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Motivation

One of the main aims of quantum control is to look for and
realize "interesting" highly entangled quantum states (like
GHZ states and cluster states).
"interesting" means that the state should have some
properties which are useful from the point of view of quantum
information processing. If we talk about experiments, it should
also be easy to prepare it and detect entanglement around it.
Symmetric Dicke states are highly entangled quantum states
which appear naturally in quantum systems with many
particles and a symmetric dynamics. We will argue that they
also have some nice properties from the point if view of
quantum information.
Actuality: A four-photon Dicke state was produced in an
experiment at the Max Planck Institute for Quantum Optics:
[N. Kiesel, C. Schmid, G. Toth, E. Solano, and H. Weinfurter,
quant-ph/0606234.] → Remember the talk of Nikolai Kiesel on
this workhop.
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Definition of Dicke states

Dicke states are the simultaneous eigenstates of the collective
angular momentum, J and its z-component, Jz .

In a typical many-qubit experiment, in which the qubits cannot
be individually accessed, both the initial state and the
dynamics are symmetric under the permutation of qubits.
Thus we will consider such symmetric Dicke states. These are
also the states with maximal J. An N-qubit symmetric Dicke
state with m excitations is defined as

|m,N〉 :=
( N

m

)− 1
2 ∑

k

Pk (|11, 12, ..., 1m, 0m+1, ..., 0N〉), (1)

where {Pk } is the set of all distinct permutations of the spins.

In particular, we will consider the state |N/2,N〉 and show
some nice properties of this state.
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Dicke’s original idea

Consider N two-state atoms interacting with an
electromagnetic field.
Let us set all the atoms in the excited state

Ψ0 := |11111...〉 ≡ |N,N〉. (2)

If the atomic cloud emits coherently, then, after emitting a
photon, it can go to the state

Ψ1 := (|01111...〉+ |10111...〉+ |11011...〉+ ...)/
√

N ≡ |N−1,N〉.
(3)

After emitting further photons the system goes through the
states |N − 2,N〉,|N − 3,N〉, ..., |N/2,N〉, ..., |0,N〉.
Dicke found that the intensity of the radiation is proportional to
N for the state |11111...〉, however, it is proportional to roughly
N2 for the state |N/2,N〉. This he called superradiance.
Remember, |N/2,N〉 is the equal superposition of states with
N/2 zeros and N/2 ones.
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Why are Dicke states useful for quantum information
processing?

The state |N/2,N〉 has the maximal singlet fraction possible
among N-qubit quantum states. Thus it is useful for
telecloning. [See experimental paper at quant-ph/0606234.]

Unlike GHZ states, the entanglement of the state |N/2,N〉 is
robust against particle loss.

We argue that this state is useful for the experimental creation
and detection of multi-qubit entanglement.
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Genuine multipartite entanglement

In a multi-qubit experiment it is important to detect genuine
multi-qubit entanglement [Acín et. al, PRL 87, 040401
(2001)]: We have to show that all the qubits were entangled
with each other, not only some of them.

An example of the latter case is a state of the form

|Ψ〉 = |Ψ1..m〉 ⊗ |Ψm+1..N〉. (4)

Here |Ψ1..m〉 denotes the state of the first m qubits while
|Ψm+1..N〉 describes the state of the remaining qubits. Such
states are called biseparable.

These concepts can be extended to mixed states. A mixed
state is biseparable if it can be created by mixing biseparable
pure states of the form Eq. (4).

An N-qubit state is said to have genuine N-partite
entanglement if it is not biseparable.
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Convex sets

Separable states

Biseparable states

States with genuine multipartite entanglement
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Fidelity-based entanglement criteria

Based on [M. Bourennane et. al, PRL 92, 107901 (2004)] we
know that for biseparable states ρ

Tr(ρ|Ψ〉〈Ψ|) ≤ CΨ. (5)

Here |Ψ〉 is a multi-qubit entangled state and CΨ is the square
of the maximal overlap of |Ψ〉 with biseparable states

This criterion can be used to detect entanglement in the
vicinity of state |Ψ〉. Any quantum state ρ which violates this
inequality is genuine multi-qubit entangled.

Fortunately, it turns out that CΨ equals the square of the
maximum of the Schmidt coefficients of |Ψ〉 with respect to
any bipartition. Thus CΨ can be determined easily, without the
need for multi-variable optimization.
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The required fidelity for some states

The required fidelity for detecting genuine multi-qubit entanglement
is the following for some well-known quantum states

CGHZ = 1/2,

Ccluster = 1/2 [G. Tóth and O. Gühne, PRL 2005],

CW = (N − 1)/N [H. Häffner et. al, Nature 438, 643 (2005)].

Clearly, it is hard to detect a W state this way, since the fidelity is
approaching +1 as N increases. For the GHZ and cluster states,
however, C does not increase with N and it is the smallest
possible: 1/2.

How much is C for our state |N,N/2〉?
Theorem 1. For biseparable quantum states

Tr(ρ|N/2,N〉〈N/2,N|) ≤
1
2

N
N − 1

=: CN/2,N . (6)

Thus for large N the required fidelity is around 1/2.
12 / 25



Proof of Theorem 1.

The Schmidt decomposition of |m,N〉 according to the partition
(1, 2, ...,N1)(N1 + 1,N1 + 2, ...,N) is [J.K. Stockton et al., PRA 2003].

|m,N〉 =
∑

k

λk |k ,N1〉 ⊗ |m − k ,N − N1〉 (7)

where the Schmidt coefficients are

λk =

( N
m

)− 1
2
( N1

k

) 1
2
( N − N1

m − k

) 1
2
. (8)

We do not have to consider other partitions due to the
permutational symmetry of our Dicke states. For an N-qubit
symmetric Dicke state with N/2 excitations we have m = N/2. Now
we will need to know that( N1

k

)( N − N1
N
2 − k

)
≤

( 2
1

)( N − 2
N
2 − 1

)
. (9)

The proof of Eq. (9) can be found in quant-ph/0511237. Thus we
find that the maximal Schmidt coefficient can be obtained for
N1 = 2 and k = 1, and it is N(N − 1)/2. �

13 / 25



Outline

1 Introduction
Motivation
Definition of Dicke states
Why are they useful for quantum information processing?
Genuine multipartite entanglement

2 Fidelity-based entanglement criterion
3 Entanglement detection with collective observables
4 Connection to super-radiance

14 / 25



Entanglement detection with collective observables

In certain physical systems (e.g., optical lattices of bosonic
two-state atoms) only the measurement of collective
quantities is possible.

Thus entanglement criteria are needed which detect
entanglement with collective measurements, without the need
of accessing the qubits individually.

These criteria are typically built with the collective spin
operators

Jx/y/z :=
1
2

N∑
k=1

σ(k )
x/y/z , (10)

where σ(k )
x/y/z denote Pauli spin matrices acting on qubit k .
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Entanglement detection with collective observables -
Previous Work

Spin squeezing criterion [A. Sørensen et al. , Nature 409, 63
(2001)]. For separable states

(∆Jx)2

〈Jy〉
2 + 〈Jz〉

2
≥

1
N
. (11)

Any state violating this condition is entangled.

Entanglement detection around a singlet [G. Tóth, Phys. Rev.
A 69, 052327 (2004)]. For separable states

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ 2N. (12)

The left hand side is minimal for many-body singlets.
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Lemma

Lemma 1. For separable states the maximum of the expression

ax〈J2
x 〉 + ay〈J2

y 〉 + az〈J2
z 〉 + bx〈Jx〉 + by〈Jy〉 + bz〈Jz〉 (13)

with ax/y/z ≥ 0 and real bx/y/z is the same as its maximum for
translationally invariant product states (i.e., for product states of
the form |Ψ〉 = |ψ〉⊗N).
Proof 1. Simple multivariable minimisation using a clever
constraint.

Importance of Lemma 1: Usually it is very hard to find the
maximum/minimum of the expectation value of an operator for
separable states.

See [J. Eisert, P. Hyllus, O. Gühne, and M. Curty, PRA 70,
062317 (2004); A.C. Doherty, P.A. Parrilo, and F.M. Spedalieri,
PRA 71, 032333 (2005).]
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Simple criterion

Theorem 2. As a special case of the previous criterion, we have
that for separable states

〈J2
x 〉 + 〈J

2
y 〉 ≤

N
2

(
N
2
+

1
2

)
. (14)

For even N, the left hand side is the maximal N
2

(
N
2 + 1

)
only for an

N-qubit symmetric Dicke state with N/2 excitations.
Proof. Based on Lemma 1, the proof of this theorem is obvious.

It can be seen that the bound in Eq. (14) is sharp since a
separable state of the form

|Ψxy〉 := (|0〉 + |1〉e iφ)⊗N (15)

for any real φ saturates the bound.
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Entanglement detection based on the maximum of
variances for separable states

Based on Eq. (14), it is easy to see that for separable states
we also have

(∆Jx)2 + (∆Jy)2 ≤
N
2

(
N
2
+

1
2

)
. (16)

Thus J2
x/y could be replaced by the corresponding variances.

Any state violating Eq. (16) is entangled. Note the curious
nature of our criterion: A state is detected as entangled, if the
uncertainties of the collective spin operators are larger than a
bound.
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Detecting genuine multipartite entanglement

It is also possible to detect genuine multipartite entanglement with
similar methods. Such a criterion has already been presented for
three qubits in [G. Tóth and O. Gühne, PRA 72, 022340 (2005)].
For biseparable three-qubit states

3/2 + Q/2 := 〈J2
x 〉 + 〈J

2
y 〉 ≤ 2 +

√
5/2 ≈ 3.12. (17)

Here X and Y are Pauli spin matrices.
Proof. Let us assume (1)(23) biseparability Then for a state of the
form Ψ = Ψ1 ⊗ Ψ23

〈Q〉 = 〈X (1)〉〈X (2)〉 + 〈X (1)〉〈X (3)〉 + 〈X (2)X (3)〉

+ 〈Y (1)〉〈Y (2)〉 + 〈Y (1)〉〈Y (3)〉 + 〈Y (2)Y (3)〉

= 〈X (1)〉1[〈X (2) + X (3)〉23] + 〈Y (1)〉1[〈Y (2) + Y (3)〉23]

− [〈X (2)X (3) + Y (2)Y (3)〉23]

= 〈F(x, y)〉23. (18)
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Detecting genuine multipartite entanglement

Here
x := 〈X (1)〉1; y := 〈Y (1)〉1. (19)

〈...〉1 and 〈...〉23, respectively, denote expectation value computed
for Ψ1 and Ψ23. To be explicit, matrix F , as the function of two real
parameters, is given

F(x, y) := x[X (2) + X (3)] + y[Y (2) + Y (3)]

+ [X (2)X (3) + Y (2)Y (3)]. (20)

The expectation value of F(x, y) can be bounded from below

〈F(x, y)〉23 ≤ Λmax[F(x, y)],=

(21)

where Λmax(F) is the largest eigenvalue of F . Using
〈X (1)〉2 + 〈Y (1)〉2 ≤ 1, we obtain that 〈Q〉 is bounded from above by

〈Q〉 ≤ max
x2+y2≤1

{Λmax[F(x, y)]} = 1 +
√

5. (22)

This is clearly valid also for general biseparable states. �
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Four-qubit case

Theorem 3. For a four-qubit biseparable state〈
J2

x

〉
+

〈
J2

y

〉
≤ 7/2 +

√
3 ≈ 5.23. (23)

For the left hand side of Eq. (23) the maximum is 24 and it is
obtained uniquely for the |2, 4〉 state.
Proof. Similar to the three-qubit case.
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Connection to superradiance

The operator to be measured for our criterion is identical to
the one which appeared in Dicke’s original paper in 1954 as
the intensity of the superradiant light during spontaneous
emission in a cloud of atoms.

To be more precise, the light intensity is

I := I0
〈
J2

x + J2
y + Jz

〉
, (24)

where I0 is the radiation rate of one atom in its excited state.
Our entanglement criterion shows that if I/I0 − 〈Jz〉 is larger
than a bound then the system is entangled.

Unexpectedly, there are separable states [e.g., the state
|1111...〉x ] for which the light intensity scales roughly with the
square of the number of qubits. We have also shown that
there was similar bound for the intensity for multipartite
entanglement.
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Conclusion

1 We discussed the advantages of using highly entangled
symmetric Dicke states for quantum information processing.

2 We showed that they are very well suited for the experimental
creation and detection of multipartite entanglement. We
discussed

fidelity-based entanglement criteria, and
criteria based on measuring collective observables.

3 We discussed the connection of our entanglement detection
scheme to super-radiance.

4 For further details please see quant-ph/0511237.

******** THANK YOU!!! *********
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