

Entanglement and permutational symmetry PRL 102, 170503 (2009)

Géza Tóth^{1,2,3} and O. Gühne^{4,5}

 ¹Theoretical Physics, UPV/EHU, Bilbao, Spain
 ²Ikerbasque—Basque Foundation for Science, Bilbao, Spain
 ³Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest

⁴Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,Innsbruck, Austria
⁵Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria

> ICFO, Barcelona 28 May, 2009

Outline

- Motivation
- 2 Entanglement criteria for bipartite systems
- Symmetric bound entangled states—Bipartite case
- Symmetric bound entangled states—Multipartite case

Outline

- Motivation
- 2 Entanglement criteria for bipartite systems
- Symmetric bound entangled states—Bipartite case
- Symmetric bound entangled states—Multipartite case

Motivation

- Symmetry is a central concept in quantum mechanics. Typically, the presence of some symmetry simplifies our calculations in physics.
- A particular type of symmetry, permutational symmetry appears in many systems studied in quantum optics.
- The separability problem is proven to be a very hard one. Thus, it is interesting to ask how permutational symmetry can simplify the separability problem.

Entanglement criteria for bipartite systems

- Motivation
- Entanglement criteria for bipartite systems
- Symmetric bound entangled states—Bipartite case
- Symmetric bound entangled states—Multipartite case

Two types of symmetries

Consider two *d*-dimensional quantum systems. We will examine two types of permutational symmetries, denoting the corresponding sets by I and S:

• We call a state permutationally invariant (or just invariant, $\varrho \in I$) if ϱ is invariant under exchanging the particles. That is, $F\varrho F = \varrho$, where the flip operator is $F = \sum_{ij} |ij\rangle\langle ji|$. The reduced state of two randomly chosen particles of a larger ensemble has this symmetry.

Two types of symmetries

Consider two *d*-dimensional quantum systems. We will examine two types of permutational symmetries, denoting the corresponding sets by $\mathcal I$ and $\mathcal S$:

- We call a state permutationally invariant (or just invariant, $\varrho \in I$) if ϱ is invariant under exchanging the particles. That is, $F\varrho F = \varrho$, where the flip operator is $F = \sum_{ij} |ij\rangle\langle ji|$. The reduced state of two randomly chosen particles of a larger ensemble has this symmetry.
- ② We call a state symmetric ($\varrho \in S$) if it acts on the symmetric subspace only. This is the state space of two d-state bosons.

Clearly, we have $S \subset I$.

Expectation value matrix

Definition

Expectation value matrix of a bipartite quantum state is

$$\eta_{kl}(\varrho) := \langle M_k \otimes M_l \rangle_{\varrho},$$

where M_k 's are local orthogonal observables for both parties, satisfying

$$\operatorname{Tr}(M_k M_l) = \delta_{kl}.$$

We can decompose the density matrix as

$$\varrho = \sum_{kl} \eta_{kl} M_k \otimes M_l.$$

Equivalence of several entanglement conditions for symmetric states

Observation 1. Let $\varrho \in \mathcal{S}$ be a symmetric state. Then the following separability criteria are equivalent:

- ϱ has a positive partial transpose (PPT), $\varrho^{T_A} \ge 0$.
- ② ϱ satisfies the Computable Cross Norm-Realignment (CCNR) criterion, $||R(\varrho)||_1 \le 1$, where $R(\varrho)$ is the realignment map and $||...||_1$ is the trace norm.
- **3** $\eta \ge 0$, or, equivalently $\langle A \otimes A \rangle \ge 0$ for all observables A.
- The correlation matrix, defined via the matrix elements as

$$C_{kl} := \langle M_k \otimes M_l \rangle - \langle M_k \otimes \mathbb{1} \rangle \langle \mathbb{1} \otimes M_l \rangle$$

is positive semidefinite: $C \geq 0$. [A.R. Usha Devi et al., Phys. Rev. Lett. 98, 060501 (2007).]

The state satisfies several variants of the Covariance Matrix Criterion (CMC). Latter are strictly stronger than the CCNR criterion for non-symmetric states.

Proof of Observation 1: Schmidt decomposition

Proof.

• For invariant states, η is a real symmetric matrix. It can be diagonalized by an orthogonal matrix O. The resulting diagonal matrix $\{\Lambda_k\}$ is the correlation matrix corresponding to the observables $M_k' = \sum O_{kl} M_l$.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix. It can be diagonalized by an orthogonal matrix O. The resulting diagonal matrix {Λ_k} is the correlation matrix corresponding to the observables M'_k = ∑ O_{kl}M_l.
- Hence, any invariant state can be written as

$$\varrho = \sum_{k} \Lambda_{k} M'_{k} \otimes M'_{k},$$

where M'_k are pairwise orthogonal observables. This is almost the Schmidt decomposition, however, Λ_k can also be negative.

Proof of Observation 1: Schmidt decomposition

Proof.

- For invariant states, η is a real symmetric matrix. It can be diagonalized by an orthogonal matrix O. The resulting diagonal matrix {Λ_k} is the correlation matrix corresponding to the observables M'_k = ∑ O_{kl}M_l.
- Hence, any invariant state can be written as

$$\varrho = \sum_{k} \Lambda_{k} M'_{k} \otimes M'_{k},$$

where M'_k are pairwise orthogonal observables. This is almost the Schmidt decomposition, however, Λ_k can also be negative.

• It can be shown that $-1 \le \sum_k \Lambda_k \le 1$ for invariant states and $\sum_k \Lambda_k = 1$ for symmetric states.

Proof of Observation 1: Equivalence of CCNR and $\eta \ge 0$

 The Computable Cross Norm-Realignment (CCNR) can be formulated as follows: If

$$\sum_{k} |\Lambda_{k}| > 1$$

in the Schmidt decomposition, then the quantum state is entangled.

Proof of Observation 1: Equivalence of CCNR and $\eta \ge 0$

 The Computable Cross Norm-Realignment (CCNR) can be formulated as follows: If

$$\sum_{k} |\Lambda_k| > 1$$

in the Schmidt decomposition, then the quantum state is entangled.

• For symmetric states we have $\sum_k \Lambda_k = 1$, and $\sum_k |\Lambda_k| > 1$ is equivalent to

$$\Lambda_k < 0$$

for some k. Then $\langle M_k' \otimes M_k' \rangle < 0$ and η has a negative eigenvalue.

Proof of Observation 1: CCNR-PPT equivalence

Let us take an alternative definition of the CCNR criterion.

• The CCNR criterion states that if ϱ is separable, then $||R(\varrho)||_1 \le 1$ where the realigned density matrix is $R(\varrho_{ij,kl}) = \varrho_{ik,jl}$. This just means that if

$$\|(\varrho F)^{T_A}\|_1 > 1$$

then ϱ is entangled.

[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

Proof of Observation 1: CCNR-PPT equivalence

Let us take an alternative definition of the CCNR criterion.

• The CCNR criterion states that if ϱ is separable, then $||R(\varrho)||_1 \le 1$ where the realigned density matrix is $R(\varrho_{ij,kl}) = \varrho_{ik,jl}$. This just means that if

$$\|(\varrho F)^{T_A}\|_1 > 1$$

then ϱ is entangled.

[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]

Since for symmetric states

$$\varrho F = \varrho$$
,

this condition is equivalent to $\|\varrho^{T_A}\|_1 > 1$. This is just the PPT criterion, since we have $\text{Tr}(\varrho^{T_A}) = 1$.

Proof of Observation 1: Equivalence of $C \ge 0$ and $\eta \ge 0$

- Now we show that $C \ge 0 \Leftrightarrow \eta \ge 0$.
- The direction " \Rightarrow " is trivial, since for invariant states the matrix $\langle M_k \otimes \mathbb{1} \rangle \langle \mathbb{1} \otimes M_l \rangle$ is a projector and hence positive.
- The direction " \Leftarrow ": We make for a given state the special choice of observables $Q_k = M_k \langle M_k \rangle$. Then, we just have $C(M_k) = \eta(Q_k)$.
- We know that $\eta(M_k) \ge 0 \Rightarrow \eta(Q_k) \ge 0$, even if Q_k are not pairwise orthogonal observables. Hence $C(M_k) \ge 0$ follows.

Proof of Observation 1: Covariance Matrix Criterion

Variants of the Covariance Matrix Criterion:

$$\|C\|_1^2 \leq \big[1 - \mathrm{Tr}(\varrho_A^2)\big] \big[1 - \mathrm{Tr}(\varrho_B^2)\big]$$

or

$$2\sum |C_{ii}| \leq [1-\mathrm{Tr}(\varrho_A^2)] + [1-\mathrm{Tr}(\varrho_B^2)].$$

[O. Gühne et al., PRL 99, 130504 (2007); O. Gittsovich et al., PRA 78, 052319 (2008).]

- If ϱ is symmetric, the fact that C is positive semidefinite gives $\|C\|_1 = \operatorname{Tr}(C) = \sum \Lambda_k \sum_k \operatorname{Tr}(\varrho_A M_k')^2 = 1 \operatorname{Tr}(\varrho_A^2)$ and similarly, $\sum_i |C_{ii}| = \sum_i C_{ii} = 1 \operatorname{Tr}(\varrho_A^2)$.
- Hence, a state fulfilling $C \ge 0$ fulfills also both criteria. On the other hand, a state violating $C \ge 0$ must also violate these criteria, as they are strictly stronger than the CCNR criterion

Consequences

Interesting result: For symmetric ρ

$$\varrho^{T1} \geq 0 \iff \forall A : \langle A \otimes A \rangle \geq 0.$$

This relates the positivity of partial transposition to the sign of certain two-body correlations.

Any symmetric state of the following form is PPT

$$\varrho_{\mathrm{PPT}} = \sum_{k} p_{k} M_{k} \otimes M_{k}, \tag{1}$$

where p_k is a probability distribution, and M_k are pairwise orthogonal observables, i.e., $\text{Tr}(M_k^2) = 1$. Compare this to the definition of separability

$$\varrho_{\text{sep}} = \sum_{k} \rho_{k} \varrho_{k} \otimes \varrho_{k}, \qquad (2)$$

where ϱ_k are observables, $\text{Tr}(\varrho_k) = 1$, $\varrho_k \ge 0$ and ϱ_k are pure, i.e, $\text{Tr}(\varrho_k^2) = 1$.

Consequences II

Any symmetric state that can be written as

$$\varrho_{c+} = \sum_{k} c_k A_k \otimes Ak, \tag{3}$$

where $c_k > 0$, and A_k are some (not necessarily pairwise orthogonal) observables, is PPT. If ϱ_{c+} is permutationally invariant, then it does not violate the CCNR criterion.

Multipartite case: A symmetric state of the form

$$\varrho_{\text{PPT2:2}} = \sum_{k} c_{k} A_{k} \otimes A_{k} \otimes A_{k} \otimes A_{k}$$
 (4)

is PPT with respect to the 2 : 2 partition. Example: Smolin state.

Are there symmetric bound entangled states?

- For symmetric states,
 - O CCNR,
 - $\eta \geq 0$,
 - \bigcirc $C \ge 0$ and
 - CMC

are equivalent to the PPT criterion.

It is then quite hard to find symmetric PPT entangled states.

Do symmetric bound entangled states exist at all?

Symmetric bound entangled states-Bipartite case

- Motivation
- Entanglement criteria for bipartite systems
- Symmetric bound entangled states—Bipartite case
- Symmetric bound entangled states—Multipartite case

Symmetric bound entangled states

• Breuer presented, for even $d \ge 4$, a single parameter family of bound entangled states that are \mathcal{I} symmetric

$$\varrho_{\rm B} = \lambda |\Psi^d_0\rangle\langle\Psi^d_0| + (1-\lambda)\Pi^d_{\rm s}.$$

IH.-P. Breuer, PRL 97, 080501 (2006); see also K.G.H. Vollbrecht and M.M. Wolf, PRL 88, 247901 (2002).

- The state is PPT entangled for $0 \le \lambda \le 1/(d+2)$. Here $|\Psi_0\rangle$ is the singlet state and Π_s is the normalized projector to the symmetric subspace.
- Idea to construct bound entangled states with an S-symmetry: We embed a low dimensional entangled state into a higher dimensional Hilbert space, such that it becomes symmetric, while it remains entangled.

An 8×8 symmetric bound entangled states

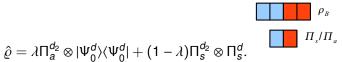
• We consider the symmetric state



Here, $\Pi_a^{d_2}$ and $\Pi_s^{d_2}$ are normalized projectors to the two-qudit symmetric/antisymmetric subspace with dimension d_2 . Thus, $\hat{\varrho}$ is symmetric.

An 8×8 symmetric bound entangled states

We consider the symmetric state



Here, $\Pi_a^{d_2}$ and $\Pi_s^{d_2}$ are normalized projectors to the two-qudit symmetric/antisymmetric subspace with dimension d_2 . Thus, $\hat{\varrho}$ is symmetric.

- If the original system is of dimension $d \times d$ then the system of $\hat{\varrho}$ is of dimension $dd_2 \times dd_2$. Since ϱ_B is the reduced state of $\hat{\varrho}$, if the first is entangled, then the second is also entangled.
- For $d_2 = 2$ and d = 4, numerical calculation shows that $\hat{\varrho}$ is PPT for $\lambda < 0.062$.

This provides an example of an ${\cal S}$ symmetric bound entangled state of size 8×8 .

19/25

Symmetric bound entangled states-Multipartite case

- Motivation
- 2 Entanglement criteria for bipartite systems
- Symmetric bound entangled states—Bipartite case
- Symmetric bound entangled states—Multipartite case

• Let us consider an *N*-qubit symmetric state, that is, a state of the symmetric subspace. We consider even *N*.

- Let us consider an *N*-qubit symmetric state, that is, a state of the symmetric subspace. We consider even *N*.
- It is known that such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.

[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

- Let us consider an *N*-qubit symmetric state, that is, a state of the symmetric subspace. We consider even *N*.
- It is known that such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.

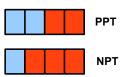
```
[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]
```

• Thus any state that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition while NPT with respect to some other partition is bound entangled with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.

- Let us consider an *N*-qubit symmetric state, that is, a state of the symmetric subspace. We consider even *N*.
- It is known that such a state is either separable with respect to all bipartitions or it is entangled with respect to all bipartitions.

```
[K. Eckert, J. Schliemann, D. Bruß, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]
```

• Thus any state that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition while NPT with respect to some other partition is bound entangled with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.



• Since the state is symmetric, it can straightforwardly be mapped to a $(\frac{N}{2}+1)\times(\frac{N}{2}+1)$ bipartite symmetric state.

Symmetric bound entangled state via numerics II

• To obtain such a multiqubit state, one has to first generate an initial random state ϱ that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.

Symmetric bound entangled state via numerics II

- To obtain such a multiqubit state, one has to first generate an initial random state ϱ that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.
- Then, we compute the minimum nonzero eigenvalue of the partial transpose of ϱ with respect to all other partitions

$$\lambda_{\min}(\varrho) := \min_{k} \min_{l} \lambda_{l}(\varrho^{T_{l_{k}}}).$$

If $\lambda_{\min}(\varrho) < 0$ then the state is bound entangled with respect to the $\frac{N}{2}:\frac{N}{2}$ partition. If it is non-negative then we start an optimization process for decreasing this quantity.

Symmetric bound entangled state via numerics II

- To obtain such a multiqubit state, one has to first generate an initial random state ϱ that is PPT with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition.
- Then, we compute the minimum nonzero eigenvalue of the partial transpose of ϱ with respect to all other partitions

$$\lambda_{\min}(\varrho) := \min_{k} \min_{l} \lambda_{l}(\varrho^{T_{l_{k}}}).$$

If $\lambda_{\min}(\varrho) < 0$ then the state is bound entangled with respect to the $\frac{N}{2}$: $\frac{N}{2}$ partition. If it is non-negative then we start an optimization process for decreasing this quantity.

• We generate another random density matrix $\Delta \varrho$, and check the properties of

$$\varrho' = (1 - \varepsilon)\varrho + \varepsilon \Delta \varrho, \tag{5}$$

where $0 < \varepsilon < 1$ is a small constant. If ϱ' is still PPT with respect to the $\frac{N}{2} : \frac{N}{2}$ partition and $\lambda_{\min}(\varrho') < \lambda_{\min}(\varrho)$ then we use ϱ' as our new random initial state ϱ .

3×3 symmetric bound entangled state

 Repeating this procedure, we obtained a four-qubit symmetric state this way

$$\varrho_{BE4} = \left(\begin{array}{ccccc} 0.22 & 0 & 0 & -0.059 & 0 \\ 0 & 0.176 & 0 & 0 & 0 \\ 0 & 0 & 0.167 & 0 & 0 \\ -0.059 & 0 & 0 & 0.254 & 0 \\ 0 & 0 & 0 & 0 & 0.183 \end{array} \right).$$

The basis states are
$$|0\rangle := |0000\rangle$$
, $|1\rangle := \text{sym}(|1000\rangle)$, $|2\rangle := \text{sym}(|1100\rangle)$, ...

The state is bound entangled with respect to the 2 : 2 partition. This
corresponds to a 3 × 3 bipartite symmetric bound entangled state,
demonstrating the simplest possible symmetric bound entangled
state.

Five- and six-qubit fully PPT entangled states

- Our method can be straightforwardly generalized to create multipartite bound entangled states of the symmetric subspace, such that all bipartitions are PPT ("fully PPT states").
- We found such a state for five and six qubits.
- Note that these states are both fully PPT and genuine multipartite entangled. It is further interesting to relate this to the Peres conjecture, stating that fully PPT states cannot violate a Bell inequality.

Conclusions

- In summary, we have discussed entanglement in symmetric systems.
- We showed that for states that are in the symmetric subspace several relevant entanglement conditions, especially the PPT criterion, the CCNR criterion, and the criterion based on covariance matrices matrices, coincide.
- We proved the existence of symmetric bound entangled states, in particular, a 3 × 3, five-qubit and six-qubit symmetric PPT entangled states.
- See G. Tóth and O. Gühne, PRL 102, 170503 (2009).

*** THANK YOU ***