
Permutationally invariant quantum tomography
and state reconstruction

Bilbao: P. Hyllus, G. Tóth
Freiburg: D. Gross
München, MPQ: C. Schwemmer, W. Wieczorek, R. Krischek,

A. Niggebaum, and H. Weinfurter
Siegen: T. Moroder, S. Gaile, O. Gühne

(institution names in alphabetical order)

Workshop on New Trends in Complex Quantum System Dynamics,
Cartagena, 8 April 2013

1 / 51





Outline

1 Motivation
Why quantum tomography is important?

2 Quantum experiments with multi-qubit systems
Physical systems
Local measurements

3 Full quantum state tomography
Basic ideas and scaling
Experiments
Alternative approaches

4 Permutationally invariant tomography and state reconstruction
Permutationally invariant tomography
Example: XY PI tomography
4-qubit Dicke state experiment
Permutationally invariant state reconstruction
Experiment with six qubits

3 / 51



Why tomography is important?

Many experiments aim to create many-body entangled states.

Quantum state tomography is used to check the state prepared.

The number of measurements scales exponentially with the
number of qubits.
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Physical systems

State-of-the-art in experiments
14 qubits with trapped cold ions
T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M.
Harlander, W. Haensel, M. Hennrich, R. Blatt, Phys. Rev. Lett. 106, 130506
(2011).

10 qubits with photons
W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z.
Peng, Z.-B. Chen, J.-W. Pan, Nature Physics, 6, 331 (2010).
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Only local measurements are possible

Definition
A single local measurement setting is the basic unit of experimental
effort.

A local setting means measuring operator A(k) at qubit k for all qubits.

A(1) A(2) A(3) A(N)...

All two-qubit, three-qubit correlations, etc. can be obtained.

〈A(1)A(2)〉,〈A(1)A(3)〉, 〈A(1)A(2)A(3)〉...
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Full quantum state tomography

The density matrix can be reconstructed from 3N measurement
settings.

Example
For N = 4, the measurements are

1. X X X X
2. X X X Y
3. X X X Z

...
34. Z Z Z Z

Note again that the number of measurements scales exponentially
in N .
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Experiments with ions and photons

H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T.
Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, R.
Blatt, Nature 438, 643 (2005).

N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. 98,
063604 (2007).
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Alternative approaches

PI tomography: Tomography in a subspace of the
density matrices (our approach)
G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer,
and H. Weinfurter, Phys. Rev. Lett. 105, 250403 (2010).

Permutationally invariant states (not only symmetric
states)

Compressed sensing: Low rank states
D. Gross, Y.-K. Liu, S.T. Flammia, S. Becker, and J. Eisert,
Phys. Rev. Lett. 105, 150401 (2010).

Low rank states of any type.

We
will
combine
them!!!

(paper
soon)

MPS tomography: If the state is expected to be of a certain form,
we can measure the parameters of the ansatz.
M. Cramer, M.B. Plenio, S.T. Flammia, R. Somma, D. Gross, S.D. Bartlett, O.
Landon-Cardinal, D. Poulin and Yi.K. Liu, Nature Communications 1, 149 (2010).

Spin chain states
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Permutationally invariant tomography

Permutationally Invariant Quantum Tomography

G. Tóth,1,2,3 W. Wieczorek,4,5,* D. Gross,6 R. Krischek,4,5 C. Schwemmer,4,5 and H. Weinfurter4,5

1Department of Theoretical Physics, The University of the Basque Country, P.O. Box 644, E-48080 Bilbao, Spain
2IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain

3Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
4Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

5Fakultät für Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
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(Received 4 June 2010; revised manuscript received 30 August 2010; published 16 December 2010)

We present a scalable method for the tomography of large multiqubit quantum registers. It acquires

information about the permutationally invariant part of the density operator, which is a good approxi-

mation to the true state in many relevant cases. Our method gives the best measurement strategy to

minimize the experimental effort as well as the uncertainties of the reconstructed density matrix. We apply

our method to the experimental tomography of a photonic four-qubit symmetric Dicke state.

DOI: 10.1103/PhysRevLett.105.250403 PACS numbers: 03.65.Wj, 03.65.Ud, 42.50.Dv

Because of the rapid development of quantum experi-
ments, it is now possible to create highly entangled multi-
qubit states using photons [1–5], trapped ions [6], and cold
atoms [7]. So far, the largest implementations that allow
for an individual readout of the particles involve on the
order of 10 qubits. This number will soon be overcome, for
example, by using several degrees of freedom within each
particle to store quantum information [8]. Thus, a new
regime will be reached in which a complete state tomog-
raphy is impossible even from the point of view of the
storage place needed on a classical computer. At this point
the question arises: Can we still extract useful information
about the quantum state created?

In this Letter we propose permutationally invariant
(PI) tomography in multiqubit quantum experiments [9].
Concretely, instead of the density matrix %, we propose to
determine the PI part of the density matrix defined as

%PI ¼ 1

N!

X
k

�k%�k; (1)

where �k are all the permutations of the qubits.
Reconstructing %PI has been considered theoretically for
spin systems (see, e.g., Ref. [10]). Recently it has been
pointed out that photons in a single mode optical fiber will
always be in a PI state and that there is only a small set of
measurements needed for their characterization [11,12].

Here, we develop a provably optimal scheme, which is
feasible for large multiqubit systems: For our method, the
measurement effort increases only quadratically with the
size of the system. Our approach is further motivated by
the fact that almost allmultipartite experiments are donewith
PI quantum states [2–4,6]. Thus, the density matrix obtained
from PI tomography is expected to be close to the one of the
experimentally achieved state. The expectation values of
symmetric operators, such as some entanglement witnesses,
and fidelities with respect to symmetric states are the same

for both density matrices and are thus obtained exactly from
PI tomography [2–4]. Finally, if %PI is entangled, so is the
state % of the system, which makes PI tomography a useful
and efficient tool for entanglement detection.
Below, we summarize the four main contributions of this

Letter. We restrict our attention to the case of N qubits—
higher-dimensional systems can be treated similarly.
(1) In most experiments, the qubits can be individually

addressed whereas nonlocal quantities cannot be measured
directly. The experimental effort is then characterized by
the number of local measurement settings needed, where
‘‘setting’’ refers to the choice of one observable per qubit,
and repeated von Neumann measurements in the observ-
ables’ eigenbases [13]. Here, we compute the minimal
number of measurement settings required to recover %PI.
(2) The requirement that the number of settings be

minimal does not uniquely specify the tomographic proto-
col. On the one hand, there are infinitely many possible
choices for the local settings that are both minimal and
give sufficient information to find %PI. On the other hand,
for each given setting, there are many ways of estimating
the unknown density operator from the collected data. We
present a systematic method to find the optimal scheme
through statistical error analysis.
(3) Next, we turn to the important problem of gauging

the information loss incurred due to restricting attention to
the PI part of the density matrix. We describe an easy test
measurement that can be used to judge the applicability of
PI tomography before it is implemented.
(4) Finally, we demonstrate that these techniques are

viable in practice by applying them to a photonic experi-
ment observing a four-qubit symmetric Dicke state.
Minimizing the number of settings.—We will now

present our first main result.
Observation 1. For a system of N qubits, permuta-

tionally invariant tomography can be performed with

PRL 105, 250403 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
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Basic ideas

Symmetric states contain much fewer degrees of freedom than
general quantum states.

Photons in a single mode optical fiber are in a symmetric state. If
the wave packets do not overlap, they are in a PI state.

R.B.A. Adamson et al., Phys. Rev. Lett. 98, 043601 (2007); R.B.A. Adamson et al.,
Phys. Rev. A 2008; L. K. Shalm et al., Nature 457, 67 (2009).

We encountered permutationally invariant states in the Dicke state
experiments.

N. Kiesel et al., Phys. Rev. Lett. 98, 063604 (2007); G. Tóth et al., New J. Phys. 11,
083002 (2009).



Permutational invariance

Examples for permutationally invariant quantum states:
States of the symmetric subspace, like

(|00〉+ |11〉)/
√

2.

States of the anti-symmetric subspace, like

(|01〉 − |10〉)/
√

2.

Mixture of such states.
White noise

1
2N

(|0〉〈0|+ |1〉〈1|)⊗N .

Symmetric Dicke states mixed with white noise.



Meaning of the PI part of the density matrix

Permutationally invariant part of the density matrix:

%PI =
1

N!

∑
Πk%Π†k ,

where Πk are all the permutations of the qubits.

The PI part of the density matrix is meaningful, even if the density
matrix is far from being permutationally invariant.

It is the quantum state we get after we forget how we labeled the
particles.



Main features of the method

Features of our method:

1 Is for spatially separated qubits.

2 Needs the minimal number of measurement settings.

3 Uses the measurements that lead to the smallest uncertainty
possible of the elements of %PI.

4 Gives an uncertainty for the recovered expectation values and
density matrix elements.

5 If %PI is entangled, so is %. Can be used for entanglement
detection!

6 Expectation value of permutationally invariant operators can be
obtained exactly (i.e., fidelity to Dicke states).



Measurements

We measure the same observable Aj on all qubits. (Necessary for
optimality.)

A
j ...A

j
A
j

A
j

Each qubit observable is defined by the measurement directions
~aj using Aj = aj ,xX + aj ,yY + aj ,zZ .

Number of measurement settings:

DN =

(
N + 2

N

)
=

1
2

(N2 + 3N + 2).



What do we get from the measurements?

We obtain the following quantities:

We obtain the expectation values for

〈(A⊗(N−n)
j ⊗ 1⊗n)PI〉

for j = 1,2, ..,DN and n = 0,1, ...,N .

For example, for N = 3 we have

〈Aj ⊗ 1 ⊗ 1 + 1 ⊗ Aj ⊗ 1 + 1 ⊗ 1 ⊗ Aj〉,

〈Aj ⊗ Aj ⊗ 1 + 1 ⊗ Aj ⊗ Aj + Aj ⊗ 1 ⊗ Aj〉,

〈Aj ⊗ Aj ⊗ Aj〉.



How do we obtain operator expectation values?

A Bloch vector element can be obtained as

〈(X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI〉︸                                   ︷︷                                   ︸ =

DN∑
j=1

c(k ,l ,m)

j︸    ︷︷    ︸ × 〈(A⊗(N−n)
j ⊗ 1⊗n)PI〉.︸                          ︷︷                          ︸

Bloch vector elements coefficients Measured data

From the Bloch vector elements, the density matrix can be
reconstructed.

Expectation values of all PI operators can be obtained.

Uncertainties can also be obtained assuming Gaussian statistics.



Optimization for Aj

We have to find the measurement operators minimizing

(Etotal)
2 =

∑
k+l+m+n=N

E2
[
(X⊗k ⊗ Y⊗l ⊗ Z⊗m ⊗ 1⊗n)PI

]
×

(
N!

k !l!m!n!

)
.



How much is the information loss?

Estimation of the fidelity F (%, %PI) :

F (%, %PI) ≥ 〈Ps〉
2
% ≡ 〈Ps〉

2
%PI
,

where Ps is the projector to the N-qubit symmetric subspace.

F (%, %PI) can be estimated only from %PI!
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Simple example: XY PI tomography

Let us assume that we want to know only the expectation values
of operators of the form

〈A(φ)⊗N〉

where
A(φ) = cos(φ)σx + sin(φ)σy .

The space of such operators has dimension N + 1. We have to
choose {φj }

N+1
j=1 angles for the {Aj }

N+1
j=1 operators we have to

measure.



Simple example: XY PI tomography II

Let us assume that we measure

〈A⊗N
j 〉

for j = 1,2, ...,N + 1.

Reconstructed values and uncertainties

〈A(φ)⊗N〉︸      ︷︷      ︸ =
N+1∑
j=1

c(φ)

j︸︷︷︸ × 〈A⊗N
j 〉.︸       ︷︷       ︸

Reconstructed coefficients Measured data

E2[A(φ)] =
N+1∑
j=1

|c(φ)

j |
2E2(A⊗N

j ).

Let us assume that all of these measurements have a variance ∆2.



Simple example: XY PI tomography III

Numerical example for N = 6.
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Simple example: XY PI tomography IV

Numerical example for N = 6. This random choice is even worse
...
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4-qubit Dicke state, optimized settings (exp.)

The symmetric Dicke state with jz = 0 is

|j =
N
2
, jz = 0〉 =

(
N/2
N

)− 1
2 ∑

k

Pk (|+
1
2
〉⊗N/2| −

1
2
〉⊗N/2),

where the summation is over all distinct permutations.

Experiment for N = 4.



4-qubit Dicke state, optimized settings (exp.) II
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Full tomography: 81 settings
PI tomography: 15 settings



Random settings (exp.)
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Density matrices (exp.)
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Permutationally invariant state reconstruction

T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s
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Permutationally invariant state reconstruction
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Christian Schwemmer6,7, Alexander Niggebaum6,7,
Stefanie Gaile8, Otfried Gühne1,2 and Harald Weinfurter6,7

1 Naturwissenschaftlich-Technische Fakultät, Universität Siegen,
Walter-Flex-Straße 3, D-57068 Siegen, Germany
2 Institut für Quantenoptik und Quanteninformation, Österreichische Akademie
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Abstract. Feasible tomography schemes for large particle numbers must
possess, besides an appropriate data acquisition protocol, an efficient way
to reconstruct the density operator from the observed finite data set. Since
state reconstruction typically requires the solution of a nonlinear large-scale
optimization problem, this is a major challenge in the design of scalable
tomography schemes. Here we present an efficient state reconstruction scheme
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How do we get the density matrix?

Semi-scalable fitting

Simple idea:

1. Reconstruct all Bloch vector elements.
2. Reconstruct the density matrix.
3. Find the physical matrix by fitting.

Problem: the physical matrix does not fit into the computer.

Solution: another representation of the density matrix.



Scalable fitting of a physical state

The alternative representation of the PI matrix is

All blocks must be physical (unnormalized) density matrices.



Fitting methods and results

Fit functions:

Run time for up to 20 qubits:



Fitting methods and results II

Guaranteed to find the global optimum.

Fast: before, the time for fitting was a bottleneck of
full tomography.
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Experiment with the Six Qubit Symmetric Dicke
State (DPG 2012, Stuttgart)

Q: Fachverband Quantenoptik und Photonik
Q 8: Quanteninformation: Konzepte und Methoden 2
Q 8.7, Mon, 03.30 PM–03.45 PM, V38.04

Permutationally  Invariant  Tomography  of  a  Six  Qubit  Symmetric  Dicke  State  —  •CHRISTIAN 

SCHWEMMER1,2,  GÉZA  TÓTH3,4,5,  ALEXANDER  NIGGEBAUM1,2,  TOBIAS  MORODER6,  PHILIPP  HYLLUS3,  OTFRIED 

GÜHNE6,7,  and  HARALD  WEINFURTER1,2 —  1MPI  fur  Quantenoptik,  D85748  Garching  —  2Fakultät  fur 
Physik, LudwigMaximiliansUniversität, D80797 Munchen —  3Department of Theoretical Physics, The 
University of the Basque Country, E48080 Bilbao — 4IKERBASQUE, Basque Foundation for Science, 
E48011 Bilbao  —  5Research  Institute  for  Solid  State  Physics  and  Optics,  Hungarian  Academy of 
Sciences,  H1525  Budapest  —  6Institut  fur  Quantenoptik  und  Quanteninformation,  Österreichische 
Akademie der Wissenschaften, A6020 Insbruck — 7NaturwissenschaftlichTechnische
Fakultät, Universität Siegen, D57072 Siegen,

Multipartite entangled quantum states are promising candidates for potential applications like quantum 
metrology or quantum communication. Yet, efficient tools are needed to characterize these states and 
to evaluate their applicability. Standard quantum state tomography suffers from an exponential increase 
in the measurement effort with the number of qubits. Here, we show that by restricting to permutational 
invariant  states  like  GHZ,  W or  symmetric  Dicke  states  the  problem can be recast  such that  the  
measurement effort scales only quadratically [1]. We apply this method to experimentally analyze a six 
photon symmetric Dicke state generated by parametric down conversion where instead of 729 only 28 
basis settings have to be measured.

[1] Tóth et al., Phys. Rev. Lett. 105, 250403 (2010).



Experimental setup

Full tomography: 729 settings
PI tomography: 28 settings!



Experimental setup II



Experimental setup III



Results

Most of the noise comes from the two “neighboring” Dicke states
with one excitation more and one excitation fewer.



Compressed sensing is used to accelerate PI
tomography

16
settings
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Applications of PI tomography

L. Novo, T. Moroder and O. Gühne,
Genuine multiparticle entanglement of permutationally invariant states,
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Summary
PI tomography and state reconstruction is a fully scalable
reconstruction scheme.

These pave the way for quantum experiments with more than 6− 8
qubits.

www.PItomography.eu

www.gedentqopt.eu

www.gtoth.eu

http://www.gtoth.eu/Publications/Talk_Cartagena2013.pdf
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