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o Motivation
@ Why quantum tomography is important?
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Why tomography is important?

@ Many experiments aim to create many-body entangled states.
@ Quantum state tomography is used to check the state prepared.

@ The number of measurements scales exponentially with the
number of qubits.



e Quantum experiments with multi-qubit systems
@ Physical systems
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Physical systems

State-of-the-art in experiments

@ 14 qubits with trapped cold ions
T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M.
Harlander, W. Haensel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506
(2011).

@ 10 qubits with photons
W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Giihne, A. Goebel, Y.-A. Chen, C.-Z.
Peng, Z.-B. Chen, J.-W. Pan, Nature Physics, 6, 331 (2010).




e Quantum experiments with multi-qubit systems

@ Local measurements

7/51



Only local measurements are possible

Definition
A single local measurement setting is the basic unit of experimental
effort.

A local setting means measuring operator A¥) at qubit k for all qubits.

A(1) A(2) A A(N)

@ All two-qubit, three-qubit correlations, etc. can be obtained.

(AW AR (AM AB)Y (AM AR AB)Y. .



e Full quantum state tomography
@ Basic ideas and scaling
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Full quantum state tomography

@ The density matrix can be reconstructed from 3N measurement
settings.

For N = 4, the measurements are

1 X X X X
2 X X XY
3 X X X Z

o

@ Note again that the number of measurements scales exponentially
in N.



e Full quantum state tomography

@ Experiments
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Experiments with ions and photons

HHHH

@ H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T.
Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Giihne, W. Diir, R.
Blatt, Nature 438, 643 (2005).

@ N. Kiesel, C. Schmid, G. Toéth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98,
063604 (2007).



e Full quantum state tomography

@ Alternative approaches

13/51



Alternative approaches

@ Pltomography: Tomography in a subspace of the

density matrices (our approach)
G. Toth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer,

and H. Weinfurter, Phys. Rev. Lett. 105, 250403 (2010). We
e Permutationally invariant states (not only symmetric ||
states) combine
them!!!

@ Compressed sensing: Low rank states
D. Gross, Y.-K. Liu, S.T. Flammia, S. Becker, and J. Eisert,
Phys. Rev. Lett. 105, 150401 (2010). (paper

e Low rank states of any type. soon)

@ MPS tomography: If the state is expected to be of a certain form,

we can measure the parameters of the ansatz.
M. Cramer, M.B. Plenio, S.T. Flammia, R. Somma, D. Gross, S.D. Bartlett, O.
Landon-Cardinal, D. Poulin and Yi.K. Liu, Nature Communications 1, 149 (2010).

@ Spin chain states



Q Permutationally invariant tomography and state reconstruction
@ Permutationally invariant tomography
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We present a scalable method for the tomography of large multiqubit quantum registers. It acquires
information about the permutationally invariant part of the density operator, which is a good approxi-
mation to the true state in many relevant cases. Our method gives the best measurement strategy to
minimize the experimental effort as well as the uncertainties of the reconstructed density matrix. We apply
our method to the experimental tomography of a photonic four-qubit symmetric Dicke state.

DOL: 10.1103/PhysRevLett.105.250403

Because of the rapid development of quantum experi-
ments, it is now possible to create highly entangled multi-
qubit states using photons [1-5], trapped ions [6], and cold
atoms [7]. So far, the largest implementations that allow
for an individual readout of the particles involve on the
order of 10 qubits. This number will soon be overcome, for
example, by using several degrees of freedom within each
particle to store quantum information [8]. Thus, a new
regime will be reached in which a complete state tomog-
raphy is impossible even from the point of view of the
storage place needed on a classical computer. At this point
the question arises: Can we still extract useful information

PACS numbers: 03.65.Wj, 03.65.Ud, 42.50.Dv

for both density matrices and are thus obtained exactly from
PI tomography [2—4]. Finally, if Qp; is entangled, so is the
state @ of the system, which makes PI tomography a useful
and efficient tool for entanglement detection.

Below, we summarize the four main contributions of this
Letter. We restrict our attention to the case of N qubits—
higher-dimensional systems can be treated similarly.

(1) In most experiments, the qubits can be individually
addressed whereas nonlocal quantities cannot be measured
directly. The experimental effort is then characterized by
the number of local measurement settings needed, where
“setting”’ refers to the choice of one observable per qubit,



Basic ideas

@ Symmetric states contain much fewer degrees of freedom than
general quantum states.

@ Photons in a single mode optical fiber are in a symmetric state. If
the wave packets do not overlap, they are in a Pl state.

R.B.A. Adamson et al., Phys. Rev. Lett. 98, 043601 (2007); R.B.A. Adamson et al.,
Phys. Rev. A 2008; L. K. Shalm et al., Nature 457, 67 (2009).

@ We encountered permutationally invariant states in the Dicke state
experiments.

N. Kiesel et al., Phys. Rev. Lett. 98, 063604 (2007); G. T6th et al., New J. Phys. 11,
083002 (2009).



Permutational invariance

Examples for permutationally invariant quantum states:

@ States of the symmetric subspace, like

(100y + |11))/ V2.
@ States of the anti-symmetric subspace, like
(101 - 10))/ V2.

@ Mixture of such states.
@ White noise

]
S (1001 1)1 eN.

@ Symmetric Dicke states mixed with white noise.




Meaning of the PI part of the density matrix

Permutationally invariant part of the density matrix:

1
OPL = 1y Z Mk}

where Iy are all the permutations of the qubits.

@ The Pl part of the density matrix is meaningful, even if the density
matrix is far from being permutationally invariant.

@ ltis the quantum state we get after we forget how we labeled the
particles.



Main features of the method

Features of our method:

@ Is for spatially separated qubits.
© Needs the minimal number of measurement settings.

© Uses the measurements that lead to the smallest uncertainty
possible of the elements of opr.

© Gives an uncertainty for the recovered expectation values and
density matrix elements.

© If op; is entangled, so is 0. Can be used for entanglement
detection!

©Q Expectation value of permutationally invariant operators can be
obtained exacily (i.e., fidelity to Dicke states).




Measurements

@ We measure the same observable A; on all qubits. (Necessary for

optimality.)

A

J

A

j

A

j

A

J

@ Each qubit observable is defined by the measurement directions

§j using Aj = aj,XX + aj,yY + aj,zZ.

Number of measurement settings:




What do we get from the measurements?

We obtain the following quantities:

We obtain the expectation values for

<(A;9(N—”) ® ]1®n)PI>

forj=1,2,.,.Dyand n=0,1,....N.

For example, for N = 3 we have
ARl1el+10AR1+101®A),
(AIRAI®L+1RA A +ARLRA),
(Aj®Aj®Aj).



How do we obtain operator expectation values?

A Bloch vector element can be obtained as

Dy

(XK Y o2 @1 = ¢ x (AN 1)),

Bloch vector elements coefficients Measured data

@ From the Bloch vector elements, the density matrix can be
reconstructed.

@ Expectation values of all Pl operators can be obtained.

@ Uncertainties can also be obtained assuming Gaussian statistics.



Optimization for A;

@ We have to find the measurement operators minimizing

N!
Gl = Y E[00 Ve 220 1 x ).
k+I+m+n=N



How much is the information loss?

Estimation of the fidelity F(o, opr) :

F(o.0m1) > (Ps)3 = (Po)2
where P; is the projector to the N-qubit symmetric subspace.

@ F(o,0p1) can be estimated only from gpy!



Q Permutationally invariant tomography and state reconstruction

@ Example: XY Pl tomography
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Simple example: XY Pl tomography

@ Let us assume that we want to know only the expectation values

of operators of the form
(A(9)*N)

where
A(¢) = cos(¢)ox + sin(¢)oy.

@ The space of such operators has dimension N + 1. We have to
choose {qﬁ,}’\’+1 angles for the {A; }NJr1 operators we have to
measure.



Simple example: XY Pl tomography I

@ Let us assume that we measure

N

(A2N)

forj=1,2,..,N+1.
@ Reconstructed values and uncertainties
SO
N\ __ QN
ANy = >, a” x (AN

— j=1 —— —

Reconstructed coefficients = Measured data

N+1
E[A(9)] = 21 o PEP(ARN).
j:

@ Let us assume that all of these measurements have a variance AZ2.



Simple example: XY Pl tomography lii

@ Numerical example for N = 6.

g 1
0.5 o 8 0.5
~ = ~
£ o 24 g0
-0.5] 2] //\ J -0.5)
VAVAN VAVAW
7_11 05 cos%n) 08 ! GO 2 o(rad) 4 6 __11 05 0 COS(¢H) 05 !
Random directions ¢;  Uncertainty of A(¢)®V  Uniform directions



Simple example: XY Pl tomography IV

@ Numerical example for N = 6. This random choice is even worse

1
1000
0.5] 0.5
w800
= % =
g 0 = 600 o
@400
-0.5} -0.5]
200
N 05 9 05 1 % 4 6 05 0 05 1
cos(9,) o(rad) : cos(9,) ™
Random directions ¢;  Uncertainty of A(¢)®N  Uniform directions



Q Permutationally invariant tomography and state reconstruction

@ 4-qubit Dicke state experiment
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4-qubit Dicke state, optimized settings (exp.)

@ The symmetric Dicke state with j; =0 is

|]_ N’]z 0) = (N/2) ZP (|+ >®N/2| >®N/2)’

where the summation is over all distinct permutations.

@ Experiment for N = 4.



4-qubit Dicke state, optimized settings (exp.) Il
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@ Full tomography: 81 settings
@ Pltomography: 15 settings

d measurement directions



Random settings (exp.)
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Density matrices (exp.)

full tomography

b)
Pl tomography
optimized settings

)
Pl tomography
random settings
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Q Permutationally invariant tomography and state reconstruction

@ Permutationally invariant state reconstruction
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Permutationally invariant state reconstruction
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How do we get the density matrix?

Semi-scalable fitting

@ Simple idea:

o 1. Reconstruct all Bloch vector elements.
@ 2. Reconstruct the density matrix.
e 3. Find the physical matrix by fitting.

@ Problem: the physical matrix does not fit into the computer.

@ Solution: another representation of the density matrix.



Scalable fitting of a physical state

@ The alternative representation of the Pl matrix is

.,_ Hj©K;
Pr1 = .

@ All blocks must be physical (unnormalized) density matrices.



Fitting methods and results

@ Fit functions:

Table 1. Common reconstruction principles and their corresponding fit functions
F(p) used in the optimization given by equation (4); see text for further details.

Reconstruction principle Fit function F(a)
Maximum likelihood [23] — 22 filoglpe(p]
Least squares [24] 3wl fi — pelo)l wy > 0
Free least squares [4] Y Y ploLfi = pelp)?

Hedged maximum likelihood [25]  — 3, fi loglpe(p)] — Blogldet(p)], B = 0

@ Run time for up to 20 qubits:

Table 2. Current performance of the convex optimization algorithm on the
described test procedure and on frequencies from simulated experiments; free
least squares provides similar results to the maximum likelihood principle.

N=8 N=12 N=16 N=20

Maximum likelihood
Algorithm test BSs 47 27min  9.2min
Simulated experiment 925 485 29min 9.3 min

Least squares
Algorithm test Bds 395 25min  6min
Simulated experiment 9.2 435 27min 6.7 min




Fitting methods and results I

e Guaranteed to find the global optimum.

e Fast: before, the time for fitting was a bottleneck of
full tomography.



Q Permutationally invariant tomography and state reconstruction

@ Experiment with six qubits
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Experiment with the Six Qubit Symmetric Dicke

State (DPG 2012, Stuttgart)

Q: Fachverband Quantenoptik und Photonik

Q 8: Quanteninformation: Konzepte und Methoden 2
Q 8.7, Mon, 03.30 PM-03.45 PM, V38.04

Permutationally Invariant Tomography of a Six Qubit Symmetric Dicke State — <CHRISTIAN
ScHWEMMER1,2, GEzA TOTH3,4,5, ALEXANDER NIGGEBAUM1,2, ToBlIAS MORODER6, PHILIPP HyLLus3, OTFRIED
GUHNE6,7, and HaraLD WEINFURTERT,2 — 1MPI fiir Quantenoptik, D85748 Garching — 2Fakultat fiir
Physik, LudwigMaximiliansUniversitat, D80797 Miinchen — 3Department of Theoretical Physics, The
University of the Basque Country, E48080 Bilbao — 4IKERBASQUE, Basque Foundation for Science,
E48011 Bilbao — 5Research Institute for Solid State Physics and Optics, Hungarian Academy of
Sciences, H1525 Budapest — s6linstitut fir Quantenoptik und Quanteninformation, Osterreichische
Akademie der Wissenschaften, A6020 Insbruck — 7NaturwissenschaftlichTechnische

Fakultat, Universitat Siegen, D57072 Siegen,

Multipartite entangled quantum states are promising candidates for potential applications like quantum
metrology or quantum communication. Yet, efficient tools are needed to characterize these states and
to evaluate their applicability. Standard quantum state tomography suffers from an exponential increase
in the measurement effort with the number of qubits. Here, we show that by restricting to permutational
invariant states like GHZ, W or symmetric Dicke states the problem can be recast such that the
measurement effort scales only quadratically [1]. We apply this method to experimentally analyze a six
photon symmetric Dicke state generated by parametric down conversion where instead of 729 only 28
basis settings have to be measured.

[1] Téth et al., Phys. Rev. Lett. 105, 250403 (2010).



Experimental setup

: 390nm
| 560mW
i ~130fs
| 81MHz

Linear optical setup to observe the state D’

50:50 66:33 50:50
BS, BS,
PA4

@ Full tomography: 729 settings
@ Pl tomography: 28 settings!



Experimental setup I




Experimental setup lli




@ Most of the noise comes from the two “neighboring” Dicke states

with one excitation more and one excitation fewer.



Compressed sensing is used to accelerate PI

tomography
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Applications of Pl tomography

@ L. Novo, T. Moroder and O. Giihne,

Genuine multiparticle entanglement of permutationally invariant states,
arxiv (2013).

@ L. Lamata, C. E. Lopez, B. P. Lanyon, T. Bastin, J. C. Retamal, and E. Solano,
Deterministic generation of arbitrary symmetric states and entanglement
classes, Phys. Rev. A 87, 032325 (2013).


http://arxiv.org/abs/1302.4100
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@ Pl tomography and state reconstruction is a fully scalable
reconstruction scheme.

@ These pave the way for quantum experiments with more than 6 — 8
qubits.

www.Pltomography.eu
www.gedentqopt.eu
www.gtoth.eu

http://www.gtoth.eu/Publications/Talk_Cartagena2013.pdf
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