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Motivation

In many quantum experiments the qubits cannot be individually
addressed. We still would like to create and detect entanglement.

Entanglement creation and detection is possible through spin
squeezing. We will use the ideas behind the spin squeezing approach
in order to

Create and detect entanglement between particles with arbitrarily large
spin

Engineer quantum states other than the classical spin squeezed state
with a large spin, that is, unpolarized states.

Generalize the Gaussian approach for describing the dynamics leading
to such states.
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Entanglement

Definition
Fully separable states are states that can be written in the form

ρ =
∑

l

plρ
(1)
l ⊗ ρ

(2)
l ⊗ ... ⊗ ρ

(N)
l ,

where
∑

l pl = 1 and pl > 0.

Definition
A state is entangled if it is not separable.
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The standard spin-squeezing criterion

Definition
The spin squeezing criterion for entanglement detection is

(∆Jx)2

〈Jy〉
2 + 〈Jz〉

2
≥

1
N
.

If it is violated then the state is entangled.
[A. Sørensen, L.M. Duan, J.I. Cirac, P. Zoller, Nature 409, 63 (2001).]

Note that this criterion is for spin-1/2 particles.

States violating it are like this:

J
z
 is large

Variance of J
x 
is small

z

y
x
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A generalized spin squeezing entanglement criterion

Separable states of N spin-j particles must fulfill

ξ2
s := (∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ Nj.

ξs is zero for many-body singlet states.
[GT, PRA 69, 052327 (2004);GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007).]

Nξ2
s gives an upper bound on the number of unentangled spins.

ξ2
s characterizes the sensitivity to external fields acting as

U = exp(iφJn).

ξs = 0 corresponds to complete insensitivity.
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Many-body singlet states

Many-body singlet states: important in condensed matter physics and
quantum information science.

Metrological applications for gradient measurements.

Quantum memory for the decoherence free subspace.

Here we realize singlets without two-spin interactions or waiting for a
Heisenberg system to settle in ground state of a Heisenberg system.
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Permutationally invariant singlet

Our singlet is the equal mixture of all permutations of a pure singlet
state.
For qubits, it is the mixture of all chains of two-qubit singlets:

Such a state has intriguing properties ...
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The physical system: atoms + light

We consider atoms interacting with light. [B. Julsgaard, A. Kozhekin, and E.S. Polzik, Nature

413, 400 (2001); S.R. de Echaniz, M.W. Mitchell, M. Kubasik, M. Koschorreck, H. Crepaz, J. Eschner, and E.S. Polzik, J. Opt. B

7, S548 (2005); J. Appel, P.J. Windpassinger, D. Oblak, U.B. Hoff, N. Kjaergaard, and E.S. Polzik, arXiv:0810.3545.]

The light is then measured and the atoms are projected into an
entangled state.

MeasurementLaser

feedback
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Quantum non-demolition measurement (QND) of the
ensemble

The steps the the QND measurement of Jk :

1. Set the light to
〈S〉 = (S0, 0, 0).

2. The atoms interact with the light for time t

H = ΩJk Sz

3. Measurement of Sy .

The most obvious effect of such a measurement is the decrease of
(∆Jk )2.

The timescale of the dynamics, for J := Nj, is

t ∼ τ :=
1

Ω
√

S0J
.
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The proposed protocol

1 Initial state
Atoms

%0 :=
1

(2j + 1)N

Light
〈S〉 = (S0, 0, 0).

2 Measurement of Jx + feedback or postselection.
3 Measurement of Jy + feedback or postselection.
4 Measurement of Jz + feedback or postselection.

We consider 106 spin-1 87Rb atoms and S0 = 0.5 × 108.

Initial state of the atoms has (∆Jk )2 ∼ N for k = x, y, z.

After squeezing, we obtain ξs < 1.

Thus, we get a state close to a singlet state.
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Covariance matrix

We define the set of operators

R = { Jx√
J
,

Jy
√

J
, Jz√

J
, Sx√

S0
,

Sy
√

S0
, Sz√

S0
}

and covariance matrix as

Γmn := 〈RmRn + RnRm〉/2 − 〈Rm〉〈Rn〉.

For short times, the dynamics of an operator O0 is given by

OP = O0 − it [O0,H],

where we assumed ~ = 1.
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Covariance matrix II

Consider dynamics for t ∼ τ := 1
Ω
√

JS0
.

For these times, for the unitary dynamics one arrives to

ΓP = MΓ0MT ,

where M is the identity matrix, apart from M5,1 = 〈Sx 〉

S0
κ, and

κ := t/τ = Ωt
√

JS0.

The measurement of the light can be modeled with a projection

ΓM = ΓP − ΓP(PyΓPPy)MPΓT
P ,

where MP denotes the Moore-Penrose pseudoinverse, and Py is
(0, 0, 0, 0, 1, 0). [G. Giedke and J.I. Cirac, Phys. Rev. A 66, 032316 (2002).]
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Spin squeezing dynamics (top curve, solid)
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Modeling losses

The dynamics of the covariance matric for the case of losses

Γ′P = (1 − ηD)MΓ0MT (1 − ηD) + η(2 − η)DΓnoise,

where D = diag(1, 1, 1, 0, 0, 0) and Γnoise = diag( 2
3 ,

2
3 ,

2
3 , 0, 0, 0).

η the fraction of atoms that decoherence during the QND process.

The losses are connected to κ through

η = Qκ2/α,

where α is the resonant optical depth of the sample and Q = 8
9

[L.B. Madsen and K. Mølmer, Phys. Rev. A 70, 052324 (2004).]
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Spin squeezing dynamics: α = 50, 75, 100 (dotted)
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Exact model

Results: for t ∼ τ × N
1
4 the variances decrease to ∼

√
N, while for

t ∼ τ ×
√

N the variances reach ∼ 1, which we call the von Neumann limit.

Direct simulation of a system with a million atoms is not possible.

However, in the large N limit, a formalism can be obtained that
replaces sums by integrals.

Works also for the regime in which the Gaussian approximation is no
more valid.

Comparison for exact model is possible for an initial state for which
half of the spins are in the |+ 1〉x state, half of them are in the | − 1〉x
state.
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Spin squeezing dynamics (bottom curve, dots)

0 1 2 3 4 5 60

0.5

1

1.5

2

t/!

" s2

squeezing Jy

squeezing Jx

squeezing Jz

22 / 23



Conclusions

We presented a method for creating and detecting entanglement in
an ensemble of atoms with spin j > 1

2 .

Our experimental proposal aims to create a many-body singlet state
through squeezing the uncertainties of the collective angular
momenta.

We showed how to use an extension of the usual Gaussian formalism
for modeling the experiment.

Presentation based on: GT and M.W. Mitchell, arxiv:0901.4110.

*** THANK YOU ***
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