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Motivation

Due to the rapid development of quantum control today it is
possible to create multi-qubit quantum states in several
physical systems. Quantum information science must help to
explore the large state space that can be accessed in such
experiments.

The notions "entanglement" and "genuine multi-qubit
entanglement" help us to show the part of this state space
that is "interesting" and can help to obtain fundamentally
non-classical phenomena.
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Bell inequalities

Bell inequalities are used to detect correlations that cannot
come from a local hidden variable model. An example is the
CHSH inequality: For local hidden variable models

〈x1x2 + x1y2 − y1x2 + y1y2〉 ≤ 2. (1)

Here we imagine measuring correlations on a bipartite
system. At both parties, we measure two variables: x and y.
At these measurements each time we get +1 or −1.

There is a two-qubit quantum state that gives
√

2 for the left
hand side of this inequality, if we interpret it as a quantum
mechanical expectation value for the corresponding
correlation operators.
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Definition of Entanglement

A bipartite state is called separable if it can be written as a
convex combination of product states

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k , (2)

where pk > 0 and
∑

k pk = 1. Otherwise the state is called
entangled.

This definition comes from a 1989 paper of Werner. He also
showed that there are entangled states for which all von
Neumann measurements can be described by a local hidden
variable model.

Thus every nonlocal state is entangled, but not all entangled
states are nonlocal.
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Multipartite entanglement

A multipartite state is called separable if it can be written as a
convex combination of product states

ρ =
∑

k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ ... ⊗ ρ

(N)
k , (3)

where pk > 0 and
∑

k pk = 1. Otherwise the state is called
entangled.

Is it a very useful definition? Not really. Take the state
containing 100 particles

ρ100 := ρsinglet ⊗ |0〉〈0|⊗98, (4)

where Ψsinglet = (|01〉 − |10〉)/
√

2. Can one now claim that this
is a 100 particle entangled state?

Other example: many-qubit GHZ state stays entangled even
when a lot of noise is added.
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Possible approaches to multi-partite entanglement

An N-qubit state is N-qubit entangled if it is not separable with
respect to all its bipartitions (e.g., W. Dür). Problem: does not
lead to a convex set of states.

For example, let us define the state

ρsinglet chain = ρ
⊗

N
2

singlet. (5)

This state is not N-qubit entangled according to the previous
defintion. However,

ρmixed :=
1
2

(
ρsinglet chain + Sρsinglet chainS†

)
(6)

is N-qubit entangled. (S is an operator shifting all the qubits to
the right.)
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Bicycle chain state (Wootters)
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Genuine multipartite entanglement

In a multi-qubit experiment it is important to detect genuine
multi-qubit entanglement [Acín et. al, PRL 87, 040401
(2001)]: We have to show that all the qubits were entangled
with each other, not only some of them.

An example of the latter case is a state of the form

|Ψ〉 = |Ψ1..m〉 ⊗ |Ψm+1..N〉. (7)

Here |Ψ1..m〉 denotes the state of the first m qubits while
|Ψm+1..N〉 describes the state of the remaining qubits. Such
states are called biseparable.

These concepts can be extended to mixed states. A mixed
state is biseparable if it can be created by mixing biseparable
pure states of the form Eq. (7).

An N-qubit state is said to have genuine N-partite
entanglement if it is not biseparable.
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Convex sets

Separable states

Biseparable states

States with genuine multipartite entanglement
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Entanglement detection

We have convex sets. Thus we can use linear conditions to
detect entanglement and genuine-mulitqubit entanglement.

These linear conditions can be expressed using entanglement
witness operators.

W is an entanglement witness operator, if for every separable
state ρsep

tr(ρsepW) ≥ 0, (8)

and for some entangled state ρent

tr(ρentW) < 0. (9)

Every entangled state can be detected by a witness.
[Horodecki 1996]

In practice, W is an observable. If its expectation value is
negative, then we know that the state is entangled.
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Witnesses and convex sets

Separable states

Biseparable states

States with genuine multipartite entanglement

Witness #1

W
itness #2
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Witness for detecting bipartite entanglement

Let us construct a witness that detects entangled states in the
vicinity of state |Ψ〉. Let us denote |φ−〉 the eigenvector
corresponding to a negative eigenvalue λ− of |Ψ〉〈Ψ|T1. Here
T1 is transposition with respect to subsytem 1. Then the
following operator is a witness [Lewenstein et al. 2000]

WΨ = |φ−〉〈φ−|
T1. (10)

Proof. (1) It is non-negative on product states

tr(ρ1 ⊗ ρ2|φ−〉〈φ−|
T1) = tr(ρT

1 ⊗ ρ2|φ−〉〈φ−|) ≥ 0 (11)

Due to convexity, this is also true for separable states.

(2) It is negative on some entangled state. E.g.,

tr(|Ψ〉〈Ψ|WΨ) = tr(|Ψ〉〈Ψ||φ−〉〈φ−|
T1) = tr(|Ψ〉〈Ψ|T1|φ−〉〈φ−|) = λ− < 0.
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Optimal witnesses

Which witness is better than the other?

One possibility: a witness W1 is finer than witness W2 if for
every ρ such that tr(W2ρ) < 0 we have tr(W1ρ) < 0.
[Lewenstein, Kraus, Cirac, and Horodecki PRA 2000]

In other words, for some α > 0

αW2 = W1 + P, (12)

where P is a positive semi-definite operator.

W is optimal if there is not another witness that is finer than
W .
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Decomposable witnesses

A witness is called decomposable if it can be written as
[Lewenstein, Kraus, Cirac, and Horodecki, PRA 2000.]

W = P + QT1, (13)

where P,Q ≥ 0.

Decomposable witnesses detect only entangled states with a
non-positive partial transpose. Proof. Let ρ be a state with a
positive semidefinite partial transpose. Then

tr(Wρ) = tr(Pρ) + tr(QρT1) ≥ 0. (14)

The optimal decomposable witnesses have the form

W = QT1, (15)

where Q ≥ 0.
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Multi-qubit witnesses

Multi-qubit witnesses for detecting genuine multi-qubit
entanglement are typically of the form

W = const . × 1 − |Ψ〉〈Ψ|, (16)

where |Ψ〉 is a highly entangled state, e.g., a GHZ state.
const. is the square of the maximum of the Schmidt
coefficients of Ψ when all bipartitions are considered
[Bourennane et al., PRL 2004].
Examples:

WGHZN = 1

2 − |GHZN〉〈GHZN |,

WCN = 1

2 − |CN〉〈CN |,

WWN = N−1
N 1 − |WN〉〈WN |.

(17)

Here |GHZN〉 is the GHZ state, |CN〉 is the cluster state, and
|WN〉 is the W state.
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Robustness to noise

Idea behind these witnesses: In an experiment we aim to
prepare the GHZ state. The preparation is never perfect, but
the prepared state must be close to the GHZ state. Thus the
previous fidelity based witnesses can detect the state as
genuine multi-qubit entangled.
It is important to know how large neighborhood of the state to
be prepared is detected by our witness as entangled. This
can be done by the robustness to white noise. Let us consider
the state

ρn(pn) := pn |GHZN〉〈GHZN |+ pn
1

2N . (18)

The robustness to noise is characterized by the largest pn for
which ρn(pn) is still detected as entangled.
For the GHZ state and cluster state witnesses for large N we
have 0.5, for witnesses for all other states it is smaller.
Note: Robustness to noise characterizes the witness not the
state.
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How to measure a multi-qubit witness

Witnesses are very often of the form

W = const . × 1 − |Ψ〉〈Ψ|, (19)

where |Ψ〉 is a highly entangled state, e.g., a GHZ state. How
can we measure such a projector?

A solution is decomposing the witness into the sum of local
terms

W =
∑

k

A (1)
k ⊗ A (2)

k ⊗ A (3)
k ⊗ ... ⊗ A (N)

k . (20)

The number of terms needed increases very fast (probably
exponentially) for many witnesses with the number of qubits.
At this point of the talk, it is not clear that a ten qubit witness
can ever be measured. [Gühne et al., Phys. Rev. A 66,
062305 (2002)]
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Measurement setting

Measurement setting: We measure simultaneously
single-qubit operators, i.e., at each qubit k we measure O(k).
After repeating this several times, any two-point, three-point,
etc. correlations of the form 〈O(k)O(l)〉, 〈O(k)O(l)O(m)〉 can be
obtained.
Thus the number of measurement settings determines the
measurement effort, not the number of correlation terms in
the decomposition of the witness.
Example: How to measure |GHZN〉〈GHZN |. It can be
decomposed into

|GHZ4〉〈GHZ4| =
1

2N [1 + Z (1)Z (2) + Z (1)Z (2)Z (3)Z (4)

+X (1)X (2)X (3)X (4) − Y (1)Y (2)X (3)X (4) + Y (1)Y (2)Y (3)Y (4)],

where each term represents the sum of all its possible
permutations. The first two terms can be measured with a
single setting. Note that a better decomposition is also
possible [Gühne et al., 2003.].
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Measuring a multi-qubit GHZ or cluster state witness

Now I show a method to measure the projector-based
witnesses presented before with only two measurement
settings.

Idea: For measuring (an estimation for) witness W , we look
for an operator W̃ such that

W̃ ≥ W (21)

and W̃ is easy to decompose.

The idea we will present works for witnesses based on a
projector to GHZ states, cluster states, and in general, graph
states.
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GHZ states, cluster states and graph states

All these quantum states have one thing in common: For an
N-qubit state there are 2N local operators that have the state
as an eigenvector with an eigenvalue +1. This group, called
stabilizer, is commutative and the square of all group
elements is 1 [Gottesman, PRA 1997].

The projector to these states is can be written as

|Ψ〉〈Ψ| = 1
2N

2N∑
k=1

Sk = 1
2N

N∏
k=1

(1 + gk ). (22)

Here Sk are the group elements and gk are the generators.

At this point we can see that an N-qubit projector of these
states can always be decomposed into the sum of 2N local
terms.
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Concrete examples

Generators for the stabilizer of the GHZ state:

g1 = X (1)X (2)X (3)...X (N),

gk = Z (k−1)Z (k), (23)

for 2 ≤ k ≤ N.
Generators for the stabilizer of the cluster state [Raussendorf
and Briegel, PRL 2001]:

g1 = X (1)Z (2),

gk = Z (k−1)X (k)Z (k+1),

gN = Z (N−1)X (N),

(24)

for 2 ≤ k ≤ N − 1.
Generators of a graph state are [M. Hein, J. Eisert, and H.J.
Briegel, PRA 2004]

gk = X (k)
∏

l∈Neigh(k)

Z (k). (25)
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Stabilizer witnesses

So we want to measure this witness:

WGHZN = 1

2 − |GHZN〉〈GHZN |. (26)

We look for another witness W̃GHZN for which
W̃GHZN ≥ WGHZN and it is easy to measure.

Idea: we look for this witness as a linear combination of
stabilizer elements

W̃GHZN =
∑

k

ck Sk . (27)

We optimize {ck } such that W̃GHZN has the best possible
robustness to noise.

[Theory: Tóth and Gühne, PRL 2005; PRA 2005. Experiment:
Kiesel et al., PRL 2005.]
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Results for GHZ and cluster states

For GHZ states the optimal witness looks like

W̃GHZN := 3
21−

1
2 (1+X (1)X (2)X (3)...X (N))− 1

2N−1

N∏
k=2

(1+Z (k−1)Z (k)).

(28)

For cluster states the optimal witness looks like

W̃CN := 3
21 −

1
2N/2

∏
k=1,3,5,..

(1 + Z (k−1)X (k)Z (k+1))

− 1
2N/2

∏
k=2,4,6,..

(1 + Z (k−1)X (k)Z (k+1)), (29)

where Z (0) = Z (N+1) = 1.

Robustness to noise for large N : 33% for the GHZ witness
and 25% for the cluster state witness.
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Example for witnesses

Let us consider a noisy four-qubit GHZ state. We plot the
expectation values of the two witnesses as functions of the
noise ratio pnoise :
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Fidelity estimation

The expectation values of our witnesses give information on
the fidelity of our state with respect to GHZ and cluster states.

For GHZ states the optimal witness looks like

|GHZN〉〈GHZN | ≥
1

2 − W̃GHZN. (30)

For cluster states the optimal witness looks like

|CN〉〈CN | ≥
1

2 − W̃CN. (31)
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Conclusion

I gave an overview on using entanglement witnesses for
detecting entanglement.

I considered the problem of measuring a multi-qubit witness
with local measurements.

I presented some witnesses that need few measurements for
detecting entanglement close to GHZ and cluster states.

I showed that similar ideas work also for fidelity estimation.

THANK YOU FOR YOUR ATTENTION!!!

For more details please see http://optics.szfki.kfki.hu/∼toth/.
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