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Motivation and Abstract
Cluster states and graph states appear very often in 
quantum information, e.g., in error correction, 
measurement-based quantum computing, etc.

It is important to know, how much noise we can mix with a 
graph state such that the state is still violates a Bell 
inequality, i.e., it is still non-local. (States violating a Bell 
inequality are more useful than the ones which do not.)

We will find Bell inequalities which are maximally violated 
by graph states, and the violating increases exponentially 
with the size for some type of graph states. Our inequalities 
need the measurement of at most two operators per site.
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Stabilizer theory
Definition: A quantum state       is stabilized by an operator 
S if 

Ψ

.S Ψ = Ψ

In other words, S is the stabilizing operator of       .

The key idea is that an N-qubit quantum state can uniquely 
be defined by N stabilizing operators. For certain quantum 
states these operators are very simple ...

Stabilizer theory is used in quantum error correction and fault 
tolerant quantum computation. 

Ψ

D. Gottesmann, PRA 54, 1862 (1996).
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Generalized N-qubit GHZ state:

...
( ) (2) (3)
3 ,=NGHZg Z Z

Stabilizing operators of a GHZ state:

( )1 000...00 111...11
2NGHZ = +

Not only these operators, but also their products stabilize the 
GHZ state. These form a group called stabilizer. gk‘s are the 
generators of the stabilizer.

GHZ states



GHZ states – The stabilizer group
Three-qubit example: the stabilizer group has 8 elements

(1) (2) (3)X X X
(1) (2)Z Z
(2) (3)Z Z

(1) (2) (3)−Y Y X
(1) (2) (3)−X Y Y

(1) (2) (3)−Y X Y

(1) (3)Z Z

1

Generators:
Obtained from products
of the generators:



Generators of the stabilizer for the N-qubit cluster state

( ) ( 1) ( ) ( 1) ,− +=NLC k k k
kg Z X Z

where k=1,2,...,N and
(0) ( 1) 1.NZ Z += =

Cluster states appear in
• error correction, fault tolerant quantum computing, and
• Naturally arise in spin chains with nn Ising coupling.

NLC

Cluster states

R. Raussendorf and H.J. Briegel, PRL 86, 5188 (2001). 
See also recent experiments with a four-qubit cluster state with photons in Vienna 
(Nature) and at MPQ, Garching (PRL). 



Graph states
Graph states are generalizations of cluster states. They are defined by a graph of 
N vertices. Some of these vertices are connected by each other by an edge. 

Physical meaning of vertices: The graph state can be created with an Ising
interaction between the connected qubits.

Let us denote by N (i) the set of vertices connected to vertex i. Then the 
generators of the stabilizer for a graph state are 

( ) ( ) ( )

( )

.
∈

= ∏NG i k
i

k i

g X Z
N

Note that there is a generator for each qubit. 
These define the graph state uniquely.

* Cluster states are graph states with a linear graph.
* GHZ states are graph states with a „star“ graph.

i
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• Stabilizer theory (GHZ and cluster states)

• Previos work

• Finding a lower bound on the fidelity with few 
measurements

• Detecting genuine multi-qubit entanglement with few 
measurements

• Related issues: Bell inequalities, energy as a witness, etc.



Bell inequalities for GHZ states (Mermin 1990). The Bell 
operator is

Here each term represents the sum of its all possible 
permutations. This Bell inequality is maximally violated by 
GHZ states.

Written with stabilizing operators:

/ 2
1 2 3 4 1 2 3 4 1 2 3 4: ... ... ... ... 2= − + − + ≤ NB X X X X YY X X YY Y Y
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1
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n
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B g g

Mermin inequality

Key observation!!!



Stabilizer states

Contradictions obtained from assuming local realism for a multi-qubit quantum 
code word.

D. P. DiVincenzo and A. Peres, Quantum code words contradict local realism, 
PRA 55, 4089 (1997). 



Four-qubit cluster state
Non-locality of graph states and a Bell inequality for 4-qubit graph states

The maximum for quantum states is 4. This inequality needs the measurement of 
two observables on qubits 1,3 and 4, while for qubit 2 only a single observable is 
measured. 

It is a three-body Mermin inequality with multi-qubit variables.

V. Scarani, A. Acín, E. Schenck, and M. Aspelmeyer, PRA 71, 042325 (2005).



Inequalities with stab. operators

The inequalities for any graph state are constructed from all the elements of the 
stabilizer. 

Idea: Our Bell operator for detecting a state Ψ looks like

With this a Bell inequality can be obtained as

O. Gühne, G. Tóth, P. Hyllus, and H.J. Briegel, PRL 95, 120405 (2005).
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Basic inequalityBasic inequality
Our aim is to construct a Bell inequality which does not use all the elements of 
the stabilizer. 

Let us consider now an N-qubit cluster state and write down an inequality which 
is maximally violated by it. We use our „key observation“ for the case of GHZ 
states.

i i+1i-1

Maximum for quantum states is 4, maximum for local hidden variable models is 2.  

N N NN



Basic inequality – General case
Let us consider now consider an N-qubit graph state.  The generators of the 
stabilizer are g1, g2, ..., gn.  We want to construct a Bell inequality which is 
maximally violated by this graph state        .NG

can be used as a Bell operator of a Bell inequality. For the maximum
for local models see  G. Tóth, O. Gühne, and H.J. Briegel, PRA 73, 022303 (2006).



Basic inequality – General case II 
Example: Let us consider the graph state given by the graph

Then we can write down a Bell operator involving g1, g2 and g3



Bound for local models
The maximum for the Bell operator for local models can be found since our Bell 
operator is the same as the Bell operator of the Mermin inequality with multi-qubit 
observables. Since we know the maximum for the Mermin inequality, we also 
know the maximum for our inequality.
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Composite inequalityComposite inequality
Let us assume that we have two Bell inequalities

Then multiplying them new Bell inequalities are obtained

However, one must be careful: In the composite inequalities there should not be 
terms like X1Y1. That is, in a correlation term there can be only a single variable 
for a qubit.  



Composite inequalities
Let us consider a Bell operator for the linear cluster state involving the stab. 
operator of qubits i-1, i and i+1:

Then a composite inequality can be constructed

The relative violation increases exponentially with N.

N

N N

N

NNNN
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Composite inequalities II
Graphic representation of the composite inequality:

B(2,{1,3}) B(6,{5,7})



GHZ-type violation of locality
For states with a local hidden variable model (Mermin
1990) :

(1) (2) (3) (1) (2) (3)

(1) (2) (3) (1) (2) (3) 2.

− −

− ≤

X X X Y Y X

X Y Y Y X Y

For the GHZ state all terms are +1 and the left hand side 
is 4.

Our inequalities are also like that: All correlation terms 
are +1 for a graph state. Thus our inequalities are violated 
in the Greenberger-Horne-Zeilinger sense.



We have discussed how to create a Bell inequality for a given
graph state which is maximally violated only by this state.
First a basic inequality was presented involving only some 
of the qubits. Then we saw how to create composite
inequalities for which the degree of violation increases  
exponentially with the size.

For further information please see

G. Tóth, O. Gühne, and H.J. Briegel, PRA 73, 022303 (2006)

and

http://optics.szfki.kfki.hu/~toth.

Conclusions


