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Introduction

Rapid development of quantum engineering and quantum
control:

Few particles (< 10), creation of interesting quantum states in
various physical systems, such as trapped ions, photonic
systems, or molecules controlled by nuclear magnetic
resonance (NMR).

Large scale (e.g., 105 particles) systems, for example, optical
lattices of cold two-state atoms and cold atomic clouds.

These experiments are possible due to novel technologies
developed in the last ten years.

Quantum information science and the theory of entanglement
helps identifying the quantum states that are highly
nonclassical.
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EPR paradox

Quantum mechanics is very different from classical physics.

There are qualitatively new and counterintuitive two-body and
many-body phenomena.

One of the earliest study was in
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EPR paradox II

The paper considered two particles in a singlet state

|Ψsinglet〉 =
1
√

2
(|01〉 − |10〉).

Let us call the two parties A and B (Alice and Bob).

Some simple measurement scenarios:

Alice Bob
z = +1 z = −1
z = −1 z = +1
x = +1 z = ±1
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EPR paradox III

How does Bob’s particle know, what Alice measured? Is not it
action at a distance? )

The outcome is random in some cases. We should be able to
determine the outcome of the measurement.

Maybe, we just do not have enough information. There can be
sofar unknown elements of reality that determine the
measurement outcome.
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Bell inequalities

30 years later appeared a paper that formulated the EPR
paradox in a qualitative way.

10 / 77



Local hidden variable (LHV) models

Do the measured quantities correspond to an element of
reality before the measurement? Let us assume that they do.

Let us see the bipartite case. Assume that we measure A1

and A1 at party A , and measure B2 and B2 at party B . Both
Ak and Bk have ±1 measurement results.

A
1

A
2 B

1

B
2
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Local hidden variable (LHV) models II

Ak and Bk are quantum mechanically incompatible.

Let us assume that all the four measurement outcomes exist
before the measurement.

The idea is that at each measurement k , there are
a1,k , a2,k , b1,k , b2,k available.

We expect a measurement record like the following:
k a1,k a2,k b1,k b2,k

1 +1 −1 +1 +1
2 −1 +1 +1 −1
3 +1 +1 −1 +1
4 −1 −1 +1 −1
5 +1 +1 +1 −1
6 −1 −1 −1 +1
... ... ... ... ...

Red color indicates
the measured values.
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Local hidden variable (LHV) models III

The correlations can be obtained as

〈AmBn〉 =
1
M

M∑
k=1

am,k bn,k .

Here, k is the hidden variable.

Usual formula, with λ as a hidden variable

f(am, bn) =

∫
fm,λ(am)gn,λ(bn)dλ

Here f ’s and g′s are probability density functions.

In words: all two-variable probability distributions can be given
as a sum of product distributions.
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Bipartite nonlocality

Let us consider the following expression:

A1B1 + A2B1 + A1B2 − A2B2.

Let us now substitute +1 or −1 to Ak and Bk . There are 16
combinations. We obtain

A1B1 + A2B1 + A1B2 − A2B2 ≤ 2

But, if we identify A with σx and B with σy , then there is a
quantum state for which〈

σx ⊗ σx + σy ⊗ σx + σx ⊗ σy − σy ⊗ σy

〉
= 2
√

2.

This state is, apart from local transformations, the singlet
|01〉 − |10〉.
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Bipartite nonlocality II

The real measurement record is the following:
k a1,k a2,k b1,k b2,k

1 +1 ... +1 ...

2 −1 ... ... −1
3 ... +1 −1 ...

4 −1 ... +1 ...

5 ... +1 ... −1
6 −1 ... −1 ...

... ... ... ... ...

Red color indicates
the measured values.

The correlations can be obtained as

〈AmBn〉 =
1

|Mm,n |

∑
k∈Mm,n

am,k bn,k ,

whereMm,n contains the indices corresponding to measuring
Am and Bn. This is the reason that correlations do not fit an
LHV model.
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Bipartite nonlocality III

Definition
Bell inequalities are inequalities with correlation terms that are
constructed to exclude LHV models. They have the form

〈B〉 ≤ const.,

where B is the Bell operator.

One of the first one was the CHSH inequality,

A1B1 + A2B1 + A1B2 − A2B2 ≤ 2.

Definition
The visibility of a Bell inequality is defined as

V(B) =
maxΨ 〈B〉Ψ

maxLHVB
.

16 / 77



Convex sets: Correlations compatible with LHV
models

The points corresponding to correlations fulfilling Bell
inequalities are within a polytope. Extreme points have
correlations ±1.

+1

-1

+1-1

〈 A1B2 〉

〈 A1 B1 〉

〈 A2 B1 〉=1

〈 A2 B2 〉=1
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Multipartite nonlocality (GHZ, 1989)

There are also multipartite Bell inequalities. For the
multipartite case, quantum mechanics violates locality even
on an all versus nothing basis.

Definition
Greenberger-Horne-Zelinger(GHZ) state

|GHZ〉 = 1√
2

(|000〉+ |111〉).

We measure Pauli spin matrices X and Y at all qubits.

If we flip all qubits (|0〉 ↔ |1〉), we get back the GHZ state

〈X1X2X3〉 = 〈GHZ |X1X2X3|GHZ〉 = +1.
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Multipartite nonlocality (GHZ, 1989) II

If we flip one qubit (|0〉 ↔ |1〉) and apply flip+phase shift for
the other two, we get back the GHZ state

〈X1Y2Y3〉 = 〈GHZ |X1Y2Y3|GHZ〉 = −1.

We also have 〈Y1X2Y3〉 = 〈Y1Y2X3〉 = −1.

Based on common sense we would expect

X1X2X3 = (Y1Y2X3)(Y1X2Y3)(X1Y2Y3) = −1(wrong)

However, this is wrong. 〈X1X2X3〉 = +1 for the GHZ state.

Not only statistical contradiction. All experiments contradict
the assumption of an LHV model.
[D. M. Greenberger, M. Horne, and A. Zeilinger, 1989.]
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Mermin’s inequality (N.D. Mermin, PRL 1990)

For N qubits, the Mermin inequality is given by∑
π

〈X1X2X3X4X5 · · · XN〉 −
∑
π

〈Y1Y2X3X4X5 · · · XN〉

+
∑
π

〈Y1Y2Y3Y4X5 · · · XN〉 − ... + ... ≤ LMermin,

where
∑
π represents the sum of all possible permutations of the

qubits that give distinct terms.

LMermin is the maximum for local states. It is defined as

LMermin =

{
2N/2 for even N,
2(N−1)/2 for odd N.

The quantum maximum is 2N−1.
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Mermin’s inequality II

The visibility is increases exponentially with the number of
qubits:

VMermin =

{
2N/2−1 for even N,
2N/2−1/2 for odd N.
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Ardehali’s inequality (M. Ardehali, PRA 1992)

Definition
The Ardehali inequality

〈(A (+)
1 − A (−)

1 )
(
−

∑
π

X2X3X4X5 · ·XN +
∑
π

Y2Y3X4X5 · ·XN

−
∑
π

Y2Y3Y4Y5X6 · ·XN + ... − ...
)
〉

+〈(A (+)
1 + A (−)

1 )
(∑

π

Y2X3X4X5 · ·XN −
∑
π

Y2Y3Y4X5 · ·XN

+
∑
π

X2Y3Y4Y5Y6X7 · ·XN − ... + ...
)
〉 ≤ LArdehali,

where A (±)
1 are operators corresponding to measuring the first spin

along directions corresponding to the quantum operators
A (±)

1 = (∓X1 − Y1)/
√

2.
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Ardehali’s inequality II

The Ardehali’s inequality is again maximally violated by the
GHZ state.

The constant is

LArdehali =

{
2N/2 for even N,
2(N+1)/2 for odd N.

The quantum maximum is 2N−1 ×
√

2 = 2N−1/2.

The visibility increases exponentially with the number of
qubits:

VArdehali =

{
2N/2−1/2 for even N,
2N/2−1 for odd N.

Remember:

VMermin =

{
2N/2−1 for even N,
2N/2−1/2 for odd N.

24 / 77



Bell inequalities with full correlation terms

Definition
A full correlation term contains a variable for each spin.

X1Y2X3Y4 is a full correlation term

X1Y213X4 is not.

Among inequalities with full correlations terms, for any N, the
Mermin-Ardehali construction has the largest violation
possible.

The full set of such Bell inequalities can be written down
concisely in the form of a single nonlinear inequality. [R.F.Werner,

M.Wolf, PRA 2001; M. Zukowski, C. Brukner, PRL 2002.]

There are multi-qubit pure entangled states that do not violate
any of these Bell inequalities. [M. Zukowski et al., PRL 2002.]
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Not full correlation terms

It has been shown that such inequalities can detect any pure
entangled multi-qubit state.
[S. Popescu, D. Rohrlich, PLA 1992.]

Inequalities of this type can be constructed such that they are
maximally violated by cluster states and graph states. In
particular, for the four-qubit cluster state this inequality looks
like

〈X112X3Z4〉+ 〈Z1Y2Y3Z4〉+ 〈X112Y3Y4〉 − 〈Z1Y2X3Y4〉 ≤ 2.

On all of the qubits two operators are measured except for the
second qubit for which only Y2 is measured.

For a large class of graph states, e.g., for linear cluster states,
it is possible to construct two-setting Bell inequalities that
have a visibility increasing exponentially with N. [O. Gühne et al., PRL

2005; G. Tóth et al., PRA 2006.]
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Experiment

Figure: One of the two observer stations. All alignments and
adjustments were pure local operations that did not rely on a common
source or on communication between the observers.

[Figure from G. Weihs et al., Phys. Rev. Lett. 81 5039 (1998).]
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Experiment II
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Figure: Four out of sixteen coincidence rates between various detection
channels as functions of bias voltage (analyzer rotation angle) on Alice’s
modulator. A+1/B−0 for example are the coincidences between Alice’s
“+” detector with switch having been in position “1” and Bob’s “−”
detector with switch position “0”. The difference in height can be
explained by different efficiencies of the detectors.

[Figure from G. Weihs et al., Phys. Rev. Lett. 81 5039 (1998).]
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Wigner functions and LHV models

Is there a connection between other areas of physics and
local hidden variable models?

Yes. For example, a surprising connection can be seen with
Wigner functions.

Wigner functions W(x, p) are defined for a single bosonic
model such that

〈
(xmpn)sym

〉
=

∫
xmpnW(x, p)dxdp.

The Wigner function is a quasi-probability distribution. That is∫
W(x, p)dxdp = 1,

but W(x, p) can also be negative.

If W(x, p) ≥ 0 for all x and p, then it is a real probability
distribution.

30 / 77



Wigner functions and LHV models

Is there a connection between other areas of physics and
local hidden variable models?
Yes. For example, a surprising connection can be seen with
Wigner functions.

Wigner functions W(x, p) are defined for a single bosonic
model such that

〈
(xmpn)sym

〉
=

∫
xmpnW(x, p)dxdp.

The Wigner function is a quasi-probability distribution. That is∫
W(x, p)dxdp = 1,

but W(x, p) can also be negative.

If W(x, p) ≥ 0 for all x and p, then it is a real probability
distribution.

30 / 77



Wigner functions and LHV models

Is there a connection between other areas of physics and
local hidden variable models?
Yes. For example, a surprising connection can be seen with
Wigner functions.

Wigner functions W(x, p) are defined for a single bosonic
model such that

〈
(xmpn)sym

〉
=

∫
xmpnW(x, p)dxdp.

The Wigner function is a quasi-probability distribution. That is∫
W(x, p)dxdp = 1,

but W(x, p) can also be negative.

If W(x, p) ≥ 0 for all x and p, then it is a real probability
distribution. 30 / 77



Wigner functions and LHV models II

If W(x, p) ≥ 0 for all x and p, then it behaves as if there were
a joint probability of the type

P(x0 ≤ x ≤ x0+dx, p0 ≤ p ≤ p0+dp) = W(x0, p0)dxdp (Wrong.)

In reality, this is not the case. If we measure x, to ask about
the value of p does not make sense, and vice versa.

If W(x, p) ≥ 0 for all x and p, then there is something like a
LHV model for x and p. (However, note that they are
measured on the same particle.)
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What is new in a quantum system compared to its
classical counterpart?

Let us compare a classical bit to a quantum bit (qubit)
A classical bit is either in state "0" or in state "1".
A qubit (two-state system) can be in a superposition of the two.

|Ψ〉 = c0|0〉+ c1|1〉,

where c0 and c1 are complex numbers. It is usual to use the
shorthand notation, write

|Ψ〉 =

(
c0

c1

)
,

and call |Ψ〉 the state vector.

To describe a quantum system one needs more degrees of
freedom.
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Two qubits

Let us consider a two-qubit system. Naively, one could think
that

|Ψ1〉 = c0|0〉+ c1|1〉,

|Ψ2〉 = d0|0〉+ d1|1〉,

However, the correct picture is that the two-qubit system is
described by

|Ψ12〉 = K0|00〉+ K1|01〉+ K2|10〉+ K3|11〉

where K ’s are complex constants.

Note that the number of the degrees of freedom in the second
case is larger.
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Two qubits II

The naive picture assumes that the two systems are in a
certain quantum state independently of the other system.

There are quantum states like that, for example,

|Ψ1〉 = 1√
2
|0〉+ 1√

2
|1〉,

|Ψ2〉 = 1√
2
|0〉+ 1√

2
|1〉,

corresponds to

|Ψ12〉 = |Ψ1〉 ⊗ |Ψ2〉

=
(

1√
2
|0〉+ 1√

2
|1〉) ⊗ ( 1√

2
|0〉+ 1√

2
|1〉

)
= 1

4

(
|00〉+ |01〉+ |10〉+ |11〉

)
.

These are the product states that are examples of separable
states.

States that cannot be written in this product form are the
entangled states.
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Mixed states

So far we were talking about pure quantum states.

In a real experiment quantum states are mixed. Such states
can be described by a density matrix

ρ =
∑

k

pk |Ψk 〉(|Ψk 〉)
† =

∑
k

pk |Ψk 〉〈Ψk |,

where
∑

k pk = 1 and pk ≥ 0.

Definition
A mixed state is separable if it can be written as the convex
combination of product states

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k .

Otherwise the state is entangled. [R. Werner, Phys. Rev. A 1989.]
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Convexity

Properties of density matrices

ρ = ρ†,

Tr(ρ) = 1,

ρ ≥ 0.

Mixing two systems:

ρ′ = pρ1 + (1 − p)ρ2.

The set of density matrices is convex. If ρ1 and ρ2 are density
matrices then ρ′ is also a density matrix.

The set of density matrices corresponding to separable states
is also convex. If ρ1 and ρ2 are separable density matrices
then ρ′ is also a separable density matrix.
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Convex sets

Now, if we use the elements of the density matrix as
coordinate axes, we can draw the following picture:

Separable states

Entangled states

ρ
1

ρ
2

ρ'
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Convex sets II

A more correct figure is the following:

All quantum states 
(convex set)

Boundary: Density
matrices with less
than full rank

Boundary: Density
matrices with less
than full rank

Not only curved boundaries

Non-full rank density matrices have a zero eigenvalue. For a
two-state system, the pure states are on the boundary. 39 / 77



Convex sets III

A more correct figure for both sets is the following:

Pure product states
are at the boundary
of both sets

Separable states

All quantum states
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Entanglement cannot be created locally

Remember: The definition of a separable state is

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k .

Definition
Local Operation and Classical Communications (LOCC):

Single-party unitaries,

Single party von Neumann measurements,

Single party POVM measurements,

We are even allowed to carry out measurement on party 1
and depending on the result, perform some other operation on
party 2 ("Classical Communication").

LOCC and entanglement

It is not possible to create entangled states from separable states,
with LOCC.
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Entanglement is a resource

In short: Starting from a separable state, we cannot create
entanglement without real two-party quantum dynamics.

In some cases such dynamics is impossible. For example, if
we talk about particles very far away from each other.

Then, we can transform entangled states to other entangled
states, but cannot start from separable states and obtain
entangled states.

Thus, entangled states are a resource in this case.
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Why is entanglement important?

Can be used for quantum information processing protocols,
quantum teleportation or quantum cryptography.

Important for quantum algorithms such as prime factoring or
search.

Can also be used in quantum metrology (i.e., atomic clocks).

Entanglement is a natural goal for experiments.
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Entanglement distillation

From many entangled particle pairs we want to create fewer
strongly entangled pairs with LOCC.

Strongly entangled

Strongly entangled

Entangled

Entangled

Entangled

Entangled
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Entanglement of distillation and entanglement of
formation

For the case of two-qibit, typically the aim is to create singlets
that are maximally entangled states.

|Ψsinglet〉 =
1
√

2
(|01〉 − |10〉).

Definition
The entanglement of distillation a quantum state is characterized
by determining, how many singlets can be distilled from it by
LOCC.

One can ask the opposite question. How many singlets are
needed to construct a quantum state. item

Definition
The entanglement of formation a quantum state is characterized
by determining, how many singlets are needed to form the state by
LOCC. 45 / 77



Entanglement of distillation and entanglement of
formation II

For pure states, the entanglement of formation equals the von
Neumann entropy of the reduced state

EF = −Tr(ρ1 log2 ρ1).

In general, the entanglement of formation is not smaller than
the entanglement of distillation

EF ≥ ED .

Definition
There are entangled quantum states, that need singlets to create
them, but no singlets can be distilled by LOCC. These are called
bound entangled states.
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Entanglement criteria

How to decide whether a quantum state with a given density
matrix is entangled?

For pure states it is simple. A pure state is entangled if it is not
a product state.

A mixed state is entangled if it cannot be written as

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k .

But how can we find out whether a quantum state can be
decomposed like that?
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The positivity of the partial transpose (PPT) criterion

Definition
For a separable state %, the partial transpose is always positive
semidefinite

%T1 ≥ 0.

If a state does not have a positive semidefinite partial transpose,
then it is entangled. [A. Peres, PRL 1996; Horodecki et al., PLA 1997.]

Partial transpose means transposing according to one of the
two subsystems.

For separable states

(T ⊗ 1)% = %T1 =
∑

k

pk (%
(1)
k )T ⊗ %

(2)
k ≥ 0.
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The positivity of the partial transpose (PPT) criterion
II

How to obtain the partial transpose of a general density
matrix? Example: 3 × 3 case.

Strongly entangled

Strongly entangled

Entangled
Entangled

Entangled

Entangled

ϱ=

00 01 02 10 11 12 20 21 22

00

01

02

10

11

12

20

21

22
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PPT entangled states are bound entangled

The PPT criterion detects all entangled states for 2 × 2 and
2 × 3 systems.

For larger systems, it does not detect all entangled states.
E.g., for 3x3 systems there are PPT entangled states.

It can be shown that no entanglement can be distilled from
them, thus they are bound entangled.
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The Computable Cross Norm-Realignment Criterion

Definition
Let us consider a quantum state %, with a Schmidt decomposition

% =
∑

k

λk G(A)
k ⊗ G(B)

k ,

where Tr(G(l)
m G(l)

n ) = δmn and λk ≥ 0. If % is separable then∑
k λk ≤ 1.

[O. Rudolph, Quant. Inf. Proc. 2005; K. Chen and L.A. Wu, Quant. Inf. Comp. 2003.]

Proof. For product states the Schmidt decomposition of the
density matrix is

%product = |ΨA 〉〈ΨA | ⊗ |ΨB〉〈ΨB |.
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The Computable Cross Norm-Realignment Criterion II

For mixed states, we have to use that∑
k

λk

defines a norm for quantum states that is convex.

Other definition of CCNR criterion is based on a "realignment"
of the density matrix.
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Entanglement detection with uncertainty relations

We have a bipartite system and the following operators
A1 and B1 act on the first party.

A2 and B2 act on the second party.

If for quantum states

(∆Ak )2 + (∆Bk )2 ≥ c,

then for separable states we have

(∆A1 + A2)2 + (∆B1 + B2)2 ≥ 2c.

[ H.F. Hofmann and S. Takeuchi PRA 2003; O. Gühne, PRL 2004. ]
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Entanglement detection with uncertainty relations II

Proof: For product states

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉

we have

(∆(A1 + A2))2 + (∆(B1 + B2))2 =

(∆A1)2
Ψ1

+ (∆B1)2
Ψ1

+ (∆A2)2
Ψ2

+ (∆B2)2
Ψ2
≥ 2c.

Separable states are mixtures of pure states. Due to convexity
this bound is also valid for separable states.

Simple example for two-mode systems

(∆(x1 + x2))2 + (∆(p1 − p2))2 ≥ 2.
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Entanglement detection with a single nonlocal
measurement: Entanglement witnesses

An operator W is an entanglement witness if
〈W〉 = Tr(Wρ) < 0 only for entangled states.
[Horodecki et al., Phys. Lett. A 223, 8 (1996); Terhal, quant-ph/9810091; Lewenstein, Phys. Rev. A 62, 052310

(2000).]
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Entanglement vs. Nonlocality

All states that violate a Bell inequality are entangled.

Equivalently, separable states do not violate any Bell
inequality.

However, there are entangled states that do not violate any
Bell inequality. [R.F. Werner, PRA 1989.]

It is conjectured by Peres that every PPT state is local. Sofar
no counterexamples have been found.
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Entanglement vs. Nonlocality

The relations of the various convex sets look like as follows

Nonlocal entangled states

NPT ent. local states

Separable states

PPT ent. states
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Many-body quantum systems

An N-qubit mixed state is separable if it can be written as

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ ρ

(3)
k ⊗ ... ⊗ ρ

(N)
k .

Otherwise the state is entangled.

A bipartite quantum state is either separable or entangled.
The multipartite case is more complicated.

We have to distinguish between quantum states in which only
some of the qubits are entangled from those in which all the
qubits are entangled.

Biseparable states are the states that might be entangled but
they are separable with respect to some partition. States that
are not biseparable are called genuine multipartite entangled.
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Genuine multipartite entanglement

Let us see two entangled states of four qubits:

|GHZ4〉 = 1√
2

(|0000〉+ |1111〉),

|ΨB〉 = 1√
2

(|0000〉+ |0011〉) = 1√
2
|00〉 ⊗ (|00〉+ |11〉).

The first state is genuine multipartite entangled, the second
state is biseparable.
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Convex sets for the multi-qubit case

The idea also works for the multi-qubit case: A state is
biseparable if it can be composed by mixing pure bisparable
states.

Genuine multipartite
 entangled states

Separable states

Biseparable states
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Detection of entanglement

Many quantum engineering/quantum control experiments
have two main steps:

Creation of an entangled quantum state,
Detection its entanglement.

Thus entanglement detection is one of the most important
subjects in this field.

Examples of quantum control experiments:
Nuclear spin of atoms in a molecule (NMR): ≤ 10 qubits
Parametric down-conversion and post-selection: ≤ 10 qubits
Trapped ion experiments: ≤ 8 qubits
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Entanglement detection with tomography

Determine the density matrix and apply an entanglement
criterion.

For N qubits the density matrix has 2N × 2N complex
elements, and has 22N − 1 real degrees of freedom.

10 qubits→ ∼ 1 million measuremets
20 qubits→ ∼ 1012 measuremets

Surprise: Above modest system sizes full tomography is not
possible. One has to find methods for entanglement detection
that are feasible even without knowing the quantum state.
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Entanglement detection with a single nonlocal
measurement: Entanglement witnesses

An operator W is an entanglement witness if
〈W〉 = Tr(Wρ) < 0 only for entangled states.
[Horodecki et al., Phys. Lett. A 223, 8 (1996); Terhal, quant-ph/9810091; Lewenstein, Phys. Rev. A 62, 052310

(2000).]

Separable states

Entangled states

Quantum states detected 
by the witness

65 / 77



Entanglement detection with local measurements

Example:

WGHZ :=
1
2
1 − |GHZ〉〈GHZ |

is a witness, where |GHZ〉 := (|000..00〉+ |111..11〉)/
√

2.
WGHZ detects entanglement in the vicinity of GHZ states.

Problem: Only local measurements are possible. With local
measurements, operators of the type 〈A (1)B(2)C(3)C(4)〉 can
be measured.

A B C D

Qubit #1

Qubit #2

Qubit #3

Qubit #4
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Entanglement detection with local measurements II

All operators must be decomposed into the sum of locally
measurable terms and these terms must be measured
individually.

For example,

|GHZ3〉〈GHZ3| =
1
8

(1 + σ
(1)
z σ

(2)
z + σ

(1)
z σ

(3)
z + σ

(2)
z σ

(3)
z )

+
1
4
σ

(1)
x σ

(2)
x σ

(3)
x )

−
1
16

(σ
(1)
x + σ

(1)
y )(σ

(2)
x + σ

(2)
y )(σ

(3)
x + σ

(3)
y )

−
1
16

(σ
(1)
x − σ

(1)
y )(σ

(2)
x − σ

(2)
y )(σ

(3)
x − σ

(3)
y ).

[O. Gühne és P. Hyllus, Int. J. Theor. Phys. 42, 1001-1013 (2003). M. Bourennane et al., Phys. Rev. Lett. 92

087902 (2004).]

As N increases, the number of terms increases exponentially.
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Solution: Entanglement witnesses designed for
detection with few measurements

Alternative witness with easy decomposition

W ′
GHZ := 31 − 2

[
σ

(1)
x σ

(2)
x · · · σ

(N−1)
x σ

(N)
x

2
+

N∏
k=2

σ
(k)
z σ

(k+1)
z + 1

2

]
.

Note that W ′
GHZ ≥ 2WGHZ . [GT and O. Gühne, Phys. Rev. Lett. 94, 060501 (2005).]

The number of local measurements does not increases with
N.

σ
x

σ
x σ

x
σ
x

σ
z

σ
z σ

z
σ
z

1.

2.

68 / 77



Example: An experiment

Creation of a four-qubit cluster state with photons and its
detection [Figure from Kiesel, C. Schmid, U. Weber, GT, O. Gühne, R. Ursin, and H. Weinfurter, Phys.

Rev. Lett. 95, 210502; See also GT and O. Gühne, Phys. Rev. Lett. 94, 060501 (2005).]

PDBS

a

b'

PBS

c'

UV pulses

type II
SPDC

BBO

HWP

M

F

PDBS PDBS

QWP

T = 1/3
T = 1
H

V

T = 1/3
T = 1
H

V

1

2 3
T = 1

T = 1/3
H

V

d

C-Phase Gate

cb
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Very many particles

Typically we cannot address the particles individually.

Expected to occur often in future experiments.

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ
(k)
l ,

where l = x, y, z and σ(k)
l a Pauli spin matrices.

We can also measure the (∆Jl)
2 := 〈J2

l 〉 − 〈Jl〉
2 variances.
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Spin squeezing I.

Uncertainty relation for the spin coordinates:

(∆Jx)2(∆Jy)2 ≥ 1
4 |〈Jz〉|

2.

If (∆Jx)2 is smaller than the standard quantum limit 1
2 |〈Jz〉|

then the state is called spin squeezed.
[ M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).]

Application: Quantum metrology.

J
z
 is large

Variance of J
x 
is small

z

y
x
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Spin squeezing II.

Spin squeezing experiment with 107 atoms: [J. Hald, J. L. Sørensen, C.

Schori, and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999)]

Spin squeezing criterion for the detection of quantum
entanglement

(∆Jx)2

〈Jy〉
2 + 〈Jz〉

2
≥

1
N
.

If a quantum state violates this criterion then it is entangled.
[A. Sørensen et al., Nature 409, 63 (2001).]
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Generalized spin squeezing criteria

Criterion 1. For separable states we have

〈J2
x 〉+ 〈J2

y 〉 ≤
N
4

(N + 1).

This detects entangled states close to symmetric Dicke states
〈Jz〉 = 0. E.g., for N = 4-re this state is

1√
6

(|0011〉+ |0101〉+ |1001〉+ |0110〉+ |1010〉+ |1100〉).
[GT, J. Opt. Soc. Am. B 24, 275 (2007); N. Kiesel et al., Phys. Rev. Lett. 98, 063604 (2007).]

Criterion 2. For separable states

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N/2.

The left hand side is zero for the ground state of a Heisenberg
chain. [GT, Phys. Rev. A 69, 052327 (2004).]

Criterion 3. For symmetric separable states
1 − 4〈Jm〉

2/N2 ≤ 4(∆Jm)2/N. [J. Korbicz et al. Phys. Rev. Lett. 95, 120502 (2005).]

How could we find all such criteria?
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Complete set of generalized spin squeezing
inequalities

Let us assume that for a system we know only

J := (〈Jx〉, 〈Jy〉, 〈Jz〉),

K := (〈J2
x 〉, 〈J

2
y 〉, 〈J

2
z 〉).

Then any state violating the following inequalities is entangled

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤ N(N + 2)/4,

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ N/2,

〈J2
k 〉+ 〈J2

l 〉 − N/2 ≤ (N − 1)(∆Jm)2,

(N − 1)
[
(∆Jk )2 + (∆Jl)

2
]
≥ 〈J2

m〉+ N(N − 2)/4,

where k , l,m takes all the possible permutations of x, y, z.
[GT, C. Knapp, O. Gühne, és H.J. Briegel, Phys. Rev. Lett. 2007.]
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The polytope

The previous inequalities, for fixed 〈Jx/y/z〉, describe a
polytope in the 〈J2

x/y/z〉 space.

Separable states correspond to points inside the polytope.
Note: Convexity comes up again!

For 〈J〉 = 0 and N = 6 the polytope is the following:
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Conclusions

We discussed Bell inequalities and local hidden variable
models

We discussed separability and entanglement.

We also discussed entanglement criteria and entanglement
detection in experiments.

For further information please see my home page:

http://optics.szfki.kfki.hu/∼toth

and the review

O. Gühne and G. Tóth, Physics Reports 474, 1-75 (2009).

*** THANK YOU ***
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