is, Pf(⊤),f = P↓{⊤} = P and
Df(⊤),f = D↓{⊤} = D.

The strict f -separability properties can be con-
structed by the nonempty up-sets of P̂II,f [20]. Since
P̂II,f is a chain, we have that, for the values k ∈ f(P̂I),
the strict f -separability properties are given by the
up-sets

ξ̂
k,f

:= ↑
{

ξ̂k,f

}
=
{

ξ̂k′,f

∣∣ k′ ∈ f(P̂I), k ⋚ k′} (32)
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by (28), forming chains again,

k ⋛ k′ ⇐⇒ ξ̂
k,f

⪯ ξ̂
k′,f

. (33)

Let us denote these chains as P̂III,f :=
{

ξ̂
k,f

∣∣ k ∈
f(P̂I)

}
. These lead to the strictly (k, f)-separable

states, or ‘states of f -separability strictly k’, the
class (12) of which is

Ck,f := Cξ̂
k,f

=
{

Df(⊥),f for k = f(⊥),
Dk,f \ Dk∓,f else,

(34a)
where k∓ denotes the values previous/next to k
among the possible values of f (understood for in-
creasing and decreasing f , respectively), that is,

k− := max
{
k′ ∈ f(P̂I)

∣∣ k′ < k
}
, (34b)

k+ := min
{
k′ ∈ f(P̂I)

∣∣ k′ > k
}
. (34c)

For example, for producibility (23b), we have k− =
k − 1, however, for more general generator functions
f , the recipe for k 7→ k∓ is more involved. (Indeed,
if k ̸= f(⊥), the class (12) is Cξ̂

k,f

=
⋂

k≷k′ Dk′,f ∩⋂
k⋚k′ Dk′,f = Dk∓,f ∩ Dk,f by (32) and (31b). For

illustrations, see Figure 2.) From the classes (34) we
can build up the state spaces (30a) simply as

Dk,f =
⋃

k′∈f(P̂I),k′⋚k

Ck′,f . (35)

(For illustrations, see Figure 2.) The classes have a
simple structure with respect to LOCC,

Ck,f −→
LOCC

Ck′,f =⇒ k ⋛ k′, (36)

by (13) and (33).
For partitionability, producibility and stretchabil-

ity, we get back the state spaces (16)-(17) and
classes (20)-(21) by the height, width and rank (23)
as generator functions.

2.4 Remarks
Here we list some remarks on the one-parameter clas-
sification scheme, one paragraph each.

Note that, since no subsystem has a distinguished
role, the one-parameter classification presented in this
section was defined in the framework of permuta-
tion invariant partial separability (partial entangle-
ment) [20], being a motivated particular case of the
general theory of partial separability [18], demon-
strated also experimentally [60], worked out in par-
allel with partial correlation [19, 20, 56]. Note that
the whole construction could have been carried out
also in the general setting, when not only the sizes of
the subsystems matter (if, for some reason, entangle-
ment with some particular subsystems are of higher
value as a resource); and also for partial correlations.

Df(⊤),f ≡ D

Dk,f

Ck,f

Dk∓,f

Df(⊥),f

Cf(⊥),f

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: The nested state spaces Dk,f given in (30a) and
disjoint classes Ck,f given in (34) as differences of the state
spaces. The numbering k ∈ f(P̂I) increases/decreases out-
wards in the case of increasing/decreasing generator func-
tion (22). LOCC maps cannot bring outwards (36). Dif-
ferent generator functions lead to different such onion like
structures, intersecting nontrivially in general.

Note that the point in using f -entanglement is that
the whole structure of partial entanglement classifica-
tion (P̂III in the permutation invariant case [20], or
PIII in general [18]) is getting too involved rapidly
with the increasing number of subsystems. Using gen-
erator functions (22) by their sub/super-level sets (27)
provides a coarsening of the structure in a moti-
vated way, and leads to a simple, chain like classi-
fication (31b), (36). The number of classes is greatly
reduced to |P̂III,f | = |f(P̂I)| ≪ |P̂III|, the number of
the values of the generator function f . An extreme
case is when the generator function f is injective, that
is, it takes different values for all partitions ξ̂ ∈ P̂I,
then it leads to a total order on P̂I. This might be
an advantage if the goal is to be able to order the
‘value’ of different kinds of Level I partial separabil-
ity, although we end up with |P̂III,f | = |f(P̂I)| = |P̂I|
different classes, which is the number of integer par-
titions of n, known to increase rapidly [61]. When
the generator function f is not injective, that is,
it may take the same value for different partitions,
then |P̂III,f | = |f(P̂I)| < |P̂I|. The width, height
and rank (23) were examples for this case, for which
|w(P̂I)| = |h(P̂I)| = n and |r(P̂I)| = 2n − 3 if n ≥ 3.
(Further examples are shown in Section 4.) The other
extreme case is when the generator function f is con-
stant, that is, it takes the same k0 = f(ξ̂) value for
all partitions ξ̂ ∈ P̂I. Then the only state space is the
only class, Dk0,f = Ck0,f ≡ D, the whole state space.
Such generator functions are hence useless.

Note that there are different generator functions
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which lead to the same classification, with different
k values. An obvious example is taking cf instead
of f with a nonzero real constant c, then the f -
entanglement classification is the same as the (cf)-
entanglement classification. More generally, any g ◦ f
leads to the same classification as f if g is strictly
monotone, and a possibly coarser classification if g
is monotone but not strictly. (If g is not mono-
tone then g ◦ f is not necessarily a generator func-
tion.) These symmetries and coarsenings of the one-
parameter properties are elaborated in Appendix C,
since these play an important role in the depths of the
one-parameter properties, and then in the metrologi-
cal multipartite entanglement criteria, formulated in
the subsequent sections.

Note that the conjugation †, being the reflection of
the Young diagram with respect to its ‘diagonal’ [48],
is a natural involution on the P̂I set of integer par-
titions. The height and width generator functions of
producibility and partitionability (23) are related by
conjugation, h = w ◦ †, h ◦ † = w, however, the classi-
fication itself is not invariant for conjugation (as can
already be seen for n = 4 in Figure 1). This is be-
cause refinement is not transformed well by conju-
gation [20], so the refinement-monotonicity (22) of a
generator function is not preserved, neither flipped.
In other words, for a generator function f , the trans-
formed function f ◦ † is not a generator function in
general. We will turn back to this issue in Section 4.7.

Note that in this work we use only the convex hulls
of the Level I notions (ξ-separability or partition-
separability) of partial separability [18, 20], however,
the finest description of partial separability can be
given by the whole lattice structure generated by the
intersection and convex hull of union of ξ-separability.
Significant results were achieved recently in this direc-
tion when, by the aid of multipartite entanglement of
X-states and GHZ-diagonal states [62–64], not only
partial separability criteria were formulated [65–69],
and the convex structure and related Bell inequalities
were investigated [70, 71], but also the nondistributiv-
ity [72] and the infinite cardinality [73] of this lattice
were demonstrated.

3 f -entanglement depth
In this section we work out the general description of
the discrete valued, ‘entanglement depth like’ quan-
tities, the f -entanglement depth, and also its con-
vex/concave variant, the f -entanglement depth of for-
mation, naturally characterizing one-parameter en-
tanglement properties of quantum states, given by the
generator function f . We note that the appropriate
generalization of the entanglement of formation and
the relative entropy of entanglement can also be used
for the characterization of the one-parameter entan-
glement properties of quantum states [20], which is
recalled in Appendix A for the sake of completeness.

3.1 Examples of f -entanglement depth
For the three notable one-parameter families of prop-
erties, partitionability, producibility and stretchabil-
ity (Section 2.2), we also have the partitionability
entanglement depth, the producibility entanglement
depth (or simply entanglement depth [1, 3]), and the
stretchability entanglement depth,

Dpart(ρ) := max
{
k
∣∣ ρ ∈ Dk-part

}
, (37a)

Dprod(ρ) := min
{
k
∣∣ ρ ∈ Dk-prod

}
≡ D(ρ), (37b)

Dstr(ρ) := min
{
k
∣∣ ρ ∈ Dk-str

}
. (37c)

These express how deep the state is located in the
onion like classification defined by the partitionabil-
ity, producibility and stretchability (see Figure 2).
These are the bounds of the possible k values for
which ρ ∈ Dk-part, ρ ∈ Dk-prod and ρ ∈ Dk-str, respec-
tively (16), (31b); or the values k for which ρ ∈ Ck-part,
ρ ∈ Ck-prod and ρ ∈ Ck-str, respectively (20), (34).
These take the integer values in [1, n]Z in the first two
cases, and in [−(n − 1), n − 1]Z \ {±(n − 2)} in the
third; n, 1 and −(n− 1) respectively for fully separa-
ble states; 2, n− 1 and n− 3 respectively for strictly
biseparable states; and 1, n and n − 1 respectively
for genuinely multipartite entangled states. Because
of the LOCC-closedness of the state spaces Dξ̂, these
are LOCC-monotones, increasing in the first case and
decreasing in the second and third. This is shown in
general in the following subsection.

3.2 f -entanglement depth in general
In general, for the one-parameter properties (27),
defined by the generator function f over the per-
mutation invariant properties (22), we have the f -
entanglement depth (or depth of f -entanglement)

Df (ρ) :=
{

min
{
k ∈ f(P̂I)

∣∣ ρ ∈ Dk,f

}
,

max
{
k ∈ f(P̂I)

∣∣ ρ ∈ Dk,f

}
,

(38)

for increasing or decreasing f , respectively. This ex-
presses how deep the state is located in the onion like
classification defined by the one-parameter property
given by the generator function f (see Figure 2). The
range of Df is the discrete range f(P̂I) ⊂ R of f , and

Df (ρ) = k ⇐⇒ ρ ∈ Ck,f , (39a)

by (34), or, for the state spaces

Df (ρ) ⋚ k ⇐⇒ ρ ∈ Dk,f (39b)

for all k ∈ f(P̂I) by (35). In other words, the f -
entanglement depth is that k value, for which ρ ∈
Ck,f , that is, the f -separability classes (34) are just
the level sets (inverse images) of the f -entanglement
depth (38),

Ck,f = D−1
f (k) ≡

{
ρ ∈ D

∣∣ Df (ρ) = k
}

(40a)
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for all k ∈ f(P̂I), and f -separability spaces (30a) are
just the sub/super-level sets of the f -entanglement
depth (38),

Dk,f = D
⋚
f (k) ≡

{
ρ ∈ D

∣∣ Df (ρ) ⋚ k
}

(40b)

for all k ∈ f(P̂I). (For illustrations, see Figure 2.)
Note that, although the f -entanglement depth (38)
is neither convex nor concave (it is a step-function),
it is still nonincreasing/nondecreasing monotone with
respect to LOCC [74–78] in the two cases of in-
creasing/decreasing f , respectively, simply by (36)
and (39a). This makes it a proper entanglement mea-
sure [78]. It is moreover nonincreasing/nondecreasing
on average with respect to selective LOCC [74–78] in
the two cases of increasing/decreasing f , respectively.
That is,

∑
j qjDf (ρ′

j) ⋚ Df (ρ), where ρ′
j = Λj(ρ)/qj

and qj = Tr(Λj(ρ)) ̸= 0 for selective LOCC map
Λ =

∑
j Λj with outcome maps Λj . This holds even

for selective separable operations (where the Kraus
operators of Λj(ρ) =

∑
i Kj,iρK

†
j,i are elementary ten-

sors Kj,i =
⊗n

l=1 Kj,i,l, which is an operation class
larger than LOCC [79]), because Df,k is closed un-
der such maps ρ 7→ ρ′

j , so Df (ρ′
j) ⋚ Df (ρ) by (39b),

leading to
∑

j qjDf (ρ′
j) ⋚ Df (ρ).

An alternative way of formalizing the f -
entanglement depth, given from the point of
view of the general classification P̂II, is

Df (ρ) =


min
ξ̂∈P̂II

{
f(ξ̂)

∣∣ ρ ∈ Dξ̂

}
,

max
ξ̂∈P̂II

{
f(ξ̂)

∣∣ ρ ∈ Dξ̂

}
,

(41)

for increasing or decreasing f , respectively. (For the
proof, see Appendix B.1.) From this, it is also easy
to see that if the generator functions f1, f2 : P̂I → R
are both increasing or both decreasing, then

f1 ≤ f2 =⇒ Df1 ≤ Df2 . (42)

(Indeed, if f1(ξ̂) ≤ f2(ξ̂) for all ξ̂ ∈ P̂I, then f1(ξ̂) ≤
f2(ξ̂) for all ξ̂ ∈ P̂II by (25a), then minξ̂

{
f1(ξ̂)

∣∣ ρ ∈
Dξ̂

}
≤ minξ̂

{
f2(ξ̂)

∣∣ ρ ∈ Dξ̂

}
, and the same holds for

max, then the form (41) for Df leads to the claim.)
This is remarkable, since the one-parameter classifica-
tions given by the generator functions f1 and f2 may
be (actually, they usually are) incompatible, that is,
may lead to classes intersecting nontrivially.

Note that the f -entanglement depth (38) can also
be formulated in terms of optimization over pure de-
compositions. Having the restriction of Df in (38) to
the pure states, we have

Df (ρ) =


min

{(pj ,πj)}⊢ρ
max

j
Df (πj),

max
{(pj ,πj)}⊢ρ

min
j
Df (πj),

(43)

for increasing or decreasing f , respectively. (For
the proof, see Appendix B.2. The first mini-
mization/maximization is taken over all the ρ =

∑m
j=1 pjπj pure convex decompositions of ρ, that is,

for all m ∈ N, for all j = 1, 2, . . . ,m, πj ∈ P, pj > 0,∑m
j=1 pj = 1 for which we use the shorthand notation

⊢ above. This is a discrete function, the minimum
or maximum are taken for m ≤ dim(D) + 1 = d2n

due to Carathéodory’s theorem.) The meaning of the
formulation (43) of the f -entanglement depth is that
the state ρ can optimally be mixed by the use of pure
states of f -entanglement at most/least Df (ρ).

Note that if a generator function f : P̂I → R is
composed with a monotone function g : R → R, then
the f -entanglement depth (38) is transformed as

Dg◦f = g ◦Df . (44)

(For the proof, see Appendix C.3.) Note that if g is
decreasing then the LOCC monotonicity of Dg◦f is
the opposite as that of Df . Then, from bounds in
generator functions, we may also have more involved
bounds for the depths than the simple case (42). That
is, if the generator functions f1, f2 : P̂I → R and the
monotone functions g1, g2 : R → R are such that g1◦f1
and g2◦f2 are both increasing or both decreasing, then
we have

g1 ◦ f1 ≤ g2 ◦ f2 =⇒ g1 ◦Df1 ≤ g2 ◦Df2 (45)

by (42) and (44).
For partitionability, producibility and stretchabil-

ity, we get back the depths (37) by the height, width
and rank (23) as generator functions. Note also the
alternative formulations (41) and (43) of those. Also,
an immediate consequence of (42) for these is that,
since r < w (23), the (producibility) entanglement
depth (37b) is an upper bound of the stretchability
entanglement depth (37c), Dstr < Dprod ≡ D. This
is of course a rather loose bound, however, by the aid
of (45), we may have stronger, even strict bounds in
some cases. For this, we recall the bounds among the
generator functions h, w and r (23),

n/w ≤ h ≤ n+ 1 − w, (46a)
n/h ≤ w ≤ n+ 1 − h, (46b)

n/h− h ≤ r ≤ n+ 1 − 2h, (46c)
−(n+ 1) + 2w ≤ r ≤ w − n/w, (46d)

1
2
(√

r2 + 4n− r
)

≤ h ≤ 1
2(n+ 1 − r), (46e)

1
2
(√

r2 + 4n+ r
)

≤ w ≤ 1
2(n+ 1 + r), (46f)

see (58) in [20]. These lead to

n/Dprod ≤ Dpart ≤ n+ 1 −Dprod, (47a)
n/Dpart ≤ Dprod ≤ n+ 1 −Dpart, (47b)

n/Dpart −Dpart ≤ Dstr ≤ n+ 1 − 2Dpart, (47c)
−(n+ 1) + 2Dprod ≤ Dstr ≤ Dprod − n/Dprod,

(47d)√
D2

str + 4n−Dstr ≤ 2Dpart ≤ n+ 1 −Dstr, (47e)
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√
D2

str + 4n+Dstr ≤ 2Dprod ≤ n+ 1 +Dstr, (47f)

where the inequalities in the fourth and sixth rows
were obtained by applying increasing g functions,
the remaining inequalities were obtained by using de-
creasing ones for the application of (45).

3.3 Examples of f -entanglement depth of for-
mation
The f -entanglement depths (38) are discrete valued,
step functions over the state space, which leads to
some inconvenient consequences. For instance, for the
usual (producibility) entanglement depth (37b), mix-
ing even an infinitely small amount of n-qubit GHZ
state |ψGHZ⟩ = (|00 . . . 0⟩ + |11 . . . 1⟩)/

√
2, having

maximal entanglement depth D
(
|ψGHZ⟩⟨ψGHZ|

)
=

n, to a separable state |ψsep⟩ := |10 . . . 0⟩ or-
thogonal to it, having minimal entanglement depth
D
(
|ψsep⟩⟨ψsep|

)
= 1, that is, ρϵ := (1−ϵ)|ψsep⟩⟨ψsep|+

ϵ|ψGHZ⟩⟨ψGHZ|, we get maximal entanglement depth
D(ρϵ) = n for all ϵ > 0. (This is because ev-
ery pure convex decomposition of such a state con-
tains pure states given by state vectors of the form
a|ψsep⟩ + b|ψGHZ⟩ (see Schrödinger’s mixture theo-
rem [80–82]), being separable if and only if b = 0.)

To avoid such situations, we may formulate the
continuous variant of the f -entanglement depths by
the convex or concave roof construction, expressing
the average f -entanglement depth of the optimal de-
composition. For the partitionability, producibility
and stretchability entanglement depths (37) these are
the partitionability entanglement depth of formation,
the producibility entanglement depth of formation (or
simply entanglement depth of formation), and the
stretchability entanglement depth of formation,

DoF
part(ρ) := max

{(pj ,πj)}⊢ρ

∑
j

pjDpart(πj), (48a)

DoF
prod(ρ) := min

{(pj ,πj)}⊢ρ

∑
j

pjDprod(πj) ≡ DoF(ρ),

(48b)

DoF
str(ρ) := min

{(pj ,πj)}⊢ρ

∑
j

pjDstr(πj). (48c)

These take the values in the continuous ranges [1, n]R
and [−(n − 1), n − 1]R in the first two and the third
cases, respectively.

For the example above, for ϵ > 0, we have the much
more expressive 1 < DoF(ρϵ) ≤ (1 − ϵ)1 + ϵn upper
bound on the f -entanglement depth of formation, re-
flecting the physical situation much better.

3.4 f -entanglement depth of formation in gen-
eral
In general, for the one-parameter properties (27),
defined by the generator function f over the per-

mutation invariant properties (22), we have the f -
entanglement depth of formation

DoF
f (ρ) :=


min

{(pj ,πj)}⊢ρ

∑
j pjDf (πj),

max
{(pj ,πj)}⊢ρ

∑
j pjDf (πj),

(49)

for increasing or decreasing f , respectively. This is
the convex/concave roof extension [83, 84] of the f -
entanglement depth (38). (For the proof, see Ap-
pendix B.3.) The meaning of the formula (49) of the
f -entanglement depth of formation is that the state
ρ can optimally be mixed by the use of pure states of
average f -entanglement DoF

f (ρ). These take the val-
ues in the continuous ranges

[
min f(P̂I),max f(P̂I)

]
R.

These are entanglement monotones (convex/concave
and nonincreasing/nondecreasing on average with re-
spect to selective LOCC in the two cases of increas-
ing/decreasing f , respectively). Indeed, this follows
by the convex roof construction from

∑
j qjDf (π′

j) ⋚
Df (π), where π′

j = Λj(π)/qj and qj = Tr(Λj(π)) ̸= 0
for selective LOCC map Λ =

∑
j Λj with outcome

maps Λj of Kraus rank 1 [18, 76, 77]. This holds even
for selective separable operations because Df,k ∩ P =
Pf,k is closed under such maps π 7→ π′

j , so Df (π′
j) ⋚

Df (π) by (39b), leading to
∑

j qjDf (π′
j) ⋚ Df (π).

From (43) it easily follows that

DoF
f (ρ) ⋚ Df (ρ). (50)

(Indeed, minj{Df (πj)} ≤
∑

j pjDf (πj) ≤
maxj{Df (πj)} for all particular decompositions,
leading to the bounds in the minimization or max-
imization of these functions with respect to the
decompositions in (43) and (49).) From this, we
readily have

DoF
f (ρ) ⋚ k ⇐= ρ ∈ Dk,f (51a)

for all k ∈ f(P̂I) by (39b). Here, contrary to (39b), we
do not have necessary and sufficient condition, which
is not a disadvantage, quite the contrary: the moti-
vation for the introduction of entanglement depth of
formation in Section 3.3 was just the manifestation
of this. On the other hand, f(⊥) ⋚ DoF

f (ρ), so we
have equivalence for the finest member of the f based
classification,

DoF
f (ρ) = f(⊥) ⇐⇒ ρ ∈ Df(⊥),f ≡ Cf(⊥),f (51b)

by (34).
It is also easy to see that if the generator functions

f1, f2 : P̂I → R are both increasing or both decreasing,
then

f1 ≤ f2 =⇒ DoF
f1

(ρ) ≤ DoF
f2

(ρ). (52)
(Indeed, this is the consequence of (42), and the
monotonicity of the convex/concave roof extension,
if Df1(ρ) ≤ Df2(ρ), then DoF

f1
(ρ) ≤ DoF

f2
(ρ).)

Note that for the f -entanglement depth of forma-
tion, we do not have such a strong property as (44)
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for the f -entanglement depth. The convex and con-
cave roof construction used in the definition of the
f -entanglement depth of formation restricts the pos-
sibilities to convex and concave g functions, respec-
tively. If a generator function f : P̂I → R is com-
posed with a convex or concave monotone function
g : R → R, then for the f -entanglement depth of
formation (49) we have

DoF
g◦f ≥ g ◦DoF

f , (53a)

or

DoF
g◦f ≤ g ◦DoF

f , (53b)

for the cases of convex or concave g functions, respec-
tively. If g is affine, that is, of the form g(u) = au+ b,
then the f -entanglement depth of formation (49) is
transformed as

DoF
g◦f = g ◦DoF

f , (53c)

by (44) and the definition (49). (For the proof, see
Appendix C.4.) Then, from bounds in generator func-
tions, we may also have more complex, and possibly
stronger bounds for the depths of formations than
the simple case (52). That is, if the generator func-
tions f1, f2 : P̂I → R and the monotone functions
g1, g2 : R → R are such that g1 ◦ f1 and g2 ◦ f2 are
both increasing or both decreasing and g1 is convex,
g2 is concave, then we have

g1 ◦ f1 ≤ g2 ◦ f2 =⇒ g1 ◦DoF
f1

≤ goF
2 ◦Df2 (54)

by (52) and (53).
For partitionability, producibility and stretchabil-

ity, we get back the depths of formations (48) by the
height, width and rank (23) as generator functions.
As in (47), we also have

n/DoF
prod ≤ DoF

part ≤ n+ 1 −DoF
prod, (55a)

n/DoF
part ≤ DoF

prod ≤ n+ 1 −DoF
part, (55b)

n/DoF
part −DoF

part ≤ DoF
str ≤ n+ 1 − 2DoF

part, (55c)
−(n+ 1) + 2DoF

prod ≤ DoF
str ≤ DoF

prod − n/DoF
prod,

(55d)√
(DoF

str)2 + 4n−DoF
str ≤ 2DoF

part ≤ n+ 1 −DoF
str,

(55e)√
(DoF

str)2 + 4n+DoF
str ≤ 2DoF

prod ≤ n+ 1 +DoF
str,

(55f)

based on the relations recalled in (46), where the in-
equalities in the fourth and sixth rows came by apply-
ing increasing g functions, the remaining inequalities
by decreasing ones, which were convex on the left-
hand side, identity in the middle, and concave on the
right-hand side in all rows for the application of (54).

3.5 Remarks
Here we list some remarks on the f -entanglement
depth and f -entanglement depth of formation of one-
parameter properties, one paragraph each.

Note that, again, since no subsystem has a distin-
guished role, the entanglement depth and entangle-
ment depth of formation presented here was defined
in the framework of permutation invariant partial sep-
arability [20], being a motivated particular case of
the general theory of partial separability [18], demon-
strated also experimentally [60], worked out in paral-
lel with partial correlation [19, 20, 56]. Note that the
whole construction could have been carried out also in
the general setting, when not only the sizes of the sub-
systems matter; and also the f -correlation depth can
be defined analogously for partial correlations, but
not its convex/concave roof extension, the analogous
definition for f -correlation depth of formation would
lead to the f -entanglement depth of formation.

Note that we considered both increasing and de-
creasing generator functions (22) for the definition
of one-parameter properties (27) in Section 2, since
both arise naturally in well motivated situations (23).
The resulting f -entanglement depth (38) and f -
entanglement depth of formation (49) are then de-
creasing/increasing monotones with respect to LOCC
for the case of increasing/decreasing generator func-
tions. Having increasing LOCC monotones for mea-
suring entanglement is not a real problem, the im-
portant point is the monotonicity itself. Although
−1 times an increasing monotone is a decreasing one,
such quantity would be less expressive, so instead of
doing this, we prefer to call the increasing LOCC
monotones separability measures/monotones instead
of entanglement measures/monotones.

Note that the LOCC monotonicity of the f -
entanglement depth could be rather difficult to prove
for general f from scratch, however, it was easy to
show thanks to the whole construction of the (permu-
tation invariant) partial separability [18, 20], recalled
in Section 2.

Note that the characterizations (43) of f -
entanglement depth and (49) of f -entanglement depth
of formation by convex decompositions resemble the
case of the Schmidt number [85, 86] (sometimes also
called Schmidt rank) and the (convex roof extended)
Schmidt rank (we would call it Schmidt rank of for-
mation) measuring bipartite entanglement. These are
based on the Schmidt rank of bipartite pure states,
which is also a lower semicontinuous function, so the
LOCC monotonicity can be shown analogously to
the case of f -entanglement depth and f -entanglement
depth of formation (see Appendix B.3).

Note that the f -entanglement depth signals the
presence or absence of given one-parameter partial en-
tanglement properties ξ̂k,f ∈ P̂II,f (39a), which is a
rather coarse description. In case of the presence of a
given partial entanglement property ξ̂k,f , it is still a
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question how strong it is. This can be characterized
by the (k, f)-entanglement of formation EoF

k,f or the
relative entropy of (k, f)-entanglement ER

k,f (115), be-
ing proper entanglement measures. (See Appendix A
for the application of the general construction [20] to
the one-parameter case.) By the faithfulness of these,
we readily have

EoF
k,f (ρ) = ER

k,f (ρ) = 0, ⇐⇒ Df (ρ) ⋚ k, (56a)
EoF

k,f (ρ) = ER
k,f (ρ) = 0, =⇒ DoF

f (ρ) ⋚ k, (56b)

for the f -entanglement depth and the f -entanglement
depth of formation by (39b) and (51a). To find fur-
ther, more general bounds among these quantities rep-
resents an important research direction.

4 Some notable cases of f -entangle-
ment
For the one-parameter properties partitionability,
producibility and stretchability, the generator func-
tions were the height, width and rank (23) of the
Young diagram representing the partition-type of the
system [20]. In this section we consider some fur-
ther, motivated generator functions (22), which lead
to some meaningful one-parameter properties. The
proof of some general properties of some of these func-
tions are recalled in Appendices D.2 and D.3 for the
convenience of the reader. The proof of the mono-
tonicity (22b) of the generator functions are given in
Appendix E.2. The observations (44) and (53) give
us a considerable freedom in the construction.

As illustration, we also plot the generator functions
f(ξ̂) against the height h(ξ̂), being the natural gra-
dation of the poset P̂I, flipped, so that those plots
resemble the height vs. width plot of Figure 1. Note
that multiple partitions ξ̂ may fall on each vertex in
those figures in general. The down-sets ξ̂k,f are to the
left/right of vertical lines (not drawn) for the increas-
ing/decreasing cases, respectively.

4.1 Max and min generator functions, tough-
ness
The producibility was given by the width (23b) of the
partition, which is the size of the largest part. We
can smoothen this concept by taking into account the
first m largest parts. We get generator function also
by taking into account the first m smallest parts.

For m = 1, 2, . . . , n, let us have the sum of the
largest m parts as

wm(ξ̂) := max
ξ̂′⊆ξ̂,|ξ̂′|≤m

∑
x∈ξ̂′

x, (57a)

which is an increasing generator function, see (135a).
Form = 1, 2, . . . , n, let us have the sum of the smallest
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Figure 3: The height (23a) vs. width (23b), rank (23c) and
toughness (58) plots of P̂I for n = 8. See also figure 1 for
the width for n ≤ 6.

m parts as

tm(ξ̂) := min
ξ̂′⊆ξ̂,|ξ̂′|≥m

∑
x∈ξ̂′

x, (57b)

which is an increasing generator function, see (135b).
(For illustration, see Figure 3.)

Clearly, we have w1 = max = w, the width (23b),
and wm ≤ wm′ if m < m′. We also have wm(⊥) =
m for the finest partition, and wm(ξ̂) = wm(⊤) =
n for all m ≥ h(ξ̂), so the range of wm is between
these values (24). For a given producibility, states
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with wm-depth steeper with m are more entangled,
as the largest m parts of the corresponding partitions
are larger. Let us define

t(ξ̂) := min(ξ̂), (58)

which is an increasing generator function, see (135b),
which we call the toughness of the partition ξ̂, or of
the Young diagram, by which we have t1 = min = t.
Also, tm ≤ tm′ if m < m′. We also have tm(⊥) = m

for the finest partition, and tm(ξ̂) = tm(⊤) = n

for all m ≥ h(ξ̂), so the range of tm is between
these values (24). Note that t takes the values
1, 2, . . . , ⌊n/2⌋, n, and t(⊤) = n uniquely. For a given
partitionability, states with tm-depth steeper with m
are more entangled, as the smallestm parts of the cor-
responding partitions are larger. Clearly, tm ≤ wm,
and wm(ξ̂) + th(ξ̂)−m(ξ̂) = n if m < h(ξ̂).

For these functions we have the (k,wm)- and
(k, tm)-entanglement of formation and the relative en-
tropy of (k,wm)- and (k, tm)-entanglement (115) in
the usual way [20]. We also have the corresponding
depths, the wm- and tm-entanglement depth (38) and
wm- and tm-entanglement depth of formation (49).
For example, for the function w2, if the depth of
w2-entanglement is Dw2(ρ) = k, then, to mix it,
there is a need for pure entanglement where the two
largest entangled subsystems together are of size at
least k. For the toughness t, the (entanglement)
toughness depth, or depth of (entanglement) tough-
ness Dtgh(ρ) := Dt(ρ) may be of particular interest.
For example, if Dtgh(ρ) = k, then, to mix ρ, there
is a need for pure entanglement where the smallest
entangled subsystem is of size at least k. In partic-
ular, if Dtgh(ρ) = 2, then there is a need for pure
entanglement where there are no elementary subsys-
tems separable from the rest of the system. On the
other hand, Dtgh(ρ) = n for genuinely multipartite
entangled states ρ ∈ Cn-tgh, and Dtgh(ρ) ≤ ⌊n/2⌋ for
biseparable states ρ ∈ D⌊n/2⌋-tgh. Note that, e.g., fully
separable states cannot be identified by toughness.

4.2 Power sums and power means
We may experiment with other characterizations of
partitions as well.

For q ∈ R, let us have the power sum

sq(ξ̂) :=
∑
x∈ξ̂

xq, (59a)

which is an increasing/decreasing generator function
for 1 ⋚ q, see (135c). For q ∈ R, q ̸= 0, let us have
the q-sum (q-norm for q ≥ 1)

Nq(ξ̂) :=
(
sq(ξ̂)

)1/q
, (59b)

which is an increasing generator function for q < 0
and 1 ≤ q and decreasing generator function for 0 <
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Figure 4: The height (23a) vs. power-sum (59a), q-sum
(59b) and q-mean (59c) plots of P̂I for q = 2, n = 8.

q ≤ 1, see (135d). For q ∈ R, let us have the q-mean

Mq(ξ̂) :=
(sq(ξ̂)

|ξ̂|

)1/q

, (59c)

which is an increasing generator function for 1 ≤ q,
see (135e). (For illustration, see Figure 4.)

The power sum has the limits sq→∞(ξ̂ ̸= ⊥) = ∞
and sq→∞(⊥) = n, see (127c), and sq→−∞ gives the
number of size-one subsystems, see (127d). For q = 0
and 1, it is s0(ξ̂) = |ξ̂| = h(ξ̂), leading to partitionabil-
ity (23a), and s1(ξ̂) = n, being constant, not leading
to a meaningful property. For all q parameter values,
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sq(⊥) = n and sq(⊤) = nq for the finest and coarsest
partitions, so the range of sq is between these val-
ues (24).

The q-sum has the limits Nq→∞ = max, see (127h),
and Nq→−∞ = min, see (127i), leading to the m = 1
case (toughness (58) and producibility (23b)) of the
tm and wm properties (57). For q = 1, it is N1(ξ̂) = n,
being constant, not leading to a meaningful property,
and Nq does not have limit as q → 0, see (127e)-
(127f), so we cannot properly interpolate between t
(toughness) and w (producibility) by that. For all q
parameter values, Nq(⊥) = n1/q and Nq(⊤) = n for
the finest and coarsest partitions, so the range of Nq

is between these values (24).
The q-mean covers more, it has the limits Mq→∞ =

max, see (127l), and Mq→−∞ = min, see (127m),
again, while being continuous at q = 0 by its limit,
the geometric meanM0(ξ̂) = (

∏
x∈ξ̂ x)1/|ξ̂|, see (127j).

Also, while N1(ξ̂) = n, being constant, does not lead
to a meaningful property, M1(ξ̂) = n/|ξ̂| leads to
reciprocal-partitionability. So Mq covers toughness,
reciprocal-partitionability and producibility, however,
it does not interpolate among these, since it fails to
be a generator function for q < 1. Such interpolation
would be nice to have, and it will indeed be possi-
ble by the use of Rényi generator functions, see Sec-
tion 4.4. For all q parameter values, Mq(⊥) = 1 and
Mq(⊤) = n1/q for the finest and coarsest partitions,
so the range of Mq is between these values (24).

It holds in general for these functions that for higher
q, the larger parts get more emphasis. This diverges
for sq, but not for Nq and Mq, where the smaller parts
are more suppressed then. Note that, for a given q ̸= 0
parameter, sq and Nq are connected by the strictly
monotone function g(u) = u1/q, so they lead to the
same classification by (121b) and (123c)-(123d), al-
though the interpolation properties are different, and
the resulting depths have different values and mean-
ings, see (44).

For these functions we have the (k, sq)-, (k,Nq)-
and (k,Mq)-entanglement of formation and the
relative entropy of (k, sq)-, (k,Nq)- and (k,Mq)-
entanglement (115) in the usual way [20]. We also
have the corresponding depths, the sq-, Nq- and
Mq-entanglement depth (38) and sq-, Nq- and Mq-
entanglement depth of formation (49). For exam-
ple, if the depth of M2-entanglement of a state ρ is
DM2(ρ) = k, then, to mix it, there is a need for pure
entanglement where the quadratic mean M2 of the
sizes of entangled subsystems is at least k.

4.3 Probabilistic functions
The power based generator functions in the previous
section may gain some motivation in probabilistic sce-
narios.

If we consider an arbitrary partition ξ =
{X1, X2, . . . , X|ξ|} of the whole system (that is, Xi ⊆

{1, 2, . . . , n} nonempty and disjoint) of type ξ̂ (that is,
{|X1|, |X2|, . . . , |X|ξ||} = {x1, x2, . . . , x|ξ|} = ξ̂), then
the probability of getting a particular subsystem Xi

by picking an elementary subsystem randomly with
equal probabilities 1/n is |Xi|/n = xi/n. Later we
use the notation ξ̂/n = {x/n | x ∈ ξ̂} for these proba-
bilities. The q-th (raw) moment of the subsystem size
is then ∑

x∈ξ̂

x

n
xq = sq+1(ξ̂)

n
, (60a)

which is basically the (q + 1)-th power sum (59a) of
ξ̂. We note that the q-th central moment of the sub-
system size (meaningful only for 2 ≤ q ∈ N) is

∑
x∈ξ̂

x

n

(
x−

∑
x′∈ξ̂

x′

n
x′
)q

=
∑
x∈ξ̂

x

n

(
x− s2(ξ̂)

n

)q

, (60b)

however, it is not monotone (22), so not a proper
generator function (this can already be seen for the
n = 3, q = 2 case).

We may consider a different situation as well, when
we pick a particular subsystemX ∈ ξ with equal prob-
ability 1/|ξ| = 1/|ξ̂|. The q-th (raw) moment of the
subsystem size is then

∑
x∈ξ̂

1
|ξ̂|
xq = sq(ξ̂)

|ξ̂|
, (61a)

which is basically the q-th power of the q-mean (59c)
of ξ̂, increasing for q ≥ 1. For q = 1, it gives back
the average size M1. We note that the q-th central
moment of the subsystem size (meaningful only for
2 ≤ q ∈ N) is∑

x∈ξ̂

1
|ξ̂|

(
x−

∑
x′∈ξ̂

1
|ξ̂|
x′
)q

=
∑
x∈ξ̂

1
|ξ̂|

(
x− n

|ξ̂|

)q

, (61b)

however, it is not monotone (22), so not a proper
generator function (this can already be seen for the
n = 3, q = 2 case).

4.4 Entropy based generator functions
We may also use entropy based generator functions
through the probabilities ξ̂/n = {x/n | x ∈ ξ̂}, which
allows us to interpolate between toughness, partition-
ability and producibility. Note that we do not call
these entropies in general, since, on the one hand,
they act on P̂I, on the other hand, larger ranges of
parameter q are allowed here. (For some elaboration
on this, see Section 4.7 and Appendix E.)

For q ∈ R, let us have the Tsallis function

Tq(ξ̂) = 1
1 − q

(∑
x∈ξ̂

(x
n

)q − 1
)

= sq(ξ̂)/nq − 1
1 − q

, (62a)
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Figure 5: The height (23a) vs. Tsallis function (62a), Rényi function (62b), Shannon function (62c) and Pq function (63)
plots of P̂I for q = 2, n = 8.

which is a decreasing generator function, see (135f).
For q ∈ R, let us have the Rényi function

Rq(ξ̂) = 1
1 − q

ln
(∑

x∈ξ̂

(x
n

)q
)

= ln(sq(ξ̂)) − ln(nq)
1 − q

,

(62b)
which is a decreasing generator function, see (135g).
Let us also have the Shannon function

S(ξ̂) = −
∑
x∈ξ̂

x

n
ln
(x
n

)
= ln(n) − 1

n

∑
x∈ξ̂

x ln(x), (62c)

which is a decreasing generator function, see (135h).
(For illustration, see Figure 5.)

Note that for the 0 ≤ q case these are the Rényi,
Tsallis and Shannon entropies of the normalized par-
titions ξ̂/n = {x/n | x ∈ ξ̂}. Normalization is needed
to avoid the discontinuity at q = 1, however, the re-
sulting quantities are insensitive to the size n of the
system (contrary to the max and min and power based
generator functions in Sections 4.1 and 4.2). This
could be considered as a disadvantage, if the goal was
to compare systems of different sizes, however, this is
not the case in the classification of partial separabil-
ity, since in the definition of the properties (27) the
value of the function does not matter.

The Tsallis generator function has the limits
Tq→+∞ = 0, see (127p), and Tq→−∞(⊤) = 0, while
Tq→−∞(ξ̂ ̸= ⊤) = ∞, see (127q). For q = 0 and
1, it is T0(ξ̂) = |ξ̂| − 1, see (127n), leading to a
partitionability-like quantity, and T1 = S, see (127o),
the Shannon generator function. For all q parameter
values, Tq(⊥) = n1−q−1

1−q = ln(q)(n) and Tq(⊤) = 0 for
the extremal partitions, so the range of Tq is between
these values (24).

The Rényi generator function has the limits
Rq→+∞(ξ̂) = ln(n) − ln(max(ξ̂)), see (127t), lead-
ing to a logarithmically flipped producibility, and
Rq→−∞(ξ̂) = ln(n) − ln(min(ξ̂)), see (127u), leading
to a logarithmically flipped toughness. For q = 0
and 1, it is R0(ξ̂) = ln(|ξ̂|), leading to logarithmic
partitionability (127r) and R1 = S, the Shannon gen-
erator function (127s). For all q parameter values,
Rq(⊥) = S(⊥) = ln(n) and Rq(⊤) = S(⊤) = 0 for
the extremal partitions, so the range of Rq and S is
between these values (24).

We have then that Rq for q ∈ [−∞,∞] nicely inter-
polates between the negative logarithmic toughness,
the logarithmic partitionability and the negative log-
arithmic producibility. Taking the exponential of the
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Rényi generator function, we have

Pq(ξ̂) = eRq(ξ̂) =
(∑

x∈ξ̂

(x
n

)q
)1/(1−q)

= sq

( ξ̂
n

)1/(1−q)
,

(63)
which is a decreasing generator function (135i)
(continuous at q = 1), interpolating between
the reciprocal-toughness (127y), the partitionabil-
ity (127v) and the reciprocal-producibility (127x).
Note that Pq = eRq = eTq

(q) with the q-deformed expo-
nential e(q)(x) = (1 + (1 − q)x)1/(1−q), in accordance
with that Tq is given by the q-deformed logarithm
ln(q)(x) = (x1−q − 1)/(1 − q). For all q parameter
values, Pq(⊥) = n and Pq(⊤) = 1 for the extremal
partitions, so the range of Pq is between these val-
ues (24).

As before, for high q, the larger parts get more em-
phasis by Rq and Pq, in the sense that the smaller
parts are more suppressed, since these entropy based
generator functions are bounded in q. This does
not hold for Tq. Note that, for a given q ̸= 1 pa-
rameter, Tq, Rq and Pq are connected with sq by
the strictly monotone functions g(u) = 1

1−q (u/nq −
1), g(u) = 1

1−q ln(u/nq) and g(u) = (u/nq)1/(1−q),
so they lead to the same classification by (121b)
and (123c)-(123d), although the interpolation prop-
erties are different, and the resulting depths have dif-
ferent values and meanings, see (44).

For 0 ≤ q the Rényi and Tsallis (and Shannon)
functions are indeed the respective entropies of the
subsystem size distribution ξ̂/n = {x/n | x ∈ ξ̂}.
So in this case we call them entropic generator func-
tions (contrary to the more general ‘entropy based’).
We will turn back to entropic (dominance-monotone)
properties later in Sections 4.7 and 5.10 and Ap-
pendix E, since they play an important role in the
usefulness of one-parameter properties in formulat-
ing metrological bounds, here we just mention the
most important point. The entropic one-parameter
properties (and also those which are monotone func-
tions of them, such as sq (59a), Nq (59b), Pq (63)
for 0 ≤ q) can also be endowed with entropic moti-
vation then: they characterize the mixedness of the
subsystem sizes. The more pure the subsystem size
distribution, the more entangled the state is.

For these functions we have the (k, Tq)-, (k,Rq)-
, (k, S)- and (k, Pq)-entanglement of formation and
the relative entropy of (k, Tq)-, (k,Rq)-, (k, S)- and
(k, Pq)-entanglement (115) in the usual way [20]. We
also have the corresponding depths, the Tq-, Rq-, S-
and Pq-entanglement depth (38) and Tq-, Rq-, S- and
Pq-entanglement depth of formation (49). For exam-
ple, if the depth of Shannon-entanglement of a state
ρ is DS(ρ) = k, then, to mix it, there is a need for
pure entanglement where the Shannon function of the
sizes of entangled subsystems is at most k.

Let us emphasize that the one-parameter multipar-

tite entanglement properties given by entropy based
generator functions (62) are about the subsystem
size distribution in a partition of a multipartite sys-
tem, which we could call ‘Rényi property’ or ‘Tsallis
property of multipartite entanglement’. The result-
ing depths and other entanglement measures should
not be confused with, e.g., Rényi or Tsallis entangle-
ment entropies [76, 77], which are bipartite entangle-
ment measures, the Rényi or Tsallis entropies of the
Schmidt coefficients for pure states, and the convex
roof extensions of these for general states.

4.5 The q = 2 case: squareability
The degree 2 case of the above, power based generator
functions are of particular importance, as we will see
in Section 5. Let us collect these here. First, let us
have the squareability

s2(ξ̂) =
∑
x∈ξ̂

x2 (64)

of the partition ξ̂ ∈ P̂I by (59a), by which we also
have N2 = s

1/2
2 by (59b), T2 = 1 − s2/n

2 by (62a),
R2 = 2 ln(n)−ln(s2) by (62b) and P2 = n2/s2 by (63).
(For illustration, see Figures 4, and 5.) Note that
s2 : P̂I → N is not injective, (neither N2, T2, R2, P2)
for example s2({2, 2, 2}) = s2({3, 1, 1, 1}) = 12. Note
also that s2(⊥) = n and s2(⊤) = n2 uniquely, and
s2(ξ̂ ≺ ⊤) ≤ (n− 1)2 + 12 = n2 − 2n+ 2.

For the squareability s2 we have the space of k-
squareable states and class of strictly k-squareable
states

Dk-sq := Dk,s2 ≡ Conv
( ⋃

ξ̂∈P̂I:∑
x∈ξ̂

x2≤k

Pξ̂

)
, (65a)

Ck-sq := Ck,s2 ≡

{
Dn-sq for k = n,

Dk-sq \ Dk−-sq else,
(65b)

by (30a) and (34). The whole state space is Dn2-sq ≡
D, the space of biseparable states is D(n2−2n+2)-sq,
the class of genuinely multipartite entangled states is
Cn2-sq = Dn2-sq \ D(n2−2n+2)-sq, and the space of fully
separable states is Dn-sq ≡ Cn-sq.

For the squareability s2 we have the squareability-
entanglement of formation and the relative entropy
of squareability-entanglement (115) in the usual
way [20]. We also have the corresponding depths, the
(entanglement) squareability depth and the (entan-
glement) squareability depth of formation

Dsq := Ds2 ≡ min
{
k ∈ s2(P̂I)

∣∣ ρ ∈ Dk-sq
}

≡ min
{(pj ,πj)}⊢ρ

max
j
Dsq(πj), (66a)

DoF
sq := DoF

s2
≡ min

{(pj ,πj)}⊢ρ

∑
j

pjDsq(πj), (66b)
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Figure 6: The height (23a) vs. entanglement dimension (67a), projective entanglement dimension (67b), entanglement degree
of freedom (68a) and projective entanglement degree of freedom (68b) plots of P̂I for qubits d = 2, n = 8.

by (38), (43) and (49). For example, if the square-
ability depth of a state ρ is Dsq(ρ) = k, then, to
mix it, there is a need for pure entanglement where
the squareability of the sizes of entangled subsystems
is at least k. On the other hand, Dsq(ρ) = n2 for
genuinely multipartite entangled states ρ ∈ Cn2-sq,
Dsq(ρ) ≤ n2 − 2n + 2 for biseparable states ρ ∈
D(n2−2n+2)-sq, and Dsq(ρ) = n for fully separable
states ρ ∈ Cn-sq ≡ Dn-sq.

4.6 Entanglement dimension and entangle-
ment degree of freedom
After the variants of power functions, a radically dif-
ferent way of characterization can be given by expo-
nentials.

For d = dim(Hi) ≥ 2, let us have the entanglement
dimension (or effective dimension)

Dimd(ξ̂) :=
∑
x∈ξ̂

dx, (67a)

which is an increasing generator function, see (135j).
It expresses the dimension of the hypothetical Hilbert
space, which is needed to describe the components{

|ψX⟩ ∈ HX

}
X∈ξ

of a ξ̂-separable (unnormalized)

vector |ψξ⟩ =
⊗

X∈ξ |ψX⟩ one by one, where ξ̂ =

{|X| | X ∈ ξ}. If normalizations and complex phases
are also taken into account, then we have the projec-
tive entanglement dimension (or effective projective
dimension)

Dim′
d(ξ̂) :=

∑
x∈ξ̂

(dx−1)+1 = Dimd(ξ̂)−|ξ̂|+1, (67b)

which is an increasing generator function, see (135k).
It expresses the dimension of the hypothetical Hilbert
space, the parameters of the pure states of which are
needed to describe a ξ̂-separable pure state |ψξ⟩⟨ψξ|.
For all d ≥ 2 dimensions, Dimd(⊥) = nd and
Dimd(⊤) = dn, as well as Dim′

d(⊥) = n(d − 1) + 1
and Dim′

d(⊤) = dn, for the extremal partitions, so
the ranges of Dimd and Dim′

d are between these val-
ues (24), respectively. (For illustration, see Figures 6.)

For d = dim(Hi), let us have the entanglement de-
gree of freedom (or effective size)

DoFd(ξ̂) := logd

(∑
x∈ξ̂

dx
)

= logd

(
Dimd(ξ̂)

)
, (68a)

which is an increasing generator function, see (135l).
It expresses the number of hypothetical d-dimensional
Hilbert spaces, the composite system of which are
needed to describe the components of a ξ̂-separable
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(unnormalized) vector one by one. If normalizations
and complex phases are also taken into account, then
we have the projective entanglement degree of freedom
(or effective projective size)

DoF′
d(ξ̂) := logd

(
Dim′

d(ξ̂)
)

= logd

(
Dimd(ξ̂) − |ξ̂| + 1

)
,

(68b)
which is an increasing generator function, see (135m).
It expresses the number of hypothetical qud its, the
parameters of the pure states of the composite sys-
tem of which are needed to describe a ξ̂-separable
pure state |ψξ⟩⟨ψξ|. For all d ≥ 2 dimensions,
DoFd(⊥) = logd(n) + 1 and DoFd(⊤) = n, as well
as DoF′

d(⊥) = logd(n(d − 1) + 1) and DoF′
d(⊤) = n,

for the extremal partitions, so the ranges of DoFd and
DoF′

d are between these values (24), respectively. (For
illustration, see Figures 6.)

Note that, contrary to the generator functions in-
troduced earlier, Dim, Dim′, DoF and DoF′ are
dimension-sensitive, which may be an advantage when
entanglement is compared among systems with differ-
ent d = dim(Hl) dimension of the Hilbert space of
elementary subsystems.

Note that, for a given dimension d, the functions
DoFd and DoF′

d are connected with Dimd and Dim′
d

by the strictly monotone functions g(u) = lnd(u),
so they lead to the same classification by (121b)
and (123c)-(123d), although the resulting depths have
different values and meanings, see (44).

For these functions we have the (k,Dim)-,
(k,Dim′)-, (k,DoF)- and (k,DoF′)-entanglement
of formation and the relative entropy of
(k,Dim)-, (k,Dim′)-, (k,DoF)- and (k,DoF′)-
entanglement (115) in the usual way [20]. We
also have the corresponding depths, the Dim-,
Dim′-, DoF- and DoF′-entanglement depth (38) and
Dim-, Dim′-, DoF- and DoF′-entanglement depth
of formation (49). For example, if the depth of
DoF-entanglement of a state ρ is DDoFd

(ρ) = k then,
to mix it, there is a need for pure entanglement where
the degree of freedom is at least k.

4.7 Remarks
Here we list some remarks on the generator functions
defining one-parameter partial entanglement proper-
ties, one paragraph each.

Note that for partitionability, producibility, stretch-
ability and toughness, the generator functions were
the height, width, rank (23) and toughness (58) of
the Young diagram representing the partition [20].
In some sense, these characterize ‘global properties’
of the partitions ξ̂ ∈ P̂I, describing the multipartite
entanglement properties. We also defined functions
of the form f(ξ̂) =

∑
x∈ξ̂ f0(x), such as the power

sum (59a), the squareability (64), and the entangle-
ment dimension (67) (or monotone functions thereof,
such as entropy based generator functions (62), (63)

and the entanglement degree of freedom (68)) char-
acterizing ‘local properties’ in some sense. It is quite
remarkable that the power based local properties can
reach the global properties as limits, thanks to the
continuity in the parameter q (see Appendix D.2).

Recall that if a generator function f is injective
then it leads to a total order on P̂I (see Section 2.4).
For the power-sum sq (59a) for q ∈ N, injectiv-
ity means that the nonlinear Diophantine equation∑

x∈ξ̂ x
q =

∑
y∈υ̂ y

q, for ξ̂, υ̂ ∈ P̂I has no nontrivial
(ξ̂ ̸= υ̂) solution. Although several of these equations
have nontrivial solutions (for example, 22 + 22 + 22 =
32 + 12 + 12 + 12 = 12 for n = 6, q = 2, or
23 + 23 + 23 + 23 = 33 + 13 + 13 + 13 + 13 + 13 = 32
for n = 8, q = 3), these seem to be rather sporadic.
On the other hand, for q ̸∈ N the equation becomes
transcendental, and we expect the injectivity of sq.
For the entanglement dimension f = Dimd (67a) for
2 ≤ q ∈ N, we again have the exponential Diophantine
equation

∑
x∈ξ̂ d

x =
∑

y∈υ̂ d
y, for ξ̂, υ̂ ∈ P̂I, which,

again, has some sporadic nontrivial solutions (for ex-
ample, 21 + 21 + 21 + 21 = 22 + 21 + 21 = 22 + 22 = 8
for n = 4, d = 2, or 32 + 32 + 32 + 32 + 32 + 32 =
33 + 31 + 31 + 31 + 31 + 31 + 31 + 31 + 31 + 31 = 54
for n = 12, d = 3). For the case d ̸∈ N, we expect the
injectivity of Dimd, although the meaning of Dimd is
not established for noninteger d, which is just a pa-
rameter then. These remarks hold also for generator
functions which are strictly monotone functions of sq

or Dimd, by (121b).
Note that in Section 4.4 we defined some generator

functions resembling entropies for 0 ≤ q, and our only
concern was the refinement-monotonicity (22). For
those who are familiar with the theory of majorization
and its deep connection to entropies of probability dis-
tributions [87–89], it is an immediate question, how
the refinement ⪯ in the poset P̂I is related to the ma-
jorization. In the discrete case of integer partitions,
majorization is called dominance order [48, 90], and
it turns out that if ξ̂ is coarser than υ̂, then ξ̂ dom-
inates υ̂, but the reverse implication does not hold.
(For the proof, and for the characterization of the
orders used, see Appendix E.1.) Consequently, any
dominance-monotone function can be used as a gen-
erator function for one-parameter properties. Recall
that in the continuous case, Schur-concavity (decreas-
ing majorization-monotonicity) is the defining prop-
erty of entropies, these are then monotones with re-
spect to the mixing of discrete probability distribu-
tions [87]. Therefore any entropy of the normalized
integer partitions ξ̂/n (or dominance-monotone func-
tion of the integer partition ξ̂) is a proper genera-
tor function, which we also call entropy. The genera-
tor functions given in Section 4.4 are indeed entropies
for 0 ≤ q, and generator functions but not entropies
for q < 0. (For the refinement-monotonicity and
dominance-monotonicity of the generator functions,
see Appendices E.2 and E.3, respectively.) We will
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come back to dominance-monotonicity later, since it
plays an important role in the construction of metro-
logical multipartite entanglement criteria in Section 5.

Note that the q-dependent generator functions
sq, Nq Rq, Pq and Tq are strictly monotone, con-
vex/concave/affine functions of one another for fixed
q. As was already mentioned in Section 2.4, this
means that they lead to the same classification (123c)-
(123d). (See Appendix C for more details.) Beyond
this, the main point here is that the strictly mono-
tone connection among these functions lends sq and
all power based generator functions an entropic char-
acter for the parameters 0 ≤ q (inside the defined
range), expressing the mixedness of the size distribu-
tion. This is noteworthy, since they fail to have central
moment character (60b), (61b), expressing the spread
of the size distribution.

Note that, for a generator function f , the trans-
formed function f ◦ † is not a generator function in
general († is the conjugation of integer partitions, see
Section 2.4, [48]). The dominance order, contrary to
the refinement, transforms well with conjugation [90],
υ̂ is dominated by ξ̂ if and only if ξ̂† is dominated by
υ̂†. († is an antiautomorphism of the dominance or-
der.) Then dominance-monotonicity is just flipped by
conjugation, f is an increasing dominance-monotone
if and only if f ◦ † is a decreasing one, and vice
versa; so, in particular, f ◦ † is also a generator func-
tion (133) in this case. For example, wm (57a) is
an increasing dominance-monotone (138a), then we
may define hm := wm ◦ †, which is a decreasing
dominance-monotone, so decreasing generator func-
tion. On the other hand, tm (57b) is a generator
function (135b), which is not dominance-monotone
(a counterexample can be given for n = 4 already
for m = 1, the toughness (58), where the partitions
{2, 1, 1}, {2, 2} and {3, 1} are more and more dom-
inant (132a), but t({2, 1, 1}) = 1, t({2, 2}) = 2 and
t({3, 1}) = 1), and tm ◦ † is not even a generator
function (we have {1, 1, 1, 1} ⪯ {2, 1, 1} ⪯ {2, 2}, but
t({1, 1, 1, 1}†) = t({4}) = 4, t({2, 1, 1}†) = t({3, 1}) =
1 and t({2, 2}†) = t({2, 2}) = 2).

5 Metrology and f -entanglement
In this section we construct bounds on the quantum
Fisher information in collective spin-z measurement
of qubits, for general one-parameter multipartite en-
tanglement properties, given in terms of their depths.
We call these metrological multipartite entanglement
(partial separability) criteria. It turns out that this is
given by the squareability of that property, suggest-
ing that entanglement squareability is natural from
the point of view of quantum metrology. We also
formulate stronger, general convex roof type bounds,
which are particularly simple to use in the case when
it is given in terms of the entanglement depth of for-
mation and entanglement squareability depth of for-

mation. We also consider the usefulness of different
one-parameter properties for the purpose of the for-
mulation of metrological entanglement criteria, and
identify dominance-monotonicity to be an important
property for that.

5.1 Quantum Fisher information
The Cramér-Rao bound [22–24, 91, 92]

(∆θ)2 ≥ 1
mFQ(ρ,A) (69)

is of central importance in quantum metrology, it
gives a lower bound on the precision of the estima-
tion of the phase shift θ generated by the self-adjoint
operator A as ρ 7→ e−iθAρeiθA, in case of m indepen-
dent repetition. This bound is given by the quantum
Fisher information [22, 93], which can be written as

FQ(ρ,A) = 2
d∑

i,j=1,
λi+λj ̸=0

(λi − λj)2

λi + λj
|⟨ϕi|A|ϕj⟩|2, (70a)

where ρ =
∑d

i=1 λi|ϕi⟩⟨ϕi| is the eigendecomposition
of the state. For pure states ρ = |ϕ⟩⟨ϕ| ∈ P, this
reduces to (four times) the variance [22],

FQ
(
|ϕ⟩⟨ϕ|, A

)
= 4
(
⟨ϕ|A2|ϕ⟩ − ⟨ϕ|A|ϕ⟩2)

= 4 Var
(
|ϕ⟩⟨ϕ|, A

)
,

(70b)

it is convex in the quantum state [22, 94],

FQ

(∑
i

piρi, A
)

≤
∑

i

piFQ(ρi, A), (71a)

moreover, it is the convex roof extension of (four
times) the variance [45, 46],

FQ(ρ,A) = min
{(pj ,πj)}⊢ρ

∑
j

pj4 Var(πj , A). (71b)

These properties have also led to new types of uncer-
tainty relations [95, 96]. From these, it also follows
that

FQ(ρ,A) ≤ 4
(
Tr(ρA2) − Tr(ρA)2) = 4 Var(ρ,A),

(71c)
since the variance is concave. (It is moreover the con-
cave roof extension of itself [45].)

5.2 Partial entanglement criteria
For k-producibly separable states, for the collective
spin-z observable Jz =

∑n
l=1

1
2σ

z
l ⊗ I{l} of the n-qubit

system (where {l} := {1, 2, . . . , n}\{l}), the quantum
Fisher information obeys a k-dependent (attainable)
upper-bound [35, 36]. Here and in the following sub-
section we recall and extend the proof of those bounds
for k-producibly separable states [35, 36] to states of
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general permutation invariant entanglement proper-
ties (10b), then to states of one-parameter entangle-
ment properties (30a).

First we consider pure states only. Let us have
a permutation invariant partial separability property
ξ̂ ∈ P̂I. The (attainable) upper bound for the quan-
tum Fisher information of the collective spin-z observ-
able of n qubits Jz for ξ̂-separable pure states π ∈ Pξ̂

is
max
π∈Pξ̂

FQ(π, Jz) = s2(ξ̂). (72)

Indeed,

max
π∈Pξ̂

FQ(π, Jz)(70b)= max
π∈Pξ̂

4 Var(π, Jz)

= max
∀ξ∈s−1(ξ̂)

max
∀π∈Pξ

4 Var(π, Jz)

(143)= max
∀ξ∈s−1(ξ̂)

max
∀π∈Pξ

∑
X∈ξ

4 Var(πX , J
z
X)

= max
∀ξ∈s−1(ξ̂)

∑
X∈ξ

max
πX ∈PX

4 Var(πX , J
z
X)

(142c)= max
∀ξ∈s−1(ξ̂)

∑
X∈ξ

|X|2 =
∑
x∈ξ̂

x2 (64)= s2(ξ̂),

where the first equality holds, because the quantum
Fisher information is four times the variance for pure
states (70b); the second equality holds, using the
definition Pξ =

{⊗
X∈ξ πX

∣∣ πX ∈ PX

}
, where

ξ = {X1, X2, . . . , X|ξ|} is a partition of the whole
system into parts Xj of sizes given by ξ̂, that is,
s(ξ) =

{
|X|

∣∣ X ∈ ξ
}

= ξ̂ (multiset), so we have
the Pξ̂ =

⋃
ξ∈s−1(ξ̂) Pξ union (see [20] for more de-

tails); the third equality holds, because the variance-
squared of collective operators in product states is
the sum of the variances of the local operators (see
Appendix F.3); the fourth equality holds, because
the maximization of the sum is taken over indepen-
dent variables for each summand; the fifth equality
holds, because the variance-squared of collective spin-
z measurements is upper-bounded by |X|2/4, and the
bound can be attained (see Appendix F.2); the sixth
equality holds, because the function maximized is con-
stant with respect to ξ on the set s−1(ξ̂), and the the
last equality is just the definition (64).

Now we turn to mixed states. Let us have a permu-
tation invariant partial separability property ξ̂ ∈ P̂II.
The (attainable) upper bound for the quantum Fisher
information of the collective spin-z observable of n
qubits Jz for ξ̂-separable states ρ ∈ Dξ̂ is

max
ρ∈Dξ̂

FQ(ρ, Jz) = max
ξ̂∈ξ̂

s2(ξ̂) ≡ s2(ξ̂). (73)

Indeed,

max
ρ∈Dξ̂

FQ(ρ, Jz) (10)= max
π∈Pξ̂

FQ(π, Jz)

(10a)= max
ξ̂∈ξ̂

max
π∈Pξ̂

FQ(π, Jz) (72)= max
ξ̂∈ξ̂

s2(ξ̂)(25a)= s2(ξ̂),

where the first equality holds, because the quantum
Fisher information is a convex function in the first
variable (71a), and the maximization is taken over a
convex set (10b), so the maximum is attained on the
extremal points (10c); the second equality holds, be-
cause the maximum is taken over the union of state
spaces (10a); the third equality holds, because of the
result (72) for pure states; the fourth equality is just
definition (25a), noting that s2 is an increasing gen-
erator function (135c).

The bound (73) gives a necessary but not sufficient
criterion of ξ̂-separability. If ρ is ξ̂-separable then
FQ(ρ, Jz) ≤ s2(ξ̂), or, contrapositively, if FQ(ρ, Jz) >
s2(ξ̂) then ρ is ξ̂-entangled.

From (73) we also have the side-result that for all
states ρ ∈ D,

FQ(ρ, Jz) ≤ min
ξ̂∈P̂II:ρ∈Dξ̂

s2(ξ̂), (74)

since (73) holds for all ξ̂ for which ρ is ξ̂-separable.
For general permutation invariant partial separa-

bility properties ξ̂ ∈ P̂II, the right-hand side of (73)
cannot be evaluated to get a closed form. We will see
some examples in Section 5.4 when it can. To find
the maximum of s2 (64) for the partitions ξ̂ ∈ ξ̂, it is
useful that s2 increases if we move a subsystem from
a smaller part to a larger one, that is, for xi ≥ xj , we
have

s2({. . . , xi, . . . , xj , . . .})
< s2({. . . , xi + 1, . . . , xj − 1, . . .}),

(75)

which is easy to check. Note that such step is usually
not related by refinement in P̂I (131b), which is, how-
ever, not a problem, since (75) is only used for the
maximization (73) over the whole P̂I, not related to
the classification structure.

5.3 f -entanglement criteria
For the one-parameter partial separability properties
ξ̂k,f ∈ P̂II,f , given in (27) by the generator function
f , the (attainable) bound (73) takes the form

max
ρ∈Dk,f

FQ(ρ, Jz) = max
ξ̂∈f⋚(k)

s2(ξ̂)

≡ s2(ξ̂k,f ) =: bf (k)
(76a)

by (30a). This gives a necessary but not suffi-
cient criterion of (k, f)-separability. If ρ is (k, f)-
separable then FQ(ρ, Jz) ≤ bf (k), or, contraposi-
tively, if FQ(ρ, Jz) > bf (k) then ρ is (k, f)-entangled.
On the other hand, for all generator functions f , for
all states ρ ∈ D, we have the bound in terms of the
f -entanglement depth (38) as

FQ(ρ, Jz) ≤ max
ξ̂∈f⋚(Df (ρ))

s2(ξ̂)

≡ s2
(
ξ̂Df (ρ),f

)
= bf (Df (ρ)) =: Bf (ρ).

(76b)
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(Indeed, noting that ρ ∈ DDf (ρ),f by (38) or (40b),
this is just FQ(ρ, Jz) ≤ maxρ′∈DDf (ρ),f

FQ(ρ′, Jz), the
right-hand side of which we already have in (76a).)
This expresses the relation of two functions over the
state space D, and this point of view will lead us to
a completely new type of (convex) multipartite en-
tanglement criteria later (see Section 5.6), which are
more sophisticated than the criteria of mere (k, f)-
separability.

It follows by construction that the bound bf (k) is
monotone, that is, for a generator function f , for all
k, k′ ∈ f(P̂I), we have

k ⋚ k′ =⇒ bf (k) ≤ bf (k′). (77)

(Indeed, for k ⋚ k′ the maximization in (76a) is taken

over larger set, f⋚(k) ⊆ f⋚(k′), recalling (28).) Then
for a generator function f , the composition bf ◦ f is
also a generator function (22), and the (76b) form of
the bound is actually the depth of the induced (bf ◦f)-
entanglement,

Bf (ρ) = bf (Df (ρ)) = Dbf ◦f (ρ), (78)

by (44), that is, an entanglement measure itself, and
the bound (76b) takes the form

FQ(ρ, Jz) ≤ Dbf ◦f (ρ) (79)

by the depth of the induced one-parameter property.
Since the left-hand side of (76b) or (79) does not de-

pend on the particular one-parameter property given
by the generator function f , we also have that, for all
states ρ ∈ D,

FQ(ρ, Jz) ≤ min
f as in (22)

Bf (ρ) = min
f as in (22)

Dbf ◦f (ρ),

(80)
where the minimization is taken for all the possible
generator functions (22). This is equivalent to the
bound (74), now formulated for one-parameter par-
tial entanglement properties, which can be seen by
considering injective generator functions.

5.4 Examples of f -entanglement criteria
Now let us see the bounds (76) for the case of some
particular one-parameter partial entanglement prop-
erties.

For producibility, ξ̂k-prod is given by the f = w =
max width generator function (14b), which is increas-
ing, so if ρ ∈ Dk-prod for a given k ∈ w(P̂I), then
we have the constraint max(ξ̂) ≤ k in (76a). Among
such partitions ξ̂, by (75), we have to increase the
parts x as much as possible, so the maximum of
s2 is taken for ξ̂ = {k, k, . . . , k, r}, where we have
⌊n/k⌋ parts of size k, and one remainder part of size
r = n− ⌊n/k⌋k (if not zero). For this, the maximum
value is s2({k, k, . . . , k, r}) = ⌊n/k⌋k2+(n−⌊n/k⌋k)2,

so we have the attainable bound (76a) on the quantum
Fisher information for k-producible states [35, 36]

max
ρ∈Dk-prod

FQ(ρ, Jz) = bprod(k)

=
⌊n
k

⌋
k2 +

(
n−

⌊n
k

⌋
k
)2
.

(81a)

This gives a necessary but not sufficient criterion of k-
producible separability. If ρ is k-producibly separable
then FQ(ρ, Jz) ≤ ⌊n/k⌋k2 +

(
n − ⌊n/k⌋k

)2, or, con-
trapositively, if FQ(ρ, Jz) > ⌊n/k⌋k2 +

(
n− ⌊n/k⌋k

)2

then ρ is not k-producibly separable. (For illustra-
tion, see Figure 7.) On the other hand, for all ρ ∈ D,
we have the bound (76b) in terms of the entanglement
depth D ≡ Dprod (37b) as

FQ(ρ, Jz) ≤ Bprod(ρ)

=
⌊ n

D(ρ)

⌋
D(ρ)2 +

(
n−

⌊ n

D(ρ)

⌋
D(ρ)

)2
.

(81b)

These recover the formerly known bounds for fully
separable (that is, 1-producible) states, FQ(ρ, Jz) ≤
n, and for all (that is, n-producible) states,
FQ(ρ, Jz) ≤ n2 [21, 97] as special cases.

On the other hand, since ⌊n/k⌋ ≤ n/k, we have
s2({k, k, . . . , k, r}) ≤ nk, and the resulting bound

ρ ∈ Dk-prod : FQ(ρ, Jz) ≤ nk (82a)

is often used (see [35, 98], also equation (8.2.12) in [99]
and as special case in [37]), being slightly weaker
than (81), but easier to handle. This gives a necessary
but not sufficient criterion of k-producible separabil-
ity. If ρ is k-producibly separable then FQ(ρ, Jz) ≤
nk, or, contrapositively, if FQ(ρ, Jz) > nk then ρ is
not k-producibly separable, however, in this case less
states are identified, since the bound is not attainable
if k does not divide n. (For illustration, see Figure 7.)
On the other hand, for all states ρ ∈ D, we have
the bound in terms of its producibility entanglement
depth (37a) as

FQ(ρ, Jz) ≤ nD(ρ). (82b)

(Indeed, noting that ρ ∈ DD(ρ)-prod by (38) or (40b),
this is just FQ(ρ, Jz) ≤ maxρ′∈DD(ρ)-prod FQ(ρ′, Jz) ≤
nD(ρ), by (82a). Note the slightly weaker bound
here.)

For partitionability, ξ̂k-part is given by the f = h =
|·| height generator function (14a), which is decreas-
ing, so if ρ ∈ Dk-part for a given k ∈ h(P̂I), then we
have the constraint |ξ̂| ≥ k in (76a). Among such par-
titions ξ̂, by (75), we have to increase the parts x as
much as possible, while keeping at least k parts, so the
maximum of s2 is taken for ξ̂ = {n−k+1, 1, 1, . . . , 1},
where we have k − 1 parts of size 1, and one part
of size n − (k − 1). For this, the maximum value is
s2({n − k + 1, 1, 1, . . . , 1}) = (n − k + 1)2 + k − 1 =
k2 − (2n + 1)k + n2 + 2n, so we have the attainable
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bound (76a) on the quantum Fisher information for
k-partitionable states

max
ρ∈Dk-part

FQ(ρ, Jz) = bpart(k)

= k2 − (2n+ 1)k + n(n+ 2).
(83a)

This gives a necessary but not sufficient criterion of k-
partitionable separability. If ρ is k-partitionably sep-
arable then FQ(ρ, Jz) ≤ k2 − (2n+ 1)k+n(n+ 2), or,
contrapositively, if FQ(ρ, Jz) > k2−(2n+1)k+n(n+2)
then ρ is not k-partitionably separable. (For illustra-
tion, see Figure 7.) On the other hand, for all states
ρ ∈ D, we have the bound (76b) in terms of the par-
titionability entanglement depth Dpart (37a) as

FQ(ρ, Jz) ≤ Bpart(ρ)
= Dpart(ρ)2 − (2n+ 1)Dpart(ρ) + n(n+ 2).

(83b)

Note that this can also be seen from the combined
producibility-partitionability (two-parameter) prop-
erties also considered in the literature [37].

For stretchability, ξ̂k-str is given by the f = r =
max −|·| rank generator function (14c), which is in-
creasing, so if ρ ∈ Dk-str for a given k ∈ r(P̂I), then we
have the constraint r(ξ̂) ≤ k in (76a). The maximiza-
tion with respect to this in (76a) is rather involved,
but still can be done explicitly [37], and we have the
attainable bound (76a) on the quantum Fisher infor-
mation for k-stretchable states

max
ρ∈Dk-str

FQ(ρ, Jz) = bstr(k) =

n+ 24 if n+ k = 10
and n ≥ 8,

n+ 60 if n+ k = 16
and n ≥ 12,

1
4 (n+ k)2 + 1

2 (n− k) + 2 if n+ k ∈ 2N,
1
4 (n+ k + 1)2 + 1

2 (n− k − 1) if n+ k ∈ 2N + 1.
(84)

This gives a necessary but not sufficient criterion of
k-stretchable separability. If ρ is k-stretchably sepa-
rable then FQ(ρ, Jz) ≤ bstr(k), or, contrapositively, if
FQ(ρ, Jz) > bstr(k) then ρ is not k-stretchably sepa-
rable. (For illustration, see Figure 7.) On the other
hand, the bound (76b) for all states ρ ∈ D in terms of
its stretchability entanglement depth Dstr (37c) can
also be written similarly.

For toughness, ξ̂k-tgh := ξ̂k,t (27) is given by the
f = t = min toughness generator function (58), which
is increasing (135b), so if ρ ∈ Dk-tgh for a given
k ∈ t(P̂I), then we have the constraint min(ξ̂) ≤ k

in (76a). (Recall that the possible values are t(ξ̂) =
1, 2, . . . , ⌊n/2⌋ for nontrivial partial separability, and
t(⊤) = n for the trivial partition.) Among such par-
titions ξ̂, by (75), we have to increase the parts x as
much as possible, while keeping at least one x ≤ k,
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Figure 7: The bound (76a) for k-producible (81a), k-
partitionable (83a) and k-stretchable (84) states for n = 24.
In the first case, the weaker bound (82a) is also shown with
dashed line.

so the maximum of s2 is taken for ξ̂ = {n − 1, 1} if
k ̸= n. For this, the maximum value is s2({n−1, 1}) =
(n− 1)2 + 1 = n2 − 2n+ 2, so we have the attainable
bound (76a) on the quantum Fisher information for
k-tough states for k = 1, 2, . . . , ⌊n/2⌋

max
ρ∈Dk-tgh

FQ(ρ, Jz) = btgh(k) = n2 − 2n+ 2, (85)

which is k-independent, hence not useful. Since
k ̸= n, this is a bound for biseparable states, so
genuine multipartite entanglement is the only class
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which could be detected by this bound. However,
for biseparability, which is (n − 1)-producibility or
2-partitionability, the resulting bound (85) agrees
with (81a) and (83a), so does not give anything
stronger. (For the notable state spaces and classes
of toughness, see Section 4.1.) Note that, although
the bound (76a) is monotone in k (77) by construc-
tion, this does not exclude k-independency. This
extreme case of k-independence expresses that the
nested subsets (31b) of k-tough states Dk-tgh lie in
such a ‘tilted’ way in the whole state space D that
{n−1, 1}-separable states, which are rather entangled,
are k-tough for any k, that is, D{n−1,1}-sep ⊆ Dk-tgh.
We will elaborate on these kinds of issues later in Sec-
tions 5.9 and 5.10, but this can also be read off from
Figure 1 in advance.

A kind of degenerate case is of squareability,
ξ̂k-sq := ξ̂k,s2 (27) is given by the squareability f = s2
generator function (64), which is increasing (135c), so
if ρ ∈ Dk-sq for a given k ∈ s2(P̂I), then we have the
constraint s2(ξ̂) ≤ k in (76a). Then the maximiza-
tion can be done without calculating the argmax, and
maxξ̂∈P̂I:s2(ξ̂)≤k s2(ξ̂) = k, so we have the attainable
bound (76a) on the quantum Fisher information for
k-squareable states

max
ρ∈Dk-sq

FQ(ρ, Jz) = bsq(k) = k. (86a)

This gives a necessary but not sufficient criterion of
k-squareable separability. If ρ is k-squareably sep-
arable then FQ(ρ, Jz) ≤ k, or, contrapositively, if
FQ(ρ, Jz) > k then ρ is not k-squareably separable.
On the other hand, for all states ρ ∈ D, we have the
bound (76b) in terms of the squareability entangle-
ment depth Dsq (66a) as

FQ(ρ, Jz) ≤ Bsq(ρ) = Dsq(ρ), (86b)

since bsq ◦s2 = s2. These suggest that squareability is
the natural multipartite entanglement property from
the point of view of quantum metrology; it is what is
bounded directly by the quantum Fisher information.
Note that, similarly, if f = g ◦ s2 is a monotone func-
tion of squareability, then the bounds can simply be
transformed by (44), so formulating bounds for, e.g.,
2-Tsallis or 2-Rényi entanglement depths is straight-
forward (see in Section 5.11).

Note that the bound by squareability depth (86b)
is stronger than the bound by (producibility)
depth (82b). This is because

s2(ξ̂) =
∑
x∈ξ̂

x2 ≤
∑
x∈ξ̂

xmax(ξ̂)(23b)= nw(ξ̂) (87)

holds for the generator functions s2 (64) and w (23b),
so we have

Dsq(ρ) ≤ nD(ρ) (88)
for the corresponding depths by (42), since both s2
and w are increasing monotone (135a), (135c), and

by (44). The bound (86b) by the squareability depth
may be much stronger than the bound (82b) by the
(producibility) depth, especially when the difference
in (87) is large, that is, when many parts are much
smaller than the maximal one. For instance, sup-
pose that we have n = 10 particles, the system is
described by a pure state π = |ψ⟩⟨ψ|, and we mea-
sure 30 ≤ FQ(π, Jz) by the Cramér-Rao bound (69).
By the bound (82b) we have 3 ≤ FQ(π, Jz)/n ≤
D(π), which allows also strictly {3, 1, 1, 1, 1, 1, 1, 1}-
entangled states (or anything coarser). On the other
hand, by the bound (86b) we have 30 ≤ FQ(π, Jz) ≤
Dsq(π), which excludes such disentangled subsystems,
and many others allowed by the weaker bound: direct
calculation shows that every pure state of entangle-
ment depth D(π) = 3 is excluded (so there has to
be entangled subsystem of size at least 4), and also
those which are ξ̂-entangled for ξ̂ ⪯ {4, 3, 1, 1, 1} or
ξ̂ ⪯ {4, 2, 2, 2}, since s2({4, 3, 1, 1, 1}) = 28 < 30 and
s2({4, 2, 2, 2}) = 28 < 30.

5.5 Convex f -entanglement criteria
The quantum Fisher information is the convex roof
extension of the variance (71b), which leads to convex
metrological bounds much stronger than (76b). For
any ρ ∈ D we have the bound

FQ(ρ, Jz) ≤ BoF
f (ρ) ≤ Bf (ρ), (89a)

or, in terms of the depth and depth of formation of
the induced bf ◦ f property (78)

FQ(ρ, Jz) ≤ DoF
bf ◦f (ρ) ≤ Dbf ◦f (ρ). (89b)

(Here BoF
f is the convex roof extension of Bf , which

can be written, since Bf = Dbf ◦f is just a depth (78),
for which we have already seen that the convex roof
extension can be written, see (49) and Appendix B.3.)
Indeed,

FQ(ρ, Jz)(71b)= min
{(pj ,πj)}⊢ρ

∑
j

pj4 Var(πj , J
z)

≤
∑

j

p′
j4 Var(π′

j , J
z)

(76b)
≤
∑

j

p′
jBf (π′

j)

(78)=
∑

j

p′
jDbf ◦f (π′

j) = min
{(pj ,πj)}⊢ρ

∑
j

pjDbf ◦f (πj)

(49)= DoF
bf ◦f (ρ)

(50)
≤ Dbf ◦f (ρ),

where the first equality holds, because the Fisher in-
formation is the convex roof extension of (four times)
the variance (71b); the first inequality holds for every
particular decomposition {(p′

j , π
′
j)} ⊢ ρ; the second

inequality is the inequality (76b) for pure states π′
j

by (70b); the second equality is the bound consid-
ered as depth of an induced property (78); the third
equality holds, if we fix the decomposition {(p′

j , π
′
j)} ⊢
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ρ to be Dbf ◦f -optimal, that is, which minimizes∑
j pjDbf ◦f (πj); the fourth equality holds by the def-

inition of the f -entanglement depth of formation (49)
by nothing that bf is increasing/decreasing if and only
if f is increasing/decreasing (77), so bf ◦ f is always
increasing; the third inequality is the inequality (50),
since bf ◦ f is increasing.

The convex bound (89) gives a new type of mul-
tipartite entanglement criteria, which are not about
(k, f)-separability (the membership problem of Dk,f ),
but the ratios of pure states of different values of f -
entanglement depth in the mixture. This will be il-
lustrated in Section 5.7.

5.6 Examples of convex f -entanglement crite-
ria
Now let us see the convex bounds (89) resulting from
the bounds (76b) for the case of some particular one-
parameter partial entanglement properties. Since the
bf ◦ f one-parameter properties, the depths of which
the bounds are given by, are not particularly expres-
sive in general, we consider only the cases of square-
ability and a bound weaker than producibility.

The simplest case is that of squareability, for which
we have the bound bsq(k) = k in (86a), then (89b)
takes the form

FQ(ρ, Jz) ≤ DoF
sq (ρ) ≤ Dsq(ρ). (90)

The bound (89b) for producibility is not too
expressive to use, it is BoF

prod = DoF
bprod◦w =

DoF
⌊n/w⌋w2+(n−⌊n/w⌋w)2(ρ) by (81a). Instead of this,

we make use of (88) for the squareability entangle-
ment depth and (producibility) entanglement depth,
and

DoF
sq (ρ) ≤ nDoF(ρ) (91)

for the corresponding depths of formations by (87)
and (52). Using these, together with (50) and (90),
we have the bound for all states ρ ∈ D in terms of its
entanglement depth of formation (48b) as

FQ(ρ, Jz) ≤ nDoF(ρ) ≤ nD(ρ). (92)

By (91), this is weaker than (90), but stronger
than (82b). Note that here we did not use the general
result (89b) directly, but did a detour to get a simpler
formula.

5.7 Meaning of the criteria
We have already seen that the sq generator functions
for the parameters 0 ≤ q have an entropic character,
expressing the mixedness of the size distribution, but
not a central moment character, expressing the spread
of the size distribution (see Sections 4.3 and 4.7). Let
us see now, what the metrological bounds tell us about
the characterization of the possible partial entangle-
ment in terms of the size distribution, by considering
generator functions related to squareability.

Let us consider the first situation depicted in Sec-
tion 4.3 (random choice of elementary subsystems),
where the first moment (60a) of the subsystem size
distribution ξ̂/n is just

avg(ξ̂) :=
∑
x∈ξ̂

x

n
x = s2(ξ̂)

n
, (93)

being the average (center), and not the variance
(spread) in this situation. (Note that usually the vari-
ance is the quadratic expression, however, in this sit-
uation the distribution and the values of the random
variable are linked together, see Section 4.3.) For this,
we directly have

1
n
FQ(ρ, Jz) ≤ DoF

avg(ρ) ≤ Davg(ρ) (94)

with the depth of avg-entanglement Davg = Dsq/n
by (90), (44) and (53c). That is, 1

nFQ(ρ, Jz) puts
a lower bound on the average size of entangled sub-
systems to which a (uniformly) randomly chosen el-
ementary subsystem belongs. Motivated by this, we
call the depth of formation of avg-entanglement

DoF
avg(ρ) = DoF

sq (ρ)/n (95)

the average size of entangled subsystem (ASES). Note
that we have two averages here, first, with respect
to the random choice of elementary subsystems, sec-
ond, with respect to the pure state in the decompo-
sition. To elaborate on this, let us collect here the
bounds (90) and (92) with (88) and (91),

DoF(ρ) ≤ D(ρ)

≤ ≤
1
nFQ(ρ, Jz) ≤ DoF

avg(ρ) ≤ Davg(ρ)

(96a)

and also recall the measures involved. The entangle-
ment depth (37b), (43)

D(ρ) = min
{(pj ,πj)}⊢ρ

max
j
D(πj) (96b)

is the minimum (w.r.t. decompositions) of the maxi-
mum (in the decomposition) of the maximal size of
entangled subsystems. The entanglement depth of
formation (48b), (49)

DoF(ρ) = min
{(pj ,πj)}⊢ρ

∑
j

pjD(πj) (96c)

is the minimum (w.r.t. decompositions) of the average
(in the decomposition) of the maximal size of entan-
gled subsystems. The avg-entanglement depth (43)

Davg(ρ) = Dsq/n = min
{(pj ,πj)}⊢ρ

max
j
Davg(πj) (96d)

is the minimum (w.r.t. decompositions) of the max-
imum (in the decomposition) of the average size
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(w.r.t. picking elementary subsystems) of entangled
subsystems. The avg-entanglement depth of forma-
tion, or ASES (49)

DoF
avg(ρ) = DoF

sq /n = min
{(pj ,πj)}⊢ρ

∑
j

pjDavg(πj) (96e)

is the minimum (w.r.t. decompositions) of the average
(in the decomposition) of the average size (w.r.t. pick-
ing elementary subsystems) of entangled subsystems.
Then the vertical relations in (96a) mean that FQ/n
puts a lower bound on the average size of the en-
tangled subsystems for random choice of elementary
subsystems, which is smaller than the the size of the
largest entangled subsystem in any decomposition.

On the other hand, the 2-Rényi and 2-Tsallis en-
tropic generator functions, expressing the mixedness
of the subsystem size distribution ξ̂/n, related to
squareability, are also meaningful in this situation.
For the 2-Rényi generator functions (62b) we have
R2 = g ◦ s2 with the strictly monotone g(u) =
− ln(u/n2), and applying this g to the weaker bound
in (90) leads to

− ln
( 1
n2FQ(ρ, Jz)

)
≥ DR2(ρ) (97a)

by (44). So we have upper bound on the minimal
mixedness (by 2-Rényi entropy) of the subsystem size
distribution in every decomposition, see (43). Note
that, since g is not affine (53c), we cannot formulate
bound for the depth of formation of 2-Rényi property,
that is, the average 2-Rényi property in the decom-
positions (g is convex, so we have only (53a), and
− ln

( 1
n2FQ(ρ, Jz)

)
̸≥ DoF

R2
(ρ) in general). For the 2-

Tsallis generator functions (62a) we have T2 = g ◦ s2
with the strictly monotone g(u) = 1 − u/n2, and ap-
plying this g to the bounds in (90) leads to

1 − 1
n2FQ(ρ, Jz) ≥ DoF

T2
(ρ) ≥ DT2(ρ) (97b)

by (44) and (53c), since g is affine in this case. So we
have upper bound on the the minimal and also av-
erage mixedness (by 2-Tsallis entropy) of the subsys-
tem size distribution in every decomposition, see (43)
and (49). (It might be slightly contraintuitive to use
decreasing generator functions, which the 2-Rényi and
2-Tsallis entropies (135f)-(135g) are. They have upper
bounds on their depths, but by a decreasing function g
of the quantum Fisher information. This is equivalent
to have a lower bound of a decreasing function g−1 of
the depths by the quantum Fisher information.)

For the sake of completeness, let us consider the sec-
ond situation depicted in Section 4.3 (random choice
of composite subsystems) as well, and let us denote
the average and the variance of the subsystem sizes
as

avg′(ξ̂) :=
∑
x∈ξ̂

1
|ξ̂|
x = n

h(ξ̂)
, (98a)

var′(ξ̂) :=
∑
x∈ξ̂

1
|ξ̂|

(
x− n

|ξ̂|

)2
= 1
h(ξ̂)

(
s2(ξ̂) − n2

h(ξ̂)

)
,

(98b)

being the first (raw) moment (61a) and the second
central moment (61b) of the size of the randomly cho-
sen subsystem. Recall that var′(ξ̂) is not a generator
function, so it does not define a one-parameter en-
tanglement property, and its depth has no meaning.
However, we may write squareability in terms of these,

s2(ξ̂)/n = var′(ξ̂)/ avg′(ξ̂) + avg′(ξ̂), (99)

and the quantum Fisher information gives a lower
bound for that in (90),

1
n
FQ(ρ, Jz) ≤ DoF

var′ / avg′ + avg′(ρ)

≤ Dvar′ / avg′ + avg′(ρ),
(100)

by (44) and (53c). That is, we do not have a lower
bound on the variance itself, but on the combination
of the variance and the average, though it is not too
expressive. Note that the bounds (94) are formulated
by Davg, not by Davg′ , which can be much smaller.
This is because from (99) it directly follows that

avg ≥ avg′, (101)

expressing the difference between the two situations.
For example, for the partition ξ̂ = {20, 1, 1, . . . , 1},
describing the state vector (2b), we have avg(ξ̂) =
s2(ξ̂)/n = 4.8 and avg′(ξ̂) = n/h(ξ̂) = 100/81 ≈ 1.23.

5.8 Strength of convex f -entanglement crite-
ria
Now let us discuss the difference in the strength of the
bounds in (96a).

In the right column in (96a), the bound by the avg-
depth may be much stronger than the bound by the
(producibility) depth, especially when the difference
in avg ≤ w is large (87), that is, when the average size
of the parts are much smaller than the maximal one.
This works in the same way as for the squareability
(see at the end of Section 5.4), but is more expressive.
For instance, suppose that we have n = 10 particles,
the system is described by a pure state π = |ψ⟩⟨ψ|,
and we measure 30 ≤ FQ(π, Jz) by the Cramér-Rao
bound (69). By bounding the (producibility) depth
D, we have 3 ≤ FQ(π, Jz)/n ≤ D(π), which allows
also strictly {3, 1, 1, 1, 1, 1, 1, 1}-entangled states (or
anything coarser), only the size of the largest entan-
gled subsystem is bounded. On the other hand, by
bounding the avg-depth Davg we have bound on the
average size of entangled subsystems in the pure state
3 ≤ FQ(π, Jz)/n ≤ Davg(π), which excludes such
disentangled subsystems, and many others allowed
by the weaker bound: direct calculation shows that
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every pure state of entanglement depth D(π) = 3
is excluded (so there has to be entangled subsys-
tem of size at least 4), and also those which are ξ̂-
entangled for ξ̂ ⪯ {4, 3, 1, 1, 1} or ξ̂ ⪯ {4, 2, 2, 2},
since the averages are avg({4, 3, 1, 1, 1}) = 2.8 < 3
and avg({4, 2, 2, 2}) = 2.8 < 3. (Note that the 3-
producible states are excluded also because if the av-
erage size of the parts is at least 3 then the size of the
maximal part could be 3 only if this would divide n,
which is not the case in this example.)

Now let us discuss in what sense the first, convex
bounds in the rows of (96a) are stronger than the
second, original ones. This is basically the same as the
difference between the (43) characterization of the f -
entanglement depth and the (49) characterization of
the f -entanglement depth of formation.

Let us consider the upper row in (96a) first.
The weaker bound in the upper row in (96a) is
FQ(ρ, Jz)/n ≤ D(ρ). This means that in all pure
convex decompositions

∑
j pjπj = ρ, there exists πj

containing an entangled subsystem of size at least
FQ(ρ, Jz)/n. This result may be rather weak, since
in principle it allows a mixture of an infinitely small
weight of strictly k-producible pure state πk :=
|ψk⟩⟨ψk| ∈ Ck-prod ∩ P with fully separable state
ρ1 ∈ C1-prod orthogonal to it, ρϵ := (1 − ϵ)ρ1 + ϵπk

for ϵ > 0. Such state is k-producible and not k′-
producible for k′ < k (by the same reasoning as
at the beginning of Section 3.3), so D(ρϵ) = k,
but much less entangled as, e.g., πk itself, although
D(πk) = k. A much lower quantum Fisher informa-
tion FQ(ρϵ, J

z)/n is expected from such a state ρϵ, so
the bound FQ(ρ, Jz)/n ≤ D(ρ) is rather weak.

The stronger bound in the upper row in (96a) is,
however, FQ(ρ, Jz)/n ≤ DoF(ρ). On the one hand,
we have DoF(ρϵ) ≤ (1 − ϵ)1 + ϵk for the state above
by (96c), so the bound is indeed much stricter. On
the other hand, which is even more important, the
meaning of this bound is that in all pure convex
decompositions

∑
j pjπj = ρ, the (decomposition-

)average size of the largest entangled subsystem is at
least FQ(ρ, Jz)/n. To elaborate on this, let us write
for all pure convex decompositions

∑
j pjπj = ρ the

qk :=
∑

j:D(πj)=k pj weights of the k-producible pure
states in the decomposition, by which

FQ(ρ, Jz)/n ≤ DoF(ρ) ≤
∑

j

pjD(πj)

=
n∑

k=1
qk

∑
j:D(πj)=k

pj

qk
D(πj) =

n∑
k=1

qkk.

For example, suppose that we have n = 10 parti-
cles, and we measure 30 ≤ FQ(ρ, Jz) by the Cramér-
Rao bound (69). Then 3 ≤ FQ(ρ, Jz)/n, and we al-
ready know from the weaker bound in the upper row
in (96a) by (43) that in every decomposition there is
a nonzero weight of k-producible pure states for at
least one k ≥ 3; however, now we also know from

the stronger bound in the upper row in (96a) by (49)
that if in a decomposition there are 1-producible
(fully separable) states (of weight q1), then these have
to be compensated by k-producible pure states for
k > 3. For example, at least twice as much, 2q1
weight of 4-producible states are needed for this (in-
deed, 3 ≤ 1q1 + 3q3 + 4q4 = q1 + 3(1 − q1 − q4) + 4q4
leads to 2q1 ≤ q4), or at least the same q1 weight of
5-producible states (indeed, 3 ≤ 1q1 + 3q3 + 5q5 =
q1 + 3(1 − q1 − q5) + 5q5 leads to q1 ≤ q5).

Let us consider the lower row in (96a) similarly.
The weaker bound in the lower row in (96a) is
FQ(ρ, Jz)/n ≤ Davg(ρ). This means that in all con-
vex decompositions

∑
j pjπj = ρ, there exists πj con-

taining entangled subsystems, the average of the sizes
of which are at least FQ(ρ, Jz)/n. This result may
again be rather weak, since in principle it allows a
mixture of an infinitely small weight of strictly k-
avg pure state πk := |ψk⟩⟨ψk| ∈ Ck-avg ∩ P with
fully separable state ρ1 ∈ C1-avg orthogonal to it,
ρϵ := (1 − ϵ)ρ1 + ϵπk for ϵ > 0. Such state is k-
avg and not k′-avg for k′ < k (by the same reasoning
as at the beginning of Section 3.3), so Davg(ρϵ) = k,
but much less entangled as, e.g., πk itself, although
Davg(πk) = k. A much lower quantum Fisher infor-
mation FQ(ρϵ, J

z) is expected from such a state ρϵ, so
the bound FQ(ρ, Jz)/n ≤ Davg(ρ) is rather weak.

The stronger bound in the lower row in (96a) is,
however, FQ(ρ, Jz)/n ≤ DoF

avg(ρ). On the one hand,
we have DoF

avg(ρϵ) ≤ (1 − ϵ)1 + ϵk for the state above
by (96e), so the bound is indeed much stricter. (Note
that the possible avg values k ∈ avg(P̂I) are be-
tween 1 and n, but only some of those equal to
some of the integers in that range.) On the other
hand, which is even more important, the meaning
of this bound is that in all pure convex decompo-
sitions

∑
j pjπj = ρ, the (decomposition-)average of

the average (avg) of the sizes of entangled subsystems
is at least FQ(ρ, Jz)/n. To elaborate on this, let us
write for all pure convex decompositions

∑
j pjπj = ρ

the qk :=
∑

j:Davg(πj)=k pj weights of the k-avg pure
states in the decomposition, by which

FQ(ρ, Jz)/n ≤ DoF
avg(ρ) ≤

∑
j

pjDavg(πj)

=
∑
k∈

avg(P̂I)

qk

∑
j:Davg(πj)=k

pj

qk
Davg(πj) =

∑
k∈

avg(P̂I)

qkk.

For example, suppose that we have n = 10 parti-
cles, and we measure 30 ≤ FQ(ρ, Jz) by the Cramér-
Rao bound (69). Then 3 ≤ FQ(ρ, Jz)/n, and we
already know from the weaker bound in the lower
row in (96a) by (43) that in every decomposition
there is a nonzero weight of k-avg pure states for at
least one k ≥ 3 (for example by {4, 3, 2, 1}-separable
or {5, 1, 1, 1, 1, 1}-separable or more entangled states,
since avg({4, 3, 2, 1}) = avg({5, 1, 1, 1, 1, 1}) = 3);
however, now we also know from the stronger bound
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in the lower row in (96a) by (49) that if in a decom-
position there are 1-avg (fully separable) states (of
weight q1), then these have to be compensated by k-
avg pure states for k > 3. For example (since the sub-
sequent values of avg are avg({5, 2, 1, 1, 1}) = 3.2 and
avg({4, 3, 3}) = avg({4, 4, 1, 1}) = avg({5, 2, 2, 1}) =
3.4), at least ten times as much, 10q1 weight of 3.2-
avg states are needed for this (indeed, 3 ≤ 1q1 +3q3 +
3.2q3.2 = q1 + 3(1 − q1 − q3.2) + 3.2q3.2 leads to 10q1 ≤
q3.2), or at least five times as much, 5q1 weight of 3.4-
squareable states (indeed, 3 ≤ 1q1 + 3q3 + 3.4q3.4 =
q1 + 3(1 − q1 − q3.4) + 3.4q3.4 leads to 5q1 ≤ q3.4).

5.9 Metrological usefulness of f -entanglement
The case of entanglement toughness (85) tells us that
there are one-parameter partial entanglement proper-
ties which give not too many meaningful metrological
bounds, compared to the number of classes they lead
to. In other words, not all the classes of some one-
parameter properties are bounded by the quantum
Fisher information. To clarify this, let us imagine
how the bound bf (k) in (76a) can change when larger
and larger k minimal values are allowed. (See Fig-
ure 8 for illustration for the case of toughness.) It
is clear that the problem is that allowing partitions
ξ̂ of larger and larger toughness does not give larger
squareability values, so the bound does not increase.
That is, the usefulness of a property depends on the
strict monotonicity of the bound bf (76a).

We have already seen that the bound bf (k) is mono-
tone by construction (77). If, moreover, the bound
bf is strictly monotone from the right/left in a given
k ∈ f(P̂I),

∀k′ ∈ f(P̂I) : k ≶ k′ =⇒ bf (k) < bf (k′), (102)

then it can detect (k, f)-entanglement Dk,f for that k.
This is because (31b) implies also the strict inequali-
ties

k ≶ k′ ⇐⇒ Dk,f ⊂ Dk′,f (103)

for all k, k′ ∈ f(P̂I) (since k = k′ if and only if k ≤ k′

and k ≥ k′, if and only if Dk,f ⊆ Dk′,f and Dk,f ⊇
Dk′,f by (31b), if and only if Dk,f = Dk′,f ), then the
strict monotonicity (102) results in

Dk,f ⊂ Dk′,f =⇒ bf (k) < bf (k′), (104)

then it is possible to have bf (k) < FQ(ρ, Jz) ≤ bf (k′),
leading to ρ /∈ Dk,f . If the strict monotonicity (102)
of the bound does not hold at k, then the two bounds
can only be violated simultaneously, bf (k) = bf (k′) <
FQ(ρ, Jz), which gives only ρ /∈ Dk′,f , but does not
exclude states in Dk′,f \ Dk,f .

The overall metrological usefulness of a one-
parameter property given by the generator function
f then can be characterized by the number of k ∈
f(P̂I) values for which the bound bf is strictly mono-
tone (102), which is the |bf (f(P̂I))|−1 number of steps
of the discrete function bf (k).
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Figure 8: The squareability (64) vs. toughness (58) plot of
the poset P̂I for n = 6. The inverse images (26a) of t are in
the columns, and the sub-level sets (26b) of t are to the left
of the vertical lines. The refinement ⪯ and the dominance ≤
orders are denoted by consecutive black and dashed red ar-
rows, respectively. The refinement implies dominance, which
can be seen here as two partitions connected by black arrows
are also connected by red ones, but the reverse does not hold.
The bound (85) is already reached for 1-tough states.

A one-parameter property given by the generator
function f can be considered most suitable for the
purpose of formulating metrological bounds, if it is as
good as it can be, that is, the bound bf (k) it induces is
strictly monotone (102) for all values k ∈ f(P̂I). This
is necessary for the detection of (k, f)-entanglement
Dk,f for all k. Such properties are the producibility,
partitionability, stretchability and squareability, and
also the 2-Rényi, 2-Tsallis etc. properties, being re-
lated to squareability by strictly monotone functions.
(For squareability this is obvious, for the proof of the
remaining ones, see Appendix G.1.)

On the other hand, if f is not constant (which
would be meaningless even for the purpose of clas-
sification, see Section 2.4), then there is at least one
step, that is, two values of the bounds bf (k), leading
to criteria for the detection of at least one k value
of (k, f)-entanglement Dk,f . (For the proof, see Ap-
pendix G.2.) This means that toughness is as bad as
it can be, it is among the one-parameter partial entan-
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glement properties most unsuitable for the purpose of
formulating metrological bounds.

All the one-parameter properties lie between these
two extreme cases. To check at which values k ∈ f(P̂I)
of a generator function f is the bound bf (k) strictly
monotone (102), and to find how many different val-
ues of the bound arise, do not seem to be easy. This
could be done for w, h, r, t and s2 (then for N2, T2,
R2, P2) by the explicit formulas in Section 5.2, how-
ever, explicit formulas could not be derived for the
other generator functions. Following these lines, in
the subsequent subsection we identify an important
character of one-parameter properties, playing role in
the metrological usefulness.

5.10 Dominance-monotone f -entanglement
Motivated by the concrete method of finding the
bounds in Section 5.4, we may consider generator
functions f which behave in accordance with s2 in
the sense of the (75) property of s2. That is, if f is
an increasing/decreasing generator function, then it
also increases/decreases for moving a subsystem from
a smaller part to a larger one, that is, for xi ≥ xj ,

f({. . . , xi, . . . , xj , . . .})
⋚ f({. . . , xi + 1, . . . , xj − 1, . . .}).

(105)

It is easy to check that such a move is described by
the so called dominance relation (132), which we re-
view in Appendix E.1 for the interested reader. (The
move in (105) is along dominance, see (132c), and
the covering relation of dominance (132b) is such
a move.) Then (105) means that f is an increas-
ing/decreasing monotone with respect to the domi-
nance order (134). It can be proven that refinement
implies dominance (133), so refinement-monotonicity
of a function is a weaker property than dominance-
monotonicity, that is, dominance-monotone functions
are special generator functions. (For more details on
the partial orders appearing here, see Appendix E.1.
The dominance-monotonicity of generator functions
are given in Appendix E.3.)

First of all, toughness t (58) is not a dominance-
monotone, neither tm (57b). (See Figure 8 for n = 6
and m = 1, which is the toughness (58); although
this can already be seen for n = 4, where the parti-
tions {2, 1, 1}, {2, 2} and {3, 1} are more and more
dominant, but t({2, 1, 1}) = 1, t({2, 2}) = 2 and
t({3, 1}) = 1.) So imposing dominance-monotonicity
would exclude toughness, which is promising. Com-
paring (135) and (138) in Appendix E, we have the
generator functions (refinement-monotone) and those
which are also dominance-monotone. These are the
m-widths wm (57a), the height h (23a), the power
sum sq (59a) and related entropic quantities (62) for
q ≥ 0, the q-sum Nq (59b) for q > 0, the q-mean
Mq (59c) for q ≥ 1, and also the entanglement dimen-

sions Dim and Dim′ (67) and the entanglement degree
of freedoms DoF and DoF′ (68).

The role of dominance-monotonicity (105) of a gen-
erator function f in the problem of the strict mono-
tonicity of the metrological bound (102) can be un-
derstood by considering the dominance arrows in the
s2 vs. f plot. For dominance-monotone f , these run
always upwards and to the right/left if f is increas-
ing/decreasing but never horizontally, since s2 is a
strictly increasing dominance-monotone (75). The re-
finement arrows do the same, since refinement implies
dominance (133) but dominance-monotonicity gives
more constraints.

Now, the failure of strict monotonicity of the
bound (102) occurs when there exist partitions ξ̂, ξ̂′ ∈
P̂I of f(ξ̂) =: k ≶ f(ξ̂′) =: k′, which maximize s2
among those partitions (s2(ξ̂) = maxυ̂:f(υ̂)=k s2(υ̂),
s2(ξ̂′) = maxυ̂:f(υ̂′)=k′ s2(υ̂′)), and bf (k) = s2(ξ̂) ≥
s2(ξ̂′), and the bound does not increase, bf (k) =
bf (k′) see (76a). This, however, is excluded if f
is dominance-monotone and ξ̂ and ξ̂′ are related
by dominance, since if ξ̂ is dominated by ξ̂′ then
s2(ξ̂) < s2(ξ̂′) and f(ξ̂) ≶ f(ξ̂′) hold together, and
the bound does increase, bf (k) < bf (k′). If, on the
contrary, ξ̂ and ξ̂′ are related by dominance but f is
not dominance-monotone, then it might happen that
ξ̂ dominates ξ̂′ (while still f(ξ̂) = k ≶ f(ξ̂′) = k′

is the case) then bf (k) = s2(ξ̂) > s2(ξ̂′), and the
bound does not increase, bf (k) = bf (k′), which can
be illustrated by case of toughness (see Figure 8). For
n = 6, we have ξ̂ := {5, 1}, dominating ξ̂′ := {4, 2}, so
s2(ξ̂) = 26 > s2(ξ̂′) = 20, while t(ξ̂) = 1 < t(ξ̂′) = 2,
and these partitions are also of maximal squareability
in the inverse images of t, so btgh(1) = btgh(2) = 26.
If ξ̂ and ξ̂′ are not related by dominance, then im-
posing dominance-monotonicity of f does not exclude
the above possibility of the failure of the strict mono-
tonicity (102) of the bound. That is, dominance-
monotonicity is not sufficient for the bound to be
strictly monotone (102) for all k ∈ f(P̂I). This can
be illustrated by the case of s3 (59a) (see Figure 9).
Although s3 is dominance-monotone (138d), but the
bound bs3(k) is not strictly monotone: for n = 6, we
have ξ̂ := {2, 2, 2} and ξ̂′ := {3, 1, 1, 1}, not related
by dominance, and s3(ξ̂) = 24 < s3(ξ̂′) = 30, but
s2(ξ̂) = s2(ξ̂′) = 12, and these partitions are also of
maximal squareability in the inverse images of s3, so
bs3(24) = bs3(30) = 12.

One may object that dominance-monotonicity may
not be necessary either for the bound to be strictly
monotone (102) for all k ∈ f(P̂I). This is because
the strict monotonicity of the bound (102) is deter-
mined by the maximal values of s2 in the inverse im-
ages f−1(k), while for other partitions ξ̂ ∈ f−1(k)
for which s2(ξ̂) < bf (k), the dominance-monotonicity
could fail, while not affecting the bf (k) values of the
bounds.
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Figure 9: The squareability (64) vs. s3 (59a) plot of P̂I for n = 6. The inverse images (26a) of s3 are in the columns, and
the sub-level sets (26b) of s3 are to the left of the vertical lines. The refinement poset and the dominance lattice are denoted
with black and dashed red arrows, respectively.

Anyway, the main point is that the overall number
of possibilities of the failure of the (102) strict mono-
tonicity of the bound is greatly reduced by the impos-
ing of dominance-monotonicity. This is because the
dominance lattice is significantly more ‘dense’ than
the refinement poset, there are seemingly few pairs of
partitions not related by dominance and which, in the
same time, could break the (102) strict monotonicity
of the bound. On the other hand, the significance
of dominance-monotonicity is that it is the defini-
tive property of generalized entropies, expressing the
mixedness of the subsystem size distribution (see the
discussions in Sections 4.4 and 4.7, Appendix E.1, and
further in Section 5.11).

5.11 Remarks
Here we list some remarks on the connections of one-
parameter partial entanglement properties and quan-
tum metrology, one paragraph each.

Note that convex roof entanglement measures, and,
in fact, any proper entanglement measures for mixed
states, are infeasible to evaluate in general, this is why
bounds on those are so important. In our case, these
bounds can not only be measured experimentally, but
also calculated by (70a). On the other hand, these are

convex roof extensions of depths (89b), the meaning of
which is easy to understand, especially in the particu-
lar cases of squareability (90) and producibility (92),
see also the explanations in Section 5.6.

Note that the partial separability is a dimension-
independent classification, while the metrological
bounds are given only for d = 2, qubits or spin-
1/2 systems, used directly in experiments. The gen-
eralization for larger local Hilbert space dimension
d = dim(Hl) is, however, straigthforward. Let us have
the collective operator A =

∑n
l=1 Al ⊗ I{l}, where the

minimal and maximal eigenvalues of Al are amin and
amax uniformly for all l. The only proof affected is
of (72), where only (142c) has to be changed to (142a)
(see Appendix F), which leads to the

max
π∈Pξ̂

FQ(π,A)
(amax − amin)2 = s2(ξ̂) (106)

generalization of (72). Then every bound in Section 5
can be given for/by the normalized quantum Fisher
information FQ(π,A)/(amax −amin)2 on the left-hand
side. Such bounds are independent of the dimension
d of the local Hilbert spaces, and depend only on
the uniform ‘spectral width’ amax − amin of the lo-
cal operators. The Jz measurement of spin-s systems
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can be of particular interest, then d = 2s + 1, and
(amax − amin)2 = 4s2.

Note that entanglement can also be detected effi-
ciently by spin squeezing inequalities [100–106], and
even the entanglement depth can be detected [1, 3–
5, 8–11, 14, 15, 107]. A promising research direc-
tion is then to give spin squeezing bounds on other
one-parameter multipartite entanglement properties.
For example, for macroscopic singlet states [102],
also demonstrated experimentally in both cold and
hot atomic systems [105, 106], we have the property
ξ̂ = {2, 2, . . . , 2}; and also the s−∞ number of spins
unentangled with the rest (127d) can be bounded from
above with the measurement results.

6 Summary
We began this study with elaborating the general
theory of one-parameter families of partial entangle-
ment properties (Section 2), and the resulting en-
tanglement depth like quantities (Section 3). The
main idea came by observing that the partial entan-
glement property leading to entanglement depth is
producibility, which is given by sub-level sets of the
width of the Young diagram of the partition of the
system (14b). One-parameter partial entanglement
properties, called f -entanglement, could then be de-
fined by sub- or super-level sets of generator func-
tions f (27), for which the only requirement neces-
sary for the construction was the monotonicity (22).
The resulting one-parameter classification of quan-
tum states is the chain hierarchy (31b) of nested state
spaces (30a) of (k, f)-entangled states, and the ‘lay-
ers’ of disjoint classes (34) of strictly (k, f)-entangled
states. We also had the f -entanglement depth and f -
entanglement depth of formation, being the general-
ization (38) and (49) of entanglement depth (37b) and
entanglement depth of formation (48b) with respect
to these one-parameter partial entanglement proper-
ties, for which we showed LOCC monotonicity.

We also provided an ample supply of one-parameter
entanglement properties (Section 4) by the corre-
sponding generator functions, beyond the entangle-
ment partitionability, producibility and stretchability,
the most notable ones were the entanglement square-
ability, defined by the sum of squares of the sizes of
entangled subsystems (64), the entanglement tough-
ness, defined by the size of the smallest entangled
subsystem (58), the entanglement degree of freedom,
defined by the effective number of elementary sub-
systems needed for the description of the state (68),
and the Rényi property of entanglement, defined by
the Rényi function of the subsystem size distribu-
tion (62b), nicely interpolating among producibility,
partitionability and toughness.

The formulation of metrological multipartite entan-
glement criteria (Section 5) fits well into the frame-
work of one-parameter entanglement properties. We

showed that for states of any given partial separability
property, the upper bound for the quantum Fisher in-
formation in collective spin-z measurement of qubits is
given by the squareability of that property (73), (76a).
This could be evaluated for f -entanglement in some
cases, and is given by a function of the f -entanglement
depth, which turns out to be the depth of an induced
one-parameter property (79). This led to an identity
if that property itself is the squareability (86), sug-
gesting that entanglement squareability is the natu-
ral multipartite entanglement property from the point
of view of quantum metrology. Since the quantum
Fisher information is the convex roof extension of
the variance (71b), thanks to the similar formula-
tions of the f -entanglement depth (43) and the f -
entanglement depth of formation (49), these bounds
could be strengthened, and the quantum Fisher in-
formation turned out to bound the average of the
depth (depth of formation (49)) of the corresponding
induced one-parameter property (89b) from below. In
particular, FQ/n puts a lower bound on the average
size of the entangled subsystems for random choice of
elementary subsystems, which is much smaller than
the size of the largest entangled subsystem in any de-
composition.

While deriving the metrological bounds with re-
spect to different one-parameter partial entanglement
properties, in the case of toughness (85) we were
faced with the possibility that a given one-parameter
property may not lead to different bounds for dif-
ferent values of the parameter k. This arises when
the bound (76a) fails to be strictly monotone (102),
in which case the one-parameter property cannot be
detected for those particular values of k. It turned
out that the two extreme cases are those of pro-
ducibility (or partitionability, etc.), where the bound
is strictly monotone for all k, and of toughness, where
the bound is nowhere strictly monotone, apart from
one k value. The possible failure of the strict mono-
tonicity (102) of the bound comes from the inter-
play (76a) of the generator function of the given one-
parameter property with squareability. Imposing the
dominance-monotonicity of the one-parameter prop-
erty significantly reduces the possibilities of the fail-
ure of strict monotonicity (102) of the bound, which
singles out one-parameter properties given by en-
tropies (dominance-monotone functions) of the sub-
system size distributions.
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A Usual measures of f -entanglement
In this section we recall the entanglement of formation
and relative entropy of entanglement of the permu-
tation invariant partial entanglement properties [20],
and we also define those with respect to the one-
parameter entanglement properties.

A.1 Measures of partial entanglement proper-
ties
There are several possible ways for quantifying en-
tanglement (LOCC monotones, entanglement mono-
tones [74–78]), which, in some cases, can also be ap-
plied for the particular kinds of multipartite entan-
glement [18, 20]. Here we recall the entanglement of
formation [75, 84] and the relative entropy of entan-
glement [108–110], which fit well to the hierarchy of
properties (11b), in the sense that they give measures
for each permutation invariant multipartite entangle-
ment property ξ̂ ∈ P̂II, and these measures are related
in the same way as the properties (multipartite mono-
tones [18, 20]).

On the first level, for all integer partitions ξ̂ ∈
P̂I, we have the ξ̂-entanglement of formation, be-
ing the average ξ̂-entanglement of the optimal de-
composition [18, 20], and the relative entropy of ξ̂-
entanglement, being the distinguishability from the
ξ̂-separable states,

EoF
ξ̂

(ρ) := min
{(pj ,πj)}⊢ρ

∑
j

pj min
ξ∈s−1(ξ̂)

∑
X∈ξ

SX(πj),

(107)
ER

ξ̂
(ρ) := min

σ∈Dξ̂

S(ρ||σ), (108)

where SX(ρ) = S(ρX) = − Tr(ρX ln(ρX)) is the
von Neumann entropy [111–114] of the state ρX =
TrX(ρ) of subsystem X (where X = {1, 2, . . . , n}\X),
and S(ρ||σ) = Tr(ρ ln(ρ) − ρ ln(σ)) is the Umegaki

relative entropy or quantum Kullback-Leibler diver-
gence [112–115]. (The first minimization in (107) is
taken over all the ρ =

∑
i piπi pure convex decom-

positions of ρ, for which we use the shorthand nota-
tion ⊢ above. This is the so called convex roof exten-
sion [83, 84] of the ξ̂-correlation [18, 20]. The sec-
ond minimization in (107) is taken over all the set
partitions ξ = {X1, X2, . . . , X|ξ|} which have parts of
sizes ξ̂ = {x1, x2, . . . , x|ξ̂|}. For more details, see [20].)
These are entanglement monotones [18, 20, 108] (con-
vex and nonincreasing on average with respect to se-
lective LOCC [76–78], for the relative entropy of ξ̂-
entanglement this follows from the general construc-
tion [108]), faithful (EoF/R

ξ̂
(ρ) = 0 if and only if

ρ ∈ Dξ̂), and multipartite monotone [18, 20], which is

υ̂ ⪯ ξ̂ ⇐⇒ E
oF/R
υ̂ ≥ E

oF/R
ξ̂

, (109)

expressing that any state is more entangled with re-
spect to a finer partition.

On the second level, for all down-sets of integer par-
titions ξ̂ ∈ P̂II we have the ξ̂-entanglement of forma-
tion, being the average ξ̂-entanglement of the optimal
decomposition [18, 20], and the relative entropy of ξ̂-
entanglement, being the distinguishability from the
ξ̂-separable states,

EoF
ξ̂

(ρ) := min
{(pj ,πj)}⊢ρ

∑
j

pj min
ξ∈∨s−1(ξ̂)

∑
X∈ξ

SX(πj),

(110)
ER

ξ̂
(ρ) := min

σ∈Dξ̂

S(ρ||σ). (111)

(The second minimization in (110) is taken over all
the set partitions ξ = {X1, X2, . . . , X|ξ|} which have
parts of sizes ξ̂ ∈ ξ̂. For more details, see [20].) These
are entanglement monotones [18, 20, 108], faithful
(EoF/R

ξ̂
(ρ) = 0 if and only if ρ ∈ Dξ̂), and multipartite

monotone [18, 20], which is

υ̂ ⪯ ξ̂ ⇐⇒ E
oF/R
υ̂ ≥ E

oF/R
ξ̂

, (112)

expressing that any state is more entangled with re-
spect to a finer multipartite entanglement property.

A.2 Examples of f -entanglement measures
For the three notable one-parameter families of prop-
erties, partitionability, producibility and stretchabil-
ity (14), we have by (110) the k-partitionability en-
tanglement of formation, the k-producibility entangle-
ment of formation, and the k-stretchability entangle-
ment of formation [18, 20], as well as by (111) the
relative entropy of k-partitionability of entanglement,
the relative entropy of k-producibility of entanglement,
and the relative entropy of k-stretchability of entan-
glement, for the respective ranges of k,

E
oF/R
k-part(ρ) := E

oF/R
ξ̂k-part

(ρ), (113a)
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E
oF/R
k-prod(ρ) := E

oF/R
ξ̂k-prod

(ρ), (113b)

E
oF/R
k-str (ρ) := E

oF/R
ξ̂k-str

(ρ), (113c)

with the monotonicity

k ≥ k′ ⇐⇒ E
oF/R
k-part ≥ E

oF/R
k′-part, (114a)

k ≤ k′ ⇐⇒ E
oF/R
k-prod ≥ E

oF/R
k′-prod, (114b)

k ≤ k′ ⇐⇒ E
oF/R
k-str ≥ E

oF/R
k′-str. (114c)

by (15) and (112).

A.3 f -entanglement measures in general
In general, for the one-parameter properties (27), de-
fined by the generator function f over the permu-
tation invariant properties (22), we have the (k, f)-
entanglement of formation and the relative entropy
of (k, f)-entanglement

E
oF/R
k,f (ρ) := E

oF/R
ξ̂k,f

(ρ) (115)

by (110) and (111). These are entanglement mono-
tones, faithful (EoF/R

k,f (ρ) = 0 if and only if ρ ∈ Dk,f ),

by the corresponding properties of EoF/R
ξ̂

, and mono-
tone in k

k ⋚ k′ ⇐⇒ E
oF/R
k,f ≥ E

oF/R
k′,f , (116)

by (28) and (112).
Note that if the generator functions f1 and f2 are

both increasing, then for all k2 ∈ f2(P̂I)

f1 ≤ f2 =⇒ E
oF/R
k2,f2

≥ E
oF/R
k1(k2),f1

(117)

for k1(k2) := min{k ∈ f1(P̂I) | k2 ≤ k}; while if f1
and f2 are both decreasing, then for all k2 ∈ f2(P̂I)

f1 ≤ f2 =⇒ E
oF/R
k1,f1

≥ E
oF/R
k2(k1),f2

(118)

for k2(k1) := max{k ∈ f2(P̂I) | k1 ≥ k}. (Indeed,
ξ̂k2,f2 ⪯ ξ̂k1(k2),f1 and ξ̂k1,f1 ⪯ ξ̂k2(k1),f2 are easy to
check in the two cases by definition (27), then (112)
with the definition (115) leads to the claim.)

Note that, if a generator function f : P̂I → R is
composed with a monotone function g : R → R, the
measures (115) may decrease with respect to this,

E
oF/R
g(k),g◦f ≤ E

oF/R
k,f , (119a)

while if g is strictly monotone, then the mea-
sures (115) are invariant with respect to this,

E
oF/R
g(k),g◦f = E

oF/R
k,f , (119b)

by the result (121), the monotonicity (112) and the
definition (115).

For partitionability, producibility and stretchabil-
ity, we get back the measures (113)-(114) by the
height, width and rank (23) as generator functions.

B f -entanglement depth
In this section we show the validity of the formula-
tions (41), (43) and (49) of f -entanglement depth and
f -entanglement depth of formation in Section 3.

B.1 f -entanglement depth by membership
Here we prove the formula (41) for the case of increas-
ing f ,

min
k∈f(P̂I)

{
k
∣∣ ρ ∈ Dk,f

}
= min

ξ̂∈P̂II

{
f(ξ̂)

∣∣ ρ ∈ Dξ̂

}
,

see (38) and (41), then similar reasoning works for the
case of decreasing f .

First, if min{k′ | ρ ∈ Dk′,f } = k then ρ ∈ Dk,f ≡
Dξ̂k,f

by (30a), therefore

min
ξ̂∈P̂II

{
f(ξ̂)

∣∣ ρ ∈ Dξ̂

}
≤ k ≡ min

k′∈f(P̂I)

{
k′ ∣∣ ρ ∈ Dk′,f

}
by (29). Second, if minξ̂{f(ξ̂) | ρ ∈ Dξ̂} = k then
there exists ξ̂ ∈ P̂II for which f(ξ̂) ≡ maxξ̂∈ξ̂ f(ξ̂) = k

such that ρ ∈ Dξ̂, then ξ̂ ⪯ ξ̂k,f by (25a) and (27),
then ρ ∈ Dξ̂k,f

≡ Dk,f by (11b) and (30a), therefore

min
k′∈f(P̂I)

{
k′ ∣∣ ρ ∈ Dk′,f

}
≤ k ≡ min

ξ̂∈P̂II

{
f(ξ̂)

∣∣ ρ ∈ Dξ̂

}
by (31b).

B.2 f -entanglement depth by decomposition
Here we prove the formula (43) for the case of increas-
ing f ,

min
k∈f(P̂I)

{
k
∣∣ ρ ∈ Dk,f

}
= min

{(pi,πi)}⊢ρ
max

i

{
Df (πi)

}
,

see (38) and (43), then similar reasoning works for
the case of decreasing f . (Note that the minimum
with respect to the decompositions is attained for
a given finite length of decompositions, since Df

takes finite number of discrete values f(P̂I), and so
is maxi Df (πi).)

First, if min{k′ | ρ ∈ Dk′,f } = k then ρ ∈ Dk,f =
Conv(Pk,f ) by (30a), that is, there exists a pure de-
composition {(pi, πi)} of ρ, such that πi ∈ Pk,f for all
i, that is, Df (πi) ≤ k for all i by (30c) and (38), then
maxi Df (πi) ≤ k for that decomposition, therefore

min
{(pi,πi)}⊢ρ

max
i
Df (πi) ≤ k ≡ min

k′∈f(P̂I)

{
k′ ∣∣ ρ ∈ Dk′,f

}
.

Second, if min{(pi,πi)}⊢ρ maxi Df (πi) = k, then there
exists a pure decomposition {(pi, πi)} of ρ for which
Df (πi) ≤ maxi Df (πi) = k for all i, then πi ∈
PDf (πi),f ⊆ Pk,f for all i by (39b) and (31a), then
ρ =

∑
i piπi ∈ Conv(Pk,f ) ≡ Dk,f by (30a), therefore

min
{
k′ ∣∣ ρ ∈ Dk′,f

}
≤ k ≡ min

{(pi,πi)}⊢ρ
max

i
Df (πi)

by (31b).
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B.3 f -entanglement depth of formation
Here first we recall and slightly extend some results
on convex roof construction [83, 84], then prove the
validity of the formula (49).

In general, for a function g : P → R, the functions
g∪/∩ : D → R given as

g∪(ρ) := inf
{(pi,πi)}⊢ρ

∑
i

pig(πi), (120a)

g∩(ρ) := sup
{(pi,πi)}⊢ρ

∑
i

pig(πi), (120b)

are the (unique) largest convex and smallest concave
extensions of g to D [83, 84]. These are clearly ex-
tensions, g∪(π) = g∩(π) = g(π) for all pure states
π ∈ P. To see that g∪/∩ are indeed the largest con-
vex/smallest concave extensions, we have that for all
convex/concave extensions G : D → R for all pure
convex decompositions ρ =

∑
i piπi of all ρ ∈ D,

G(ρ) ⋚
∑

i

piG(πi) =
∑

i

pig(πi),

then G(ρ) ⋚ g∪/∩(ρ). To see that g∪/∩ are indeed
convex/concave, we have that for all pure convex de-
compositions ρj =

∑
i pj,iπj,i of all ρj ∈ D, such that

for all ϵ > 0, 0 ≤
∑

i pj,ig(πj,i) − g∪(ρj) < ϵ, or
0 ≤ g∩(ρj) −

∑
i pj,ig(πj,i) < ϵ, in the two cases, re-

spectively, and for weights 0 ≤ wj ,
∑

j wj = 1,

g∪/∩
(∑

j

wjρj

)
⋚
∑

j

∑
i

wjpj,ig
∪/∩(πj,i)

=
∑

j

wj

∑
i

pj,ig(πj,i)

⋚
∑

j

wjg
∪/∩(ρj) +

∑
j

wjϵ,

which holds for arbitrarily small ϵ.
If g : P → R is lower/upper semicontinuous, then

the infimum in the definition of g∪, respectively the
supremum in the definition of g∩ is attained. (Then
these are convex/concave roof extensions. The proof
of the continuous case [83, 84] is generalized here.) To
see this, let us consider the graph of the function g in
LinSA(H) ⊕ R,

G(g) :=
{

(π, g(π))
∣∣ π ∈ P

}
,

and for y ∈ R its restriction (sub/super-level graph)

Gy(g) :=
{

(π, g(π))
∣∣ π ∈ P, g(π) ⋚ y

}
⊂ G(g).

It is known that a function g : P → R is lower/upper
semicontinuous if and only if its sub/super-level sets

Py(g) :=
{
π ∈ P

∣∣ g(π) ⋚ y
}

are closed for all y ∈ R. Then Gy(g) is closed, and
also compact, since P is compact. Then the con-
vex hull Conv

(
Gy

)
⊂ LinSA(H) ⊕ R is also com-

pact. On the other hand, its extremal points are

Extr
(
Conv(Gy)

)
= Gy. (Indeed, the points (π, g(π)) ∈

Gy are extremal, since the elements of Conv(Gy) are
of the form

∑
i pi(πi, g(πi)) =

(∑
i piπi,

∑
i pig(πi)

)
with πi ∈ Py(g) ⊆ P, which equals to a (π, g(π))
with π ∈ Py(g) ⊆ P if and only if the mixture is
trivial. So we have Extr

(
Conv(Gy)

)
⊇ Gy, and the

other inclusion Extr
(
Conv(Gy)

)
⊆ Gy is obvious by

definition.) For a ρ ∈ Conv
(
Py(g)

)
, we form the in-

tersection {(ρ, y′) | y′ ∈ R} ∩ Conv
(
Gy(g)

)
, which is

compact (since Conv
(
Gy(g)

)
is compact), so it is a

line segment {(ρ, y′) | y′ ∈ [ymin, ymax]}. Since this
segment is in Conv

(
Gy(g)

)
, all of its points can be

written as (ρ, y′) =
∑

i pi(πi, g(πi)) =
(
ρ,
∑

i pig(πi)
)

for πi ∈ Py(g), so g∪(ρ) = ymin =
∑

i pig(πi) in
the lower semicontinuous case and g∩(ρ) = ymax =∑

i pig(πi) in the upper semicontinuous case. Note
that dim

(
Conv

(
Gy(g)

))
= dim(D) + 1 = (d2n − 1) +

1 = d2n, and the points (ρ, ymin) or (ρ, ymax) be-
long to its boundary, being a face of dimension at
most d2n − 1, so, due to Carathéodory’s theorem,
the length of the decomposition above is at most
(d2n − 1) + 1 = d2n.

Now, to see the validity of the formula (49), we need
that Df |P : P → R are lower/upper semicontinuous
for increasing/decreasing generator functions f . A
function is lower/upper semicontinuous if and only if
its sub/super-level sets are closed. In our case, let us
have for y ∈ R

k(y) =
{

max{k′ ∈ f(P̂I) | k′ ≤ y},
min{k′ ∈ f(P̂I) | k′ ≥ y},

for increasing and decreasing f , respectively, then the
sub/super-level sets of Df |P for increasing/decreasing
f are just Py(Df |P) =

{
π ∈ P

∣∣ Df (π) ⋚ y
}

=
Dk(y),f ∩P = Pk(y),f see (40b), which are closed (30c).

C Coarsenings and symmetries
In this section we consider the natural transforma-
tions of the one-parameter entanglement properties,
given in Section 2, and of the resulting depths, given
in Section 3.

C.1 Coarsenings and symmetries of f -entan-
glement
If a generator function f : P̂I → R is composed with a
monotone function g : R → R, then the composition
g ◦ f is also a generator function, and it leads to the
(possibly coarser) properties.

ξ̂g(k),g◦f ⪰ ξ̂k,f , (121a)

while if g is strictly monotone, then the resulting gen-
erator function g ◦ f , although takes different values,
leads to the same properties (same sub- or super-level
sets (27)),

ξ̂g(k),g◦f = ξ̂k,f , (121b)
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as the original generator function f .
To see (121a), for all k′ ∈ g(f(P̂I)), for all k ∈ f(P̂I)

such that g(k) = k′, we have

ξ̂k′,g◦f ⪰ ξ̂k,f . (122a)

Indeed, by the definition (27), for all ξ̂ ∈ ξ̂k,f we
have f(ξ̂) ⋚ k, then g(f(ξ̂)) ⋚ g(k) for increasing
g or g(f(ξ̂)) ⋛ g(k) for decreasing g, both lead to
ξ̂ ∈ ξ̂g(k),g◦f = ξ̂k′,g◦f (27).

To see (121b), we have the inverse function g−1 in
the case of strictly monotone g, so using (121a) with g
and also with g−1 we have ξ̂k,f = ξ̂g−1(g(k)),g−1◦g◦f ⪰
ξ̂g(k),g◦f ⪰ ξ̂k,f , then the antisymmetry of the partial
order ⪯ leads to the claim.

Note that the main point here is that the effect of
the transformation g is just a possible coarsening of
the classification. For all k′ ∈ g(f(P̂I)), we have

ξ̂k′,g◦f = ξ̂k,f ⇐⇒ k =
{

max
(
g−1({k′})

)
,

min
(
g−1({k′})

)
,

(122b)
for increasing or decreasing f , respectively. (Here
g−1({k′}) = {k ∈ f(P̂I) | g(k) = k′} is the inverse
image of g, since g is not necessarily strictly mono-
tone, that is, not invertible in general.) Indeed, to see
the ‘if ’ direction,

ξ̂k′,g◦f = ξ̂k,f ⇐= k =
{

max
(
g−1({k′})

)
,

min
(
g−1({k′})

)
,

we have the ⪰ relation in (122a), and we need to see
the ⪯ relation, that is, for all k′ ∈ g(f(P̂I)), for all
ξ̂ ∈ P̂I, assuming increasing g,

g(f(ξ̂)) ⋚ k′ =⇒ f(ξ̂) ⋚
{

max
(
g−1({k′})

)
,

min
(
g−1({k′})

)
,

by (27), which is equivalent by contraposition to that

g(f(ξ̂)) ≷ k′ ⇐= f(ξ̂) ≷
{

max
(
g−1({k′})

)
,

min
(
g−1({k′})

)
,

which holds, because from the right-hand side
g(f(ξ̂)) ⋛ k′ follows by the increasing monotonicity
of g, and also f(ξ̂) /∈ g−1({k′}) which is equivalent to
g(f(ξ̂)) ̸= k′ (this is where we used that not any ele-
ment of the inverse image g−1({k′}) is used, but only
the maximal/minimal one). The proof of this point
goes analogously for decreasing g. To see the ‘only if ’
direction, we use the contraposition

ξ̂k′,g◦f ̸= ξ̂k′′,f ⇐= k′′ ̸=
{

max
(
g−1({k′})

)
,

min
(
g−1({k′})

)
,

which can be seen by already having that ξ̂k′,g◦f =
ξ̂k,f for k = max /min(g−1({k′})), so it cannot be

equal to ξ̂k′′,f for another k′′ ̸= max /min(g−1({k′})),
since for all k, k′′ ∈ f(P̂I) we have ξ̂k,f ̸= ξ̂k′′,f if and
only if k ̸= k′′ by the order isomorphism (28) and
standard order theory.

Having the two chains (28) of one-parameter
entanglement properties, the meaning of (122) is
that (k′, g ◦ f)-entanglement properties are (k, f)-
entanglement properties for specific k values (which
are maximal or minimal among those which are
mapped to k′ by g), the (k, f)-entanglement prop-
erties for the other k values do not appear among the
(k′, g ◦ f)-entanglement properties.

C.2 Coarsenings and symmetries of f -entan-
glement state spaces and classes

If a generator function f : P̂I → R is composed with a
monotone function g : R → R, then the composition
g ◦ f leads to the (possibly larger) state spaces (30)
and (possibly coarser) classes (34)

Dg(k),g◦f ⊇ Dk,f , (123a)

Ck′,g◦f =
⋃

k∈g−1({k′})

Ck,f (123b)

for all k′ ∈ g(f(P̂I)), while if g is strictly mono-
tone, then the resulting generator function g ◦ f , al-
though taking different values, leads to the same state
spaces (30) and classes (34),

Dg(k),g◦f = Dk,f , (123c)
Cg(k),g◦f = Ck,f , (123d)

as the original generator function f .
We have (123a) by (121a), (11b) and the defini-

tion (30a).
To see (123b), let us denote g−1({k′}) =

{k1, k2, . . . km}, where ki ≷ kj if i < j, k1 =
max /min

(
g−1({k′})

)
and also the next value km+1 =

max /min
(
g−1({k′

∓})
)
, then we have

Ck′,g◦f = Dk′,g◦f \ Dk′
∓,g◦f = Dk1,f \ Dkm+1,f

by definition (34) and the result (122b), then we have
Dki,f ⊇ Dkj ,f if i < j by (31b), so the above is

= (Dk1,f \ Dk2,f ) ∪ (Dk2,f \ Dk3,f ) ∪ . . .

· · · ∪ (Dkm−1,f \ Dkm,f ),

which can be seen by the consecutive application of
the set identity (A1 \ A2) ∪ (A2 \ A3) = A1 \ A3 for
the nested sets A1 ⊇ A2 ⊇ A3.

We have (123c) by (121b), (11b) and the defini-
tion (30a).

We have (123d) by (123c) and the definition (34).
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C.3 Coarsenings and symmetries of f -entan-
glement depth
Here we prove the formula in (44). For all k′ ∈
g(f(P̂I)) we have Dg◦f (ρ) = k′ if and only if ρ ∈
Ck′,g◦f by (39a), then ρ ∈ Ck,f for a k ∈ f(P̂I) for
which g(k) = k′ by (123b), which holds if and only if
Df (ρ) = k by (39a) again, then g(Df (ρ)) = g(k) =
k′ = Dg◦f (ρ).

C.4 Coarsenings and symmetries of f -entan-
glement depth of formation
Here we prove the formulas in (53).

To see the case (53a) of convex g, for increasing
generator function f : P̂I → R (22) and increasing
convex function g : R → R, we have

DoF
g◦f

(49)= min
{(pj ,πj)}⊢ρ

∑
j

pjDg◦f (πj)

(44)= min
{(pj ,πj)}⊢ρ

∑
j

pjg
(
Df (πj)

)
≥ min

{(pj ,πj)}⊢ρ
g
(∑

j

pjDf (πj)
)

= g
(

min
{(pj ,πj)}⊢ρ

∑
j

pjDf (πj)
) (49)= g

(
DoF

f

)
,

where the first equality holds by definition (49), be-
cause g ◦ f is increasing if both f and g are increas-
ing; the second equality holds because (44) holds for
all monotone g; the inequality holds by the convex-
ity of g, and because a pointwise smaller function has
smaller minimum; the third equality holds because g
is increasing; and the last equality holds by defini-
tion (49), because f is increasing. For decreasing f
and g, we have increasing g ◦ f , and the derivation
above holds with slight changes: after the third equal-
ity min is changed to max, because g is decreasing;
and but the last equality still holds by definition (49),
because f is now decreasing. For decreasing f and in-
creasing g, we have decreasing g◦f , and the derivation
above holds with slight changes: after the first equality
min is changed to max, because g◦f is decreasing; and
the last equality still holds by definition (49), because
f is now decreasing. For increasing f and decreasing
g, we have decreasing g ◦ f , and the derivation above
holds with slight changes: after the first equality min
is changed to max, because g ◦ f is decreasing; but
after the third equality max is changed back to min,
because g is decreasing; and the last equality holds
again by definition (49), because f is increasing.

The case (53b) for concave g can be seen similarly,
only the inequality is flipped in the derivation above.

The case (53c) for affine g follows from (53a)
and (53b), by noting that an affine function is both
convex and concave.

D General properties of power-based
generator functions
In this section we show some properties of power-
based functions in Section 4 together with proof for
the convenience of the reader.

D.1 Some basic tools for power functions
Here we recall some basic facts about power functions,
with emphasis on the precise ranges.

For 0 < x ∈ R, q, q′ ∈ R, we have

1 ⋚ x : q ≤ q′ =⇒ xq ⋚ xq′
. (124)

(This can easily be seen by taking the logarithm, or by
the derivative ∂xq/∂q = xq ln(x).) For 0 < x, x′ ∈ R,
q ∈ R, we have

0 ⋚ q : x ≤ x′ =⇒ xq ⋚ (x′)q. (125)

(This can easily be seen by taking the logarithm, or
by the derivative ∂xq/∂x = qxq−1.) For 0 < xi ∈ R,
q ∈ R, we also have for the finite sums

1 ⋚ q :
m∑

i=1
xq

i ⋚
( m∑

i=1
xi

)q

. (126)

(This is simply because
∑

i
xq

i(∑
j

xj

)q =
∑

i

(
xi∑
j

xj

)q
⋚∑

i

(
xi∑
j

xj

)1 = 1, where 0 < xi∑
j

xj
≤ 1, so the in-

equalities in the two cases 1 ⋚ q arise by applying the
lower relation in (124).)

D.2 q-limits of power based generator func-
tions
Here we list the limits of the generator functions stud-
ied in Section 4 with respect to the parameter q. Al-
though many of these are more or less well known, we
collect these together with the proofs for the conve-
nience of the reader.

s0(ξ̂) = h(ξ̂) ≡ |ξ̂|, (127a)
s1(ξ̂) = n, (127b)

lim
q→+∞

sq(ξ̂) =
{
n if ξ̂ = ⊥,
∞ else,

(127c)

s−∞(ξ̂) := lim
q→−∞

sq(ξ̂) =
∣∣{x ∈ ξ̂ | x = 1}

∣∣
(127d)

lim
q→0−

Nq(ξ̂) =
{
n if ξ̂ = ⊤,
0 else,

(127e)

lim
q→0+

Nq(ξ̂) =
{
n if ξ̂ = ⊤,
∞ else,

(127f)

N1(ξ̂) = n, (127g)
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N+∞(ξ̂) := lim
q→+∞

Nq(ξ̂) = max(ξ̂), (127h)

N−∞(ξ̂) := lim
q→−∞

Nq(ξ̂) = min(ξ̂), (127i)

M0(ξ̂) := lim
q→0

Mq(ξ̂) =
(∏

ξ̂
)1/|ξ̂|

, (127j)

M1(ξ̂) := n/|ξ̂|, (127k)
M+∞(ξ̂) := lim

q→+∞
Mq(ξ̂) = max(ξ̂), (127l)

M−∞(ξ̂) := lim
q→−∞

Mq(ξ̂) = min(ξ̂), (127m)

T0(ξ̂) = |ξ̂| − 1, (127n)
T1(ξ̂) := lim

q→1
Tq(ξ̂) = S(ξ̂), (127o)

T+∞(ξ̂) := lim
q→+∞

Tq(ξ̂) = 0, (127p)

lim
q→−∞

Tq(ξ̂) =
{

0 if ξ̂ = ⊤,
∞ else,

(127q)

R0(ξ̂) = ln(|ξ̂|), (127r)
R1(ξ̂) := lim

q→1
Rq(ξ̂) = S(ξ̂), (127s)

R+∞(ξ̂) := lim
q→+∞

Rq(ξ̂) = ln(n) − ln(max(ξ̂)),

(127t)
R−∞(ξ̂) := lim

q→−∞
Rq(ξ̂) = ln(n) − ln(min(ξ̂)),

(127u)
P0(ξ̂) = |ξ̂|, (127v)

P1(ξ̂) := lim
q→1

Pq(ξ̂) = eS(ξ̂), (127w)

P+∞(ξ̂) := lim
q→+∞

Pq(ξ̂) = n/max(ξ̂), (127x)

P−∞(ξ̂) := lim
q→−∞

Pq(ξ̂) = n/min(ξ̂). (127y)

We have (127a) and (127b) by definition (59a).
To see (127c) for (59a), we have that limq→∞ xq =

1, or ∞ if x = 1 or 1 < x, respectively, and the
subsystem sizes x ∈ ξ̂ are 1 ≤ x, and all of those are
1 if and only if ξ̂ = ⊥.

To see (127d) for (59a), we have that limq→−∞ xq =
1, or 0 if x = 1 or 1 < x, respectively.

To see (127e) and (127f) for (59b), if
ξ̂ = ⊤ then we have Nq(⊤) = n with-
out respect to q. If ξ̂ ̸= ⊤ then we have
limq Nq(ξ̂) = limq eln(Nq(ξ̂)) = elimq ln(Nq(ξ̂)), for
which limq→0± ln(Nq(ξ̂)) = limq→0±

1
q ln
(∑

x∈ξ̂ x
q
)

=(
limq→0±

1
q

)(
limq→0± ln(

∑
x∈ξ̂ x

q)
)

=(
limq→0±

1
q

)
ln(|ξ̂|) = ±∞ where ln(|ξ̂|) > 0

since |ξ̂| > 1 since ξ̂ ̸= ⊤, leading to the claim.
We have (127g) by definition (59b).
To see (127h) for (59b), we have x ≤ xmax :=

max(ξ̂), so, for q ≥ 0, we have xq ≤ xq
max by (125),

which leads to the second inequality in

0 ≤ q : xq
max ≤

∑
x∈ξ̂

xq ≤ |ξ̂|xq
max. (128a)

Applying the q-th root for q > 0 to this gives xmax ≤
Nq(ξ̂) ≤ |ξ̂|

1/q
xmax by (125). Taking the limit q →

+∞ leads to the claim.
To see (127i) for (59b), we have x ≥ xmin := min(ξ̂),

so, for q ≤ 0, we have xq ≤ xq
min by (125), which leads

to the second inequality in

0 ≥ q : xq
min ≤

∑
x∈ξ̂

xq ≤ |ξ̂|xq
min. (128b)

Applying the q-th root for q < 0 to this gives xmin ≥
Nq(ξ̂) ≥ |ξ̂|

1/q
xmin by (125). Taking the limit q →

−∞ leads to the claim.
To see (127j) for (59c), we have limq Mq(ξ̂) =

limq eln Mq(ξ̂) = elimq ln Mq(ξ̂), for which we have
limq→0 ln(Mq(ξ̂)) = limq→0

1
q ln
( 1

|ξ̂|

∑
x∈ξ̂ x

q
)
,

which, using L’Hôpital rule for the 0/0-type

limit, is limq→0

∑
x∈ξ̂

xq ln(x)∑
x∈ξ̂

xq
= 1

|ξ̂|

∑
x∈ξ̂ ln(x) =

ln((
∏

x∈ξ̂ x)1/|ξ̂|), leading to the claim.
We have (127k) by definition (59c).
To see (127l) for (59c), we recall (128a). Multiply-

ing this with |ξ̂|
−1

and applying the q-th root for q > 0
to this gives |ξ̂|

−1/q
xmax ≤ Mq(ξ̂) ≤ xmax by (125).

Taking the limit q → +∞ leads to the claim.
To see (127m) for (59c), we recall (128b). Multiply-

ing this with |ξ̂|
−1

and applying the q-th root for q < 0
to this gives |ξ̂|

−1/q
xmin ≥ Mq(ξ̂) ≥ xmin by (125).

Taking the limit q → −∞ leads to the claim.
We have (127n) by definition (62a).
To see (127o) for (62a), we use L’Hôpital rule for

the 0/0-type limit, limq→1
1

1−q (
∑

x∈ξ̂(x/n)q −
1) = limq→1 −

∑
x∈ξ̂(x/n)q ln(x/n) =

−
∑

x∈ξ̂(x/n) ln(x/n), which is (62c).
To see (127p) for (62a), we have that x/n ≤ 1,

so the nominator is bounded, while the denominator
grows to −∞, leading to the claim.

To see (127q) for (62a), we have that if ξ̂ ̸= ⊤
then x/n < 1, so the nominator grows exponentially,
while the denominator grows only linearly, leading to
the claim. If ξ̂ = ⊤ = {n} then there is only one
summand, x/n = 1, leading to the claim.

We have (127r) by definition (62b).
To see (127s) for (62b), we use L’Hôpital rule

for the 0/0-type limit, limq→1
1

1−q ln(
∑

x∈ξ̂(x/n)q) =

limq→1
−
∑

x∈ξ̂
(x/n)q ln(x/n)∑

x∈ξ̂
(x/n)q

= −
∑

x∈ξ̂(x/n) ln(x/n),

which is (62c).
To see (127t) for (62b), we recall (128a). Multiply-

ing this with 1/nq, applying ln() and multiplying with
1/(1 − q) for q > 1 gives q

1−q ln(xmax/n) ≥ Rq(ξ̂) ≥
ln(|ξ̂|)
1−q + q

1−q ln(xmax/n). Taking the limit q → +∞
leads to the claim.

To see (127u) for (62b), we recall (128b). Multiply-
ing this with 1/nq, applying ln() and multiplying with
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1/(1 − q) for q < 0 gives q
1−q ln(xmin/n) ≤ Rq(ξ̂) ≤

ln(|ξ̂|)
1−q + q

1−q ln(xmin/n). Taking the limit q → −∞
leads to the claim.

To see (127v), (127w), (127x) and (127y) for (62b),
note that Pq = eRq is a monotone function of Rq, for
which we have (127r), (127s), (127t) and (127u).

D.3 q-monotonicity of power based generator
functions
Here we list the monotonicity of the power based gen-
erator functions studied in Section 4 with respect to
the parameter q. Although many of these are more
or less well known, we collect these together with the
proofs for the convenience of the reader.

q < q′ =⇒ sq(ξ̂) ≤ sq′(ξ̂), (129a)
0 < q < q′ =⇒ Nq(ξ̂) ≥ Nq′(ξ̂), (129b)
q < 0 < q′ =⇒ Nq(ξ̂) ≤ Nq′(ξ̂), (129c)
q < q′ < 0 =⇒ Nq(ξ̂) ≥ Nq′(ξ̂), (129d)

q < q′ =⇒ Mq(ξ̂) ≤ Mq′(ξ̂), (129e)
q < q′ =⇒ Tq(ξ̂) ≥ Tq′(ξ̂), (129f)
q < q′ =⇒ Rq(ξ̂) ≥ Rq′(ξ̂), (129g)
q < q′ =⇒ Pq(ξ̂) ≥ Pq′(ξ̂). (129h)

To see (129a) for (59a), we have (124) for each sum-
mand, 1 ≤ x.

To see (129b)-(129d) for (59b), we note that Nq(ξ̂)
is not continuous in q = 0, see (127e)-(127f), so first
we consider the cases 0 < q ≤ q′ and q ≤ q′ < 0.
For these, for 0 ≶ q we have x ⋚ Nq(ξ̂) for all x ∈ ξ̂

(by (125), since xq ≤
∑

x∈ξ̂ x
q), so x/Nq(ξ̂) ⋚ 1. Then(

x/Nq(ξ̂)
)q

⋛
(
x/Nq(ξ̂)

)q′

by (124). Summing up,

1 =
∑

x∈ξ̂

(
x/Nq(ξ̂)

)q
⋛
∑

x∈ξ̂

(
x/Nq(ξ̂)

)q′

, that is,
Nq′

q (ξ̂) ⋛
∑

x∈ξ̂ x
q′

, which is Nq(ξ̂) ≥ Nq′(ξ̂) in the
two cases 0 ≶ q by (125). Now for the case q <
0 < q′ we have the limits (127h)-(127i), by which
Nq ≤ N−∞ = min ≤ max = N+∞ ≤ Nq′ .

To see (129e) for (59c) (power mean inequality,
with equal weights), first we consider the cases
0 < q ≤ q′ and q ≤ q′ < 0. For these, for 0 ≶ q,
we have 0 < q/q′ ⋚ 1, so the function x 7→ xq/q′

is
concave/convex in the two cases, so

∑
x∈ξ̂

1
|ξ̂|x

q =∑
x∈ξ̂

1
|ξ̂| (x

q′)q/q′
⋚
(∑

x∈ξ̂
1

|ξ̂|x
q′)q/q′

, which, taking

the q-th root, is Mq(ξ̂) ≤ Mq′(ξ̂) by (125). Now for
the case q < 0 < q′ we have the limit (127j), by which

ln(M0(ξ̂)) = ln
((∏

x∈ξ̂ x
)1/|ξ̂|) =

∑
x∈ξ̂

1
|ξ̂| ln(x) =

1
q

∑
x∈ξ̂

1
|ξ̂| ln(xq) ⋚ 1

q ln
(∑

x∈ξ̂
1

|ξ̂|x
q
)

=

ln
((∑

x∈ξ̂
1

|ξ̂|x
q
)1/q) = ln(Mq(ξ̂)) for the cases

0 ⋚ q, where the concavity of the logarithm was used.
To see (129f) for (62a), we differentiate the q-

logarithm ln(q)(u) = u1−q−1
1−q for u > 0 as ∂

∂q ln(q)(u) =

1
(1−q)2

(
u1−q − 1 − (1 − q)u1−q ln(u)

)
= 1

(1−q)2

(
u1−q −

1 − u1−q ln(u1−q)
)

= 1
(1−q)2

(
v − 1 − v ln(v)

)
≤ 0 us-

ing the new variable v = u1−q. This holds because
−v ln(v) ≤ 1 − v, which follows from that the two
sides, as well as their derivatives are equal in v = 1,
and the derivative of the left-hand side (−1− ln(v)) is
larger/smaller than that of the right-hand side (−1)
for v ≤ 1 and v ≥ 1, respectively. So ln(q)(u) is de-

creasing in q, then Tq(ξ̂) = 1
1−q

(∑
x∈ξ̂

(
x
n

)q − 1
)

=∑
x∈ξ̂

x
n ln(q)

(
n
x

)
is also decreasing in q.

To see (129g) for (62b), we differentiate Rq as

(1 − q)2 ∂

∂q
Rq(ξ̂) = (1 − q)2 ∂

∂q

1
1 − q

ln
(∑

x∈ξ̂

xq

nq

)
= ln

(∑
x

xq

nq

)
+ (1 − q)∑

x′
x′q

nq

∑
x

xq

nq
ln
(x
n

)
= ln

(∑
x′′

x′′q

nq

)
+
∑

x

xq

nq∑
x′

x′q

nq

(
ln
(x
n

)
− ln

(xq

nq

))
=
∑

x

xq

nq∑
x′

x′q

nq

(
ln
(∑

x′′

x′′q

nq

)
+ ln

(x
n

)
− ln

(xq

nq

))
= −

∑
x

xq

nq∑
x′

x′q

nq

(
ln
( xq

nq∑
x′′

x′′q

nq

)
− ln

(x
n

))
,

so −(1 − q)2 ∂
∂qRq(ξ̂ is the Kullback-Leibler diver-

gence D(p, r) =
∑

i pi(ln(pi) − ln(qi)), or relative
entropy [114] of the distributions

{ (xi/n)q

sq(ξ̂/n)

∣∣ i =

1, 2, . . . , |ξ̂|
}

and ξ̂/n = {xi/n | i = 1, 2, . . . , |ξ̂|} (for
any indexing of the elements ξ̂). This is nonnegative,
which can be seen by the convexity of the logarithm:
−D(p, r) =

∑
i pi ln( qi

pi
) ≤ ln(

∑
i pi

qi

pi
= ln(

∑
i qi) =

0.
To see (129h) for (63), note that Pq = eRq is

a strictly increasing function of Rq, for which we
have (129g).

E Construction of f -entanglement
In this section we provide some tools for the refine-
ment and dominance orders used in the main text, and
show the monotonicity of the generator functions (22)
in Section 4 with respect to these.

E.1 Orders
Here we recall the partial orders applied in the con-
struction in the main text [18, 20], and consider their
relationship.

An extremal stochastic m′ ×m matrix is given as a
matrix of elements aij ∈ {0, 1}, such that

∑m′

i=1 aij =
1 for all j = 1, 2, . . . ,m.

A partition of the set {1, 2, . . . , n} is its disjoint co-
vering ξ = {X1, X2, . . . , X|ξ|}, and the elements X ∈
ξ are called parts. The set of partitions of {1, 2, . . . , n}
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is denoted with PI. The partial order refinement [48,
55] is given for the partitions υ and ξ as

υ ⪯ ξ
def.⇐⇒ ∀Y ∈ υ,∃X ∈ ξ s.t. Y ⊆ X. (130a)

It is easy to check that for the partitions υ =
{Y1, Y2, . . . , Y|υ|} and ξ = {X1, X2, . . . , X|ξ|} we have

υ ⪯ ξ ⇐⇒ ∃[aij ] extremal stochastic

|ξ| × |υ| matrix, s.t. Xi =
|υ|⋃

j=1
aijYj ,

(130b)

(where we use the notation 0Y = ∅, 1Y = Y ), which
informally means that ξ > υ can be obtained from
υ by forming partial unions. Note that the set par-
titions PI with respect to the refinement order forms
a lattice [48, 116], that is, there exist unique least
upper and greatest lower bounds for all pairs of set
partitions. The covering relation (arrow) of ⪯ is

υ ·≺ ξ ⇐⇒ υ ≺ ξ and |υ| = |ξ| − 1, (130c)

which informally means that only two parts from υ
are joined to obtain ξ̂.

The type ξ̂ of a partition ξ is given as the multiset
ξ̂ = {|X| | X ∈ ξ}, which is an integer partition of
n [20, 48, 55]. Let s denote the elementwise action of
| |, so ξ̂ = s(ξ), and let s−1 denote its inverse image,
s−1(ξ̂) = {ξ ∈ PI | s(ξ) = ξ̂}. The set of integer
partitions of n is denoted with P̂I. The partial order
refinement [20] is given for the integer partitions υ̂
and ξ̂ as

υ̂ ⪯ ξ̂
def.⇐⇒ ∃υ ∈ s−1(υ̂), ξ ∈ s−1(ξ̂) s.t. υ ⪯ ξ.

(131a)
It is easy to check that for the integer partitions υ̂ =
{y1, y2, . . . , y|υ̂|} and ξ̂ = {x1, x2, . . . , x|ξ̂|} we have

υ̂ ⪯ ξ̂ ⇐⇒ ∃[aij ] extremal stochastic

|ξ̂| × |υ̂| matrix, s.t. xi =
|υ̂|∑

j=1
aijyj ,

(131b)

which informally means that ξ̂ > υ̂ can be obtained
from υ̂ by partial summation. Note that the integer
partitions P̂I with respect to the refinement order does
not form a lattice, that is, there are pairs of integer
partitions for which there exists no unique least upper
or greatest lower bound (for n ≥ 5, see Figure 1). The
covering relation (arrow, see Figure 1) of ⪯ is

υ̂ ·≺ ξ̂ ⇐⇒ υ̂ ≺ ξ̂ and |υ̂| = |ξ̂| − 1, (131c)

which informally means that only two parts from υ̂
are added to obtain ξ̂.

Note that, although the definition of extremal
stochastic matrices allows 0 rows, such matrices
do not play role in the characterizations (130b)
and (131b).

Figure 10: The covering relations of the refinement poset
(black arrows, (130c)) and the dominance lattice (dashed red
arrows, (132b)) on P̂I illustrated for n = 6 in the height (23a)
vs. width (23b) plot.

The dominance order (also called majorization [87–
89] for the continuous variable case), is a partial
order given for the integer partitions [48, 90] υ̂ =
{y1, y2, . . . , y|υ̂|} and ξ̂ = {x1, x2, . . . , x|ξ̂|}, indexed in
weakly decreasing order (xi ≥ xj and yi ≥ yj , i < j),
as

υ̂ ≤ ξ̂
def.⇐⇒

m∑
i=1

yi ≤
m∑

i=1
xi

for all m ∈ {1, 2, . . . , n},
(132a)

where yi = 0 or xi = 0 is set if i > |υ̂| or i > |ξ̂|,
respectively. Note that the integer partitions P̂I with
respect to the dominance order forms a lattice [90],
that is, there exist unique least upper and greatest
lower bounds for all pairs of integer partitions. The
covering relation (arrow) of ≤ is also known [90],

υ̂ ⋖ ξ̂ ⇐⇒


xi = yi + 1,
xj = yj − 1,
xk = yk,∀k ̸= i, j,

when j = i+ 1 or yi = yj

(132b)

which informally means that the Young diagram of
ξ̂ ⋗ υ̂ can be obtained from the Young diagram of υ̂
by removing the last box of row j and appending it
either to the end of the immediately preceding row
j − 1, or to the end of row i < j if the rows i through
j of the Young diagram of υ̂ all have the same length,
yi−1 < yi = yi+1 = · · · = yj−1 = yj < yj+1. (Note
that we drop the possible xj = yj − 1 = 0 values.)
(For illustration, see Figure 10.) We will also use the
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following condition

υ̂ ≤ ξ̂ ⇐= ∃i < j s.t.


xi = yi + 1,
xj = yj − 1,
xk = yk,∀k ̸= i, j,

(132c)
which is easy to prove by the definition (132a).

Now we show that refinement ⪯ implies dominance
≤, that is, for the integer partitions υ̂, ξ̂ ∈ P̂I,

υ̂ ⪯ ξ̂ =⇒ υ̂ ≤ ξ̂. (133)

To see this, we assume (131b) with weakly decreas-
ingly ordered elements yj and xi. Before we show the
inequality in (132a) for general m, first let us check
the m = 1 and 2 cases as illustration. For the case
m = 1, let i ∈ {1, 2, . . . , |ξ̂|} be the index for which
ai1 = 1 (this is unique, because aij are elements of an
extremal stochastic matrix), then

y1 ≤
|υ̂|∑

j=1
aijyj = xi ≤ x1,

where the assumption (131b) and the decreasing or-
dering of the elements xi are also used. For the case
m = 2, let i1, i2 ∈ {1, 2, . . . , |ξ̂|} be the unique indices
for which ai11 = 1 and ai22 = 1, then

y1 +y2 ≤
|υ̂|∑

j=1
ai1jyj +

|υ̂|∑
j=1

ai2jyj = xi1 +xi2 ≤ x1 +x2,

where the assumption (131b) and the decreasing or-
dering of the elements xi are also used: the sum of
any two xs are less than or equal to the sum of the
two largest ones. In general, for all l ∈ {1, 2, . . . ,m},
let il ∈ {1, 2, . . . , |ξ̂|} be the unique indices for which
aill = 1, then

m∑
l=1

yl ≤
m∑

l=1

|υ̂|∑
j=1

ailjyj =
m∑

l=1
xil

≤
m∑

l=1
xl,

where the assumption (131b) and the decreasing or-
dering of the elements xi are also used: the sum of any
l x-s are less than or equal to the sum of the l largest
ones. Then (132a) leads to the claim. Note that the
reverse implication does not hold in (133), as can be
shown by the simple counterexample υ̂ = {2, 2} and
ξ̂ = {3, 1}, for which υ̂ ≤ ξ̂ but υ̂ ̸⪯ ξ̂ and υ̂ ̸⪰ ξ̂.

There are functions f : P̂I → R increas-
ing/decreasing monotone with respect to domi-
nance (132a)

υ̂ ≤ ξ̂ =⇒ f(υ̂) ⋚ f(ξ̂). (134)

(These are called Schur-convex/concave for the
case of probability distributions or continuous vari-
ables in general.) Then, putting together (22b)
and (134) with (133), we have that any ≤-monotone

(dominance-monotone) function P̂I → R is ⪯-
monotone (refinement-monotone), hence proper gen-
erator function (22). In the continuous variable
case, decreasing dominance-monotonicity, or Schur-
concavity is the defining property of (generalized) en-
tropies [87], so any entropy of the normalized inte-
ger partitions ξ̂/n ≡ {x/n | x ∈ ξ̂} is a proper
generator function. Note, however, that for in-
teger partitions, as is being considered here, we
have a slightly different domain of the functions.
Usually integer partitions of n are represented as
n-tuples of nonnegative integers {0, 1, 2, . . . , n} ⊂
N0, by adding zeroes ξ̂ = {x1, x2, . . . , x|ξ̂|} 7→
(x1, x2, . . . , x|ξ̂|, 0, . . . , 0) and then the dominance-
monotonicity or Schur-convexity/concavity of n-
variable functions over {0, 1, 2, . . . , n}n or [0, n]nR can
be defined. Here we represent partitions of n as mul-
tisets of strictly positive integers {1, 2, . . . , n} ⊂ N, so
zero is not allowed, which is the natural way in our
construction. Then the generator functions acting on
partitions can be valid even if the analogously defined
n-variable functions would not (see for example the
power based generator functions sq, Nq, Mq, Tq, Rq,
Pq for q < 0 in Appendix E.2). This also prevents the
use of the Schur-Ostrowski criterion [88] for n-variable
functions to check Schur-convexity/concavity, so we
will give direct proofs (see in Appendix E.3) based on
the covering relation (132b).

E.2 Monotonicity of generator functions

Here we show the monotonicity properties of the gen-
erator functions studied in Section 4.

m ∈ N : υ̂ ⪯ ξ̂ =⇒ wm(υ̂) ≤ wm(ξ̂),

(135a)
m ∈ N : υ̂ ⪯ ξ̂ =⇒ tm(υ̂) ≤ tm(ξ̂), (135b)
1 ⋚ q : υ̂ ⪯ ξ̂ =⇒ sq(υ̂) ⋚ sq(ξ̂), (135c)

q < 0, 1 ≤ q

0 < q ≤ 1

}
υ̂ ⪯ ξ̂ =⇒ Nq(υ̂) ⋚ Nq(ξ̂),

(135d)
1 ≤ q : υ̂ ⪯ ξ̂ =⇒ Mq(υ̂) ≤ Mq(ξ̂),

(135e)
q ∈ R : υ̂ ⪯ ξ̂ =⇒ Tq(υ̂) ≥ Tq(ξ̂), (135f)

q ∈ R,±∞ : υ̂ ⪯ ξ̂ =⇒ Rq(υ̂) ≥ Rq(ξ̂),
(135g)

υ̂ ⪯ ξ̂ =⇒ S(υ̂) ≥ S(ξ̂), (135h)
q ∈ R,±∞ : υ̂ ⪯ ξ̂ =⇒ Pq(υ̂) ≥ Pq(ξ̂), (135i)

2 ≤ b

0 < b ≤ 1

}
υ̂ ⪯ ξ̂ =⇒ Dimb(υ̂) ⋚ Dimb(ξ̂),

(135j)
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0 < b : υ̂ ⪯ ξ̂ =⇒ Dim′
b(υ̂) ≤ Dim′

b(ξ̂),
(135k)

0 < b < 1
2 ≤ b

}
υ̂ ⪯ ξ̂ =⇒ DoFb(υ̂) ≤ DoFb(ξ̂),

(135l)
1 < b : υ̂ ⪯ ξ̂ =⇒ DoF′

b(υ̂) ≤ DoF′
b(ξ̂).
(135m)

Note that for the entanglement dimension (67a)-(67b)
and the entanglement degree of freedom (68a)-(68b)
we considered more general parameter ranges b ∈ R
for the sake of mathematical completeness. These
functions bear physical motivation for b = d ∈
{2, 3, 4, . . .}, being Hilbert space dimensions.

To see (135a) for (57a), note that wm is the sum of
the largest m parts, and wm(υ̂) ≤ wm(ξ̂) for all m is
just the condition (132a) for dominance, which has al-
ready been shown to follow from the refinement (133).

To see (135b) for (57b), let us have ξ̂ =
{x1, x2, . . . , x|ξ̂|} and υ̂ = {y1, y2, . . . , y|υ̂|} with in-
creasingly ordered indexing, xi ≤ xj and yi ≤ yj for
i < j. Then tm is the sum of the m smallest parts,
which for υ̂ ⪯ ξ̂ is

tm(ξ̂) =
m∑

i=1
xi

(131b)=
m∑

i=1

|υ̂|∑
j=1

aijyj ≥
m∑

j=1
yj = tm(υ̂),

where the inequality follows from that on the left-
hand side the number of summands is at least m,
while on the right-hand side there is the sum of the
m smallest parts. (Here xi and yj are set to zero if
i > |ξ̂| and j > |υ̂|, respectively.) Note that, con-
trary to the proof of (135a), here we could not use
the majorization, since zeroes are not allowed in this
formalism.

To see (135c) for (59a),

sq(ξ̂)(59a)=
|ξ̂|∑

i=1
xq

i

(131b)=
|ξ̂|∑

i=1

( |υ̂|∑
j=1

aijyj

)q

=
|ξ̂|∑

i=1

( |υ̂|∑
j=1,

aij ̸=0

yj

)q (126)
⋛

|ξ̂|∑
i=1

|υ̂|∑
j=1,

aij ̸=0

yq
j

=
|ξ̂|∑

i=1

|υ̂|∑
j=1

aijy
q
j =

|υ̂|∑
j=1

( |ξ̂|∑
i=1

aij

)
yq

j

=
|υ̂|∑

j=1
yq

j

(59a)= sq(υ̂),

where at the unlabeled equalities we used the prop-
erties of the extremal stochastic matrix, arising
from (131b) by the assumption.

To see (135d) for (59b), note that the (135c) mono-
tonicity of sq is flipped by the monotonicity of u 7→
u1/q if q < 0, see (125).

To see (135e) for (59c), note that |ξ̂| = s0(ξ̂) is
decreasing (135c), so 1/s0 is increasing, sq is increas-
ing for 1 ≤ q (135c), so sq/s0 is increasing, so Mq

is increasing for 1 ≤ q (59c) by the monotonicity of
u 7→ u1/q, see (125). We note that counterexamples
show that Mq is not monotone for q < 1.

To see (135g) for (62b), note that u 7→ ln(u) is
increasing monotone, so ξ̂ 7→ ln(sq(ξ̂)) is increas-
ing/decreasing for 1 ⋚ q by (135c); on the other hand,
0 ≷ 1

1−q for 1 ≶ q, so the multiplication with that flips
the monotonicity for 1 < q, leading to the claim for
q ̸= 1, which also holds for q = 1 by the continuity of
q 7→ Rq, (127s).

We have (135f) for (62a) by similar reasoning as
for (135g).

We have (135h) for (62c), since this is just the q = 1
case of (135f) by (127o) or of (135g) by (127s).

To see (135i) for (63), note that the (135g) mono-
tonicity of Rq is not changed by the monotonicity of
u 7→ eu.

To see (135j) for (67a),

Dimb(ξ̂)(67a)=
|ξ̂|∑

i=1
bxi

(131b)=
|ξ̂|∑

i=1
b

∑|υ̂|
j=1

aijyj

(136)
⋛

|ξ̂|∑
i=1

|υ̂|∑
j=1

aijb
yj =

|υ̂|∑
j=1

( |ξ̂|∑
i=1

aij

)
byj

=
|υ̂|∑

j=1
byj

(67a)= Dimb(υ̂),

where at the unlabeled equalities we used the prop-
erties of the extremal stochastic matrix, arising
from (131b) by the assumption. The inequality is
from the super/subadditivity of the exponential func-
tion for this case

b

∑|υ̂|
j=1

aijyj ⋛
|υ̂|∑

j=1
aijb

yj , (136)

which holds if and only if bz1+z2 ⋛ bz1 + bz2 for any
1 ≤ z1, z2 ∈ N, which is equivalent to 1 ⋛ 1/bz1 +
1/bz2 . If 2 ≤ b, we have 1 ≥ 1/bz1 + 1/bz2 , since it
holds for b = 2, z1 = z2 = 1, and the right-hand side
is decreasing with z1, z2, see (124), and decreasing
with b, see (125); if 0 < b ≤ 1, we have 1 ≤ 1/bz1 +
1/bz2 , since it holds for b = 1, z1 = z2 = 1, and the
right-hand side is increasing with z1, z2, see (124), and
increasing with the decreasing of b, see (125); for the
intermediate case 1 < b < 2, both inequalities can be
violated for suitable values of z1, z2.

To see (135k) for (67b),

Dim′
b(ξ̂)(67b)=

|ξ̂|∑
i=1

(bxi − 1) + 1

(131b)=
|ξ̂|∑

i=1
(b
∑|υ̂|

j=1
aijyj − 1) + 1
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(137)
≤

|ξ̂|∑
i=1

|υ̂|∑
j=1

aij(byj − 1) + 1

=
|υ̂|∑

j=1

( |ξ̂|∑
i=1

aij

)
(byj − 1) + 1

=
|υ̂|∑

j=1
(byj − 1) + 1(67b)= Dim′

b(υ̂),

where at the unlabeled equalities we used the prop-
erties of the extremal stochastic matrix, arising
from (131b) by the assumption. The inequality is
from the superadditivity of the modified exponential
function

b

∑|υ̂|
j=1

aijyj − 1 ≥
|υ̂|∑

j=1
aij(byj − 1), (137)

which holds if and only if (bz1+z2 − 1) ≥ (bz1 − 1) +
(bz2 − 1) for any 1 ≤ z1, z2 ∈ N, which is equivalent
to 0 ≤ (bz1 − 1)(bz2 − 1), which holds in both the 0 <
b ≤ 1 and 1 ≤ b cases. (Note that the monotonicity
for 2 ≤ b would simply follow from that of Dimb and
h by definition (67b), however, the direct proof here
works for the larger range 0 < b.)

To see (135l) for (68a), note that u 7→ logb(u) is
increasing/decreasing monotone for 1 ≶ b, which flips
the monotonicity of Dimb for which we have (135j).

To see (135m) for (68b), note that u 7→ logb(u) is
increasing for 1 < b, and for Dim′

b we have (135k).
(Note that the parameter range is constrained not to
substitute negative number into the logarithm. Since
Dim′

b is increasing monotone (135k), we need that 0 ≤
Dim′

b(⊥) = n(b− 1) + 1. This holds for b ≥ 1, but it
is violated for 0 < b < 1 for n ≥ 1/(1 − b).)

E.3 Dominance-monotonicity of generator
functions
Here we show the monotonicity (134) of the generator
functions, studied in Section 4, with respect to the
dominance order.

m ∈ N : υ̂ ≤ ξ̂ =⇒ wm(υ̂) ≤ wm(ξ̂),

(138a)
υ̂ ≤ ξ̂ =⇒ h(υ̂) ≥ h(ξ̂), (138b)
υ̂ ≤ ξ̂ =⇒ r(υ̂) ≤ r(ξ̂), (138c)

1 ≤ q

0 ≤ q ≤ 1

}
υ̂ ≤ ξ̂ =⇒ sq(υ̂) ⋚ sq(ξ̂), (138d)

1 ≤ q

0 < q ≤ 1

}
υ̂ ≤ ξ̂ =⇒ Nq(υ̂) ⋚ Nq(ξ̂),

(138e)
1 ≤ q : υ̂ ≤ ξ̂ =⇒ Mq(υ̂) ≤ Mq(ξ̂),

(138f)

0 ≤ q : υ̂ ≤ ξ̂ =⇒ Tq(υ̂) ≥ Tq(ξ̂),(138g)
0 ≤ q, q = ∞ : υ̂ ≤ ξ̂ =⇒ Rq(υ̂) ≥ Rq(ξ̂),

(138h)
υ̂ ≤ ξ̂ =⇒ S(υ̂) ≥ S(ξ̂), (138i)

0 ≤ q, q = ∞ : υ̂ ≤ ξ̂ =⇒ Pq(υ̂) ≥ Pq(ξ̂), (138j)
2 ≤ b : υ̂ ≤ ξ̂ =⇒ Dimb(υ̂) ≤ Dimb(ξ̂),

(138k)
0 < b : υ̂ ≤ ξ̂ =⇒ Dim′

b(υ̂) ≤ Dim′
b(ξ̂),
(138l)

2 ≤ b : υ̂ ≤ ξ̂ =⇒ DoFb(υ̂) ≤ DoFb(ξ̂),
(138m)

1 < b : υ̂ ≤ ξ̂ =⇒ DoF′
b(υ̂) ≤ DoF′

b(ξ̂).
(138n)

Note that the dominance-monotonicity is enough to
be proven for arrows (132b), however, sometimes
it is easier to use more general steps, for which
the right-hand side of (132c) holds, since these in-
clude the arrows. Note that throughout this sec-
tion the integer partitions υ̂ = {y1, y2, . . . , y|υ̂|} and
ξ̂ = {x1, x2, . . . , x|ξ̂|} are indexed in weakly decreasing
order (xi ≥ xj and yi ≥ yj , i < j).

To see (138a) for (57a), note that wm is the sum of
the largest m parts, and wm(υ̂) ≤ wm(ξ̂) for all m is
just the condition (132a) for the dominance order.

To see (138b) for (23a), we need to check the mono-
tonicity of sq with respect to the steps (132c) of the
dominance order. For the case 2 ≤ yj , we have
|υ̂| = |ξ̂|, and for the case yj = 1, we have |υ̂| = |ξ̂|+1.

We have (138c) for (23c), since rank is the differ-
ence of the width and the height, being dominance-
increasing (138a) and dominance-decreasing (138b),
respectively.

To see (138d) for (59a), we need to check the mono-
tonicity of sq with respect to the steps (132c) of the
dominance order. Writing y := yj and δ := yi − yj ∈
{0, 1, 2, . . .}, this is

(y + δ)q + yq ⋚ (y + δ + 1)q + (y − 1)q, for 2 ≤ y,

(139a)
(1 + δ)q + 1q ⋚ (2 + δ)q, (139b)

where we had to treat the y = 1 case separately, since
such a step results in xj = yj − 1 = y − 1 = 0
row (132c), for which we have different form of the
generator function. First, consider (139a), which is
equivalent to yq − (y− 1)q ⋚ (y+ (δ+ 1))q − (y+ (δ+
1) − 1)q = (y+ ∆)q − (y+ ∆ − 1)q, which follows from
the monotonicity of τq(y) := yq − (y − 1)q in y. This
is by 0 ⋚ (∂τq/∂y)(y) = q(yq−1 − (y − 1)q−1), which
is nonnegative for q ≤ 0 and 1 ≤ q, and nonpositive
for 0 ≤ q ≤ 1 by (125). Second, note that we do not
need to check (139b) directly, since the y ≡ yj = 1
case means a step where the only one box of the j-th
row of υ̂ is moved to the end of the i-th (132c), so
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xj = yj − 1 = 0 and xi = yi + 1 = yi + yj , that is, ξ̂ is
obtained by partial summation of υ̂, which is an arrow
of the refinement (131c), υ̂ ·≺ ξ̂, for which we have the
monotonicity (135c). Finally, the two cases agree for
0 ≤ q, where sq is increasing/decreasing with respect
to dominance for 1 ≤ q or 0 ≤ q ≤ 1, respectively, and
we do not have dominance-monotonicity for q < 0.

To see (138e) for (59b), note that the (138d)
dominance-monotonicity of sq is not changed by the
monotonicity of u 7→ u1/q if 0 < q, see (125).

To see (138f) for (59c), note that |ξ̂| = s0(ξ̂) is
dominance-decreasing (138d), so 1/s0 is dominance-
increasing, sq is dominance-increasing for 1 ≤
q (138d), so sq/s0 is dominance-increasing, so Mq is
dominance-increasing for 1 ≤ q (59c) by the mono-
tonicity of u 7→ u1/q, see (125). We have already
seen that Mq is not even a generator function for q <
1, (135e), so cannot be dominance-monotone (133) ei-
ther.

To see (138h) for (62b), note that u 7→ ln(u)
is increasing monotone, so in the range 0 ≤ q,
ξ̂ 7→ ln(sq(ξ̂)) is dominance-increasing/decreasing for
1 ⋚ q by (138d); on the other hand, 0 ≷ 1

1−q for 1 ≶ q,
so the multiplication with that flips the dominance-
monotonicity for 1 < q, leading to the claim for
q ̸= 1, which also holds for q = 1 by the continuity of
q 7→ Rq, (127s).

We have (138g) for (62a) by similar reasoning as
for (138h).

We have (138i) for (62c), since this is just the q = 1
case of (138g) by (127o) or of (138h) by (127s).

To see (138j) for (63), note that the (138h)
dominance-monotonicity of Rq is not changed by the
monotonicity of u 7→ eu.

To see (138k) for (67a), we need to check the mono-
tonicity of Dimb with respect to the steps (132c) of the
dominance order. Writing y := yj and δ := yi − yj ∈
{0, 1, 2, . . .}, this is

by+δ + by ⋚ by+δ+1 + by−1, for 2 ≤ y, (140a)
b1+δ + b ⋚ b2+δ, (140b)

where we had to treat the y = 1 case separately, since
such a step results in xj = yj − 1 = y − 1 = 0
row (132c), for which we have different form of the
generator function. First, consider (140a), which is
equivalent to 0 ⋚ (b − 1)(by+δ − by−1) = by−1(b −
1)(bδ+1 − 1), which is nonnegative for 0 < b, since
the two parentheses are positive or negative simul-
taneously. Second, note that we do not need to
check (140b) directly, since the y ≡ yj = 1 case
means a step where the only one box of the j-th
row of υ̂ is moved to the end of the i-th (132c), so
xj = yj − 1 = 0 and xi = yi + 1 = yi + yj , that is, ξ̂ is
obtained by partial summation of υ̂, which is an arrow
of the refinement (131c), υ̂ ·≺ ξ̂, for which we have the
monotonicity (135j). Finally, the two cases agree for
2 ≤ b, where Dimq is increasing with respect to dom-

inance, and we do not have dominance-monotonicity
for 0 < b < 2.

To see (138l) for (67b), we need to check the mono-
tonicity of Dim′

b with respect to the steps (132c) of the
dominance order. We have to treat the yj = 1 case
separately, since such a step results in xj = yj −1 = 0
row (132c), for which we have different form of the
generator function. First, for the case 2 ≤ yj , we
have |υ̂| = |ξ̂|, so, by (67b), we get the same equa-
tion (140a) as for Dimb, and have the upper relation
sign for 0 < b. Second, for the case y ≡ yj = 1, we
again have that the step (132c) of the dominance or-
der is an arrow of the refinement (131c), υ̂ ·≺ ξ̂, for
which we have the monotonicity (135k). Finally, the
two cases agree for 0 < b, where Dim′

q is increasing
with respect to dominance.

To see (138m) for (68a), note that the (138k)
dominance-monotonicity of Dimb is not changed by
the monotonicity of u 7→ logb(u) if 2 ≤ b.

To see (138n) for (68b), note that u 7→ logb(u) is
increasing for 1 < b, and for Dim′

b we have (138l).
(Note that the parameter range is constrained not to
substitute negative number into the logarithm, see at
the proof of (135m).)

F Bounds on the variance
In this section we write out some more or less well-
known calculations related to the variance in multi-
partite systems for the convenience of the reader.

F.1 Upper bound for the variance
For any finite dimensional Hilbert space H, for the
self-adjoint operator A ∈ Lin(H) given by its spec-
tral decomposition as A =

∑dim(H)
i=1 ai|αi⟩⟨αi|, with

amin := mini ai and amax := maxi ai, we have

Var(ρ,A) ≤ 1
4(amax − amin)2. (141)

Indeed, consider the operators (amaxI − A) and
(A− aminI), which are positive semidefinite and com-
muting, so (amaxI − A)(A − aminI) is also positive
semidefinite, so

0 ≤ Tr
(
ρ(amaxI −A)(A− aminI)

)
= − Tr(ρA2) + (amax + amin) Tr(ρA) − amaxamin.

Then we have

Var(ρ,A) = Tr(ρA2) − Tr(ρA)2

≤ (amax + amin) Tr(ρA) − amaxamin − Tr(ρA)2

=
(
amax − Tr(ρA)

)(
Tr(ρA) − amin

)
,

(this inequality between the first and last term is
called Bhatia–Davis inequality [117]) then the in-
equality between the arithmetic and geometric mean
(q = 0 and q′ = 1 in (129e)) leads to (141).
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The bound (141) can be attained by the pure
state ρ = |ψ⟩⟨ψ| with |ψ⟩ = 1√

2

(
|αmax⟩ + eiϑ|αmin⟩

)
for any phase ϑ, or by the mixed state ρ =
1
2
(
|αmax⟩⟨αmax| + |αmin⟩⟨αmin|

)
, or by convex com-

binations of these, leading to 1
2
(
|αmax⟩⟨αmax| +

|αmin⟩⟨αmin| + c|αmax⟩⟨αmin| + c̄|αmin⟩⟨αmax|
)

for any
c ∈ C, |c| ≤ 1.

The classical version of the bound (141) is a stan-
dard result in classical probability theory, called
Popoviciu’s inequality [118]. Here we have seen the
widely used straightforward generalization of that for
the quantum case [97, 117].

F.2 Upper bound for the variance of collective
operators
Let us have the collective operator AX =∑

l∈X Al ⊗ I{l} of subsystem X, where Al =∑dim(Hl)
i=1 ai|αl,i⟩⟨αl,i| have the same spectrum for all

elementary subsystems l ∈ X. If amin := mini{ai}
and amax := maxi{ai}, then the minimal and max-
imal eigenvalues of AX are aX,min = |X|amin and
aX,max = |X|amax, and the bound (141) takes the
form

Var(ρX , AX) ≤ |X|2

4 (amax − amin)2. (142a)

This bound can be attained by the pure state
ρX = |ψX⟩⟨ψX | with |ψX⟩ = 1√

2

(⊗
l∈X |αl,max⟩ +

eiϑ
⊗

l∈X |αl,min⟩
)
, or by the mixed state ρX =

1
2
(⊗

l∈X |αl,max⟩⟨αl,max| +
⊗

l∈X |αl,min⟩⟨αl,min|
)
, or

by convex combinations of these, leading to
1
2
(⊗

l∈X |αl,max⟩⟨αl,max| +
⊗

l∈X |αl,min⟩⟨αl,min| +
c
⊗

l∈X |αl,max⟩⟨αl,min| + c̄
⊗

l∈X |αl,min⟩⟨αl,max|
)

for
any c ∈ C, |c| ≤ 1.

In particular, if the elementary subsystems are of
spin s ∈ 1

2N0, the collective spin operator AX := JX

arises with Al := Jl = vxJx
l + vyJy

l + vzJz
l for the

direction v = (vx, vy, vz) ∈ R3, ∥v∥ = 1. For this we
have amin = −s and amax = s, and the bound (142a)
takes the form

Var(ρX , JX) ≤ |X|2s2, (142b)

which is
Var(ρX , JX) ≤ |X|2/4 (142c)

for s = 1/2 (qubits).

F.3 Variance of local operators in uncorrelated
states
For ξ-uncorrelated state ρ =

⊗
X∈ξ ρX and ξ-local

operator A =
∑

X∈ξ AX ⊗IX (hereX = {1, 2, . . . , n}\
X), we have

Var(ρ,A) =
∑
X∈ξ

Var(ρX , AX). (143)

(This, together with the concavity of the variance has
also been used for entanglement detection [119–121].)

Indeed,

Var(ρ,A) = Tr(ρA2) − Tr(ρA)2

= Tr
(
ρ
(∑

X∈ξ

AX ⊗ IX

)2)
− Tr

(
ρ
∑
X∈ξ

AX ⊗ IX

)2

= Tr
(
ρ
∑

X,X′∈ξ
X ̸=X′

AX ⊗AX′ ⊗ IX∪X′

)

+ Tr
(
ρ
∑
X∈ξ

A2
X ⊗ IX

)
− Tr

(
ρ
∑
X∈ξ

AX ⊗ IX

)2

=
∑

X,X′∈ξ
X ̸=X′

Tr
(
(ρX ⊗ ρX′)(AX ⊗AX′)

)

+
∑
X∈ξ

Tr(ρXA
2
X) −

(∑
X∈ξ

Tr(ρXAX)
)2

=
∑

X,X′∈ξ
X ̸=X′

Tr(ρXAX) Tr(ρX′AX′) +
∑
X∈ξ

Tr(ρXA
2
X)

−
∑
X∈ξ

Tr(ρXAX)2 −
∑

X,X′∈ξ
X ̸=X′

Tr(ρXAX) Tr(ρX′AX′)

=
∑
X∈ξ

(
Tr(ρXA

2
X) − Tr(ρXAX)2)

=
∑
X∈ξ

Var(ρX , AX),

where we make use of that the state is ξ-uncorrelated
at the fourth equality.

G Metrological usefulness
In this section we consider extremal cases of metro-
logical usefulness, that is, the strictness of the mono-
tonicity (102) of the bounds bf (k).

G.1 Metrological usefulness of some one-
parameter properties
Here we show that the bf (k) bounds are strictly mono-
tone (102) for all k ∈ f(P̂I) in the case of producibility,
partitionability and stretchability.

For producibility, given by the w width generator
function (23b), the bound bprod(k) is given in (81a), as
bprod(k) = ⌊ n

k ⌋k2 +
(
n− ⌊ n

k ⌋k
)2. Extending this from

[1, n]N = w(P̂I) to the reals [1, n]R, we claim that this
function is continuous, and its derivative is strictly
positive, although not continuous. To see these, let
us consider the intervals ( n

m+1 ,
n
m ] for m ∈ N, since if

n
m+1 < k ≤ n

m then m + 1 > n
k ≥ m, so ⌊ n

k ⌋ = m.
First, the continuity is obvious inside the intervals,
it has to be checked at the boundaries of each two
neighbouring intervals. For n

m+1 < k ≤ n
m we
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have ⌊ n
k ⌋ = m, and bprod(k) = mk2 + (n − mk)2;

for n
m < k ≤ n

m−1 we have ⌊ n
k ⌋ = m − 1 and

bprod(k) = (m − 1)k2 + (n − (m − 1)k)2; these agree
for the value k = n

m . (The continuity can be seen in-
tuitively as well, imagining the sums of squares of the
rows of the ‘Young diagrams’ of not rows of discrete
boxes, but of rows of continuously variable stripes.)
Second, the monotonicity has to be checked for ev-
ery interval. If k ∈ ( n

m+1 ,
n
m ] then ⌊ n

k ⌋ = m, and
∂bprod(k)

∂k = ∂
∂k (mk2+(n−mk)2) = 2m(mk+k−n) > 0

which is k > n
m+1 , which holds in the given interval.

For partitionability, given by the h height generator
function (23a), the bound bpart(k) is given in (83a),
as bpart(k) = k2 − (2n + 1)k + n(n + 2). Extending
this from [1, n]N = h(P̂I) to the reals [1, n]R, and dif-
ferentiating by k we have strictly negative derivative
for all k < n+ 1/2.

For stretchability, given by the r rank generator
function (23c), the bound bstr(k) is given in (84). By
changing to the new variable l := n+k ∈ [1, 2n−1]N \
{2, 2n− 2} the bound (84) takes the form

n+ 24 if l = 10 (n ≥ 8),
n+ 60 if l = 16 (n ≥ 12),
( l

2 )2 − l
2 + n+ 2 if l ∈ 2N,

( l+2
2 )2 − l+1

2 + n if l ∈ 2N + 1,

(144)

the strict monotonicity of which is straightforward to
check.

G.2 Minimal metrological usefulness
Here we show that for a (nonconstant) generator func-
tion f there exist at least two different values of the
bound bf (k).

Indeed, if f is not constant then we have f(⊥) ̸=
f(⊤) by (24), and f⋚

(
f(⊤)

)
= P̂I while f⋚

(
f(⊥)

)
̸∋

⊤ by definition (26b). Then in the two cases

bf

(
f(⊤)

)
= max

ξ̂∈f⋚(f(⊤))
s2(ξ̂) = max

ξ̂∈P̂I

s2(ξ̂) = s2(⊤),

(145a)
and

bf

(
f(⊥)

)
= max

ξ̂∈f⋚(f(⊥))
s2(ξ̂) < s2(⊤), (145b)

where we used that the maximum of s2 is taken on
the top uniquely, s2(ξ̂) = n2 if and only if ξ̂ = ⊤.
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