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Why is multipartite entanglement interesting?

There have been many experiments recently aiming to create
many-body entangled states.

Quantum Information Science can help to find good targets for
such experiments.

Multipartite entangled states are needed in applications such as
metrology.
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Two qubits

Fact
Remember: There is only a single type of two-qubit entanglement.

From a single copy of any pure entangled two-qubit state, we can
get to any other entangled two-qubit state through Stochastic
Local Operations and Classical Communication (SLOCC).

That is, for any entangled |Ψ〉 and |Φ〉, there are invertible A and B
such that

|Ψ〉 = A ⊗ B|Φ〉.

Note that A and B do not have to be Hermitian.



Bipartite systems
For the mixed case, the definition of a separable state is (Werner
1989)

ρ =
∑

k

pkρ
(1)

k ⊗ ρ
(2)

k .

Definition
Local Operation and Classical Communications (LOCC):

Single-party unitaries,
Single party von Neumann measurements,
Single party POVM measurements,
We are even allowed to carry out measurement on party 1 and
depending on the result, perform some other operation on party 2
("Classical Communication").

LOCC and entanglement
It is not possible to create entangled states from separable states, with
LOCC.



Distillation
From many entangled particle pairs we want to create fewer
strongly entangled pairs with LOCC.

Strongly entangled

Strongly entangled

Entangled

Entangled

Entangled

Entangled



Two qubits - mixed states

Fact
Remember: There is only a single type of two-qubit entanglement.

From many copies of mixed entangled states, we can always distill
a singlet using Local Operations and Classical Communication
(LOCC).



The positivity of the partial transpose (PPT)
criterion

Definition
For a separable state %, the partial transpose is always positive
semidefinite

%T1 ≥ 0.

If a state does not have a positive semidefinite partial transpose, then it
is entangled. [A. Peres, PRL 1996; Horodecki et al., PLA 1997.]

Partial transpose means transposing according to one of the two
subsystems.

For separable states

(T ⊗ 1)% = %T 1 =
∑

k

pk (%
(1)

k )T ⊗ %
(2)

k ≥ 0.



The positivity of the partial transpose (PPT)
criterion II

How to obtain the partial transpose of a general density matrix?
Example: 3 × 3 case.
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Measuring entanglement, bipartite case

Entanglement of formation:

Pure states: Entropy of the reduced state
Mixed states: Defined by a convex roof construction

EF (%) = min
{|Ψk 〉,pk }:%=

∑
k pk |Ψk 〉〈Ψk |

∑
k

pkEF (|Ψk 〉).

Negativity: = (-1) times the sum of the negative eigenvalues of the
partial transpose. (Vidal, Werner)



Three-qubit pure states

|Ψ〉 and |Φ〉 are equivalent under SLOCC if there are invertible A,B
and C such that

|Ψ〉 = A ⊗ B ⊗ C |Φ〉.


 Talk by PÉTER LÉVAY



Three-qubit mixed states

Six classes:

Class #1: fully separable states
∑

k pk%
(k)

1 ⊗ %
(k)

2 ⊗ %
(k)

3

Class #2: (1)(23) biseparable states
∑

k pk%
(k)

1 ⊗ %
(k)

23 , not in Class #1

Class #3: (12)(3) biseparable states
∑

k pk%
(k)

12 ⊗ %
(k)

3 , not in Class #1

Class #4: (13)(2) biseparable states
∑

k pk%
(k)

13 ⊗ %
(k)

2 , not in Class #1

Class #5: W-class states:
mxtr of pure (W ∪ Bisep ∪ Sep)-class states, not in Classes #1-4

Class #6: GHZ-class states: mxtr of pure (GHZ ∪W ∪ Bisep ∪
Sep)-class states, not in Classes #1-5

Biseparable states: mixture of states of classes #2, #3 and #4.



Three-qubit mixed states II

The extension of the classification of pure states to mixed states
leads to convex sets:

A. Acín, D. Bruss, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001)

B B
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Witnesses for GHZ and W-class states

Entanglement witnesses for detecting states of a given class:

GHZ-class states

W
(P)
GHZ := 3

41 − |GHZ 〉〈GHZ |.

W-class states
W

(P)
W := 2

31 − |W 〉〈W |.

W
(P)
GHZ := 1

21 − |GHZ 〉〈GHZ |.

A. Acín, D. Bruss, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001)



States that are biseparable with respect to all
bipartitions

There are states that are biseparable with respect to all the three
bipartitions, but they are not fully separable.

% =
∑

k

pk%
(k)

12 ⊗ %
(k)

3

% =
∑

k

p′k%
(k)

1 ⊗ %
(k)

23

% = F12

∑
k

p′′k %
(k)

2 ⊗ %
(k)

13 F12

W. Dür, J.I. Cirac, Phys. Rev. A 61, 042314 (2000)
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More than three qubits

4 qubits: There are 9 families and infinite number of SLOCC
equivalence classes.
[ F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A 65,
052112 (2002) ]

For many qubits, the practically meaningful classification is

(Fully) separable

Biseparable entangled

Genuine multipartite entangled



More than three qubits II

Definition
A state is (fully) separable if it can be written as∑

k pk%
(k)

1 ⊗ %
(k)

2 ⊗ ... ⊗ %
(k)

N .

Definition
A pure multi-qubit quantum state is called biseparable if it can be
written as the tensor product of two multi-qubit states

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉.

Here |Ψ〉 is an N-qubit state. A mixed state is called biseparable, if it
can be obtained by mixing pure biseparable states.

Definition
If a state is not biseparable then it is called genuine multi-partite
entangled.



k-producibility/k-entanglement

Definition
A pure state is k -producible if it can be written as

|Φ〉 = |Φ1〉 ⊗ |Φ2〉 ⊗ |Φ3〉 ⊗ |Φ4〉....

where |Φl〉 are states of at most k qubits. A mixed state is k -producible,
if it is a mixture of k -producible pure states.



Convex sets for the multipartite case

The idea of convex sets also work for the multi-qubit case: A state
is biseparable if it can be obtained by mixing pure biseparable
states.

Genuine multipartite
 entangled states

Separable states

Biseparable states

W
itn

es
s



Examples

Examples
Two entangled states of four qubits:

|GHZ4〉 = 1√
2

(|0000〉+ |1111〉),

|ΨB〉 = 1√
2

(|0000〉+ |0011〉) = 1√
2
|00〉 ⊗ (|00〉+ |11〉).

The first state is genuine multipartite entangled, the second state
is biseparable.



Other possible definition of genuine multipartite
entanglement

Alternative definition: a state is genuine multipartite entangled if it
is inseparable with respect to all bipartitions.

Example
Mixture of the two biseparable states (chains of singlets)

50%

50%

It is inseparable with respect to all bipartitions.

This state can be created in a two-qubit experiment.



Geometric measure of entanglement

Definition
For pure states, the geometric measure of entanglement is defined as

Esin2(|Ψ〉) = 1 −
(

max
|ΨP 〉∈PRODUCT

〈Ψ|ΨP〉

)2

.

For mixed states, it is defined by a convex roof construction

Esin2(%) = min
{|Ψk 〉,pk }:%=

∑
k pk |Ψk 〉〈Ψk |

∑
k

pkEsin2(|Ψk 〉).

It is possible to calculate it for some pure states and for some
mixed states.
T.-C. Wei, P.M. Goldbart, Phys. Rev. A 68, 042307 (2003)



Bipartite measures

Bipartite entanglement measures can also be used but they do
not capture the complexity of multipartite entanglement.

Examples:

negativity
entanglement of formation.
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Physical systems

State-of-the-art in experiments
8 qubits with trapped cold ions (Nature, 2005)

10 qubits with photons (Nature Physics, 2010)

Main Challenges
How to obtain useful information when only local measurements
are possible?

In principle, the entanglement witness method has the advantage
that only one observable, the entanglement witness, needs to be
measured. In practice, the measurement of this observable may
be done by a series of local measurements. ... At this point the
advantage over basic state tomography becomes somewhat
questionable.
(B. TERHAL, IBM Watson Research Center, 2002)



Interesting quantum states

Quantum states in experiments:

Greenberger-Horn-Zeilinger (GHZ) state or "Schrödinger cat
state”

Cluster state, graph state (obtained in Ising spin chains)

Symmetric Dicke states

Singlet states
(∆Jl)

2 = 0 for j = x , y , z.
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Aims when designing a witness

Definition
An entanglement witnessW is an operator that is positive on all
separable (biseparable) states.

Thus, Tr(W%) < 0 signals entanglement (genuine multipartite
entanglement). Horodecki 1996; Terhal 2000; Lewenstein, Kraus, , Cirac,
Horodecki 2002

There are two main goals when searching for entanglement witnesses:

Optimization �
��
��
�*

H
HHH

HHj

Large robustness to noise

Few measurements



Robustness to noise

A state mixed with white noise is given as

%(pnoise) = (1 − pnoise)% + pnoise%noise

where pnoise is the ratio of noise and %noise is the noise. If we
consider white noise then %noise = 1/2N .

Definition
The noise tolerance of a witnessW is characterized by the largest
pnoise for which we still have

Tr(W%) < 0.



Only local measurements are possible

Definition
A single local measurement setting is the basic unit of experimental
effort.

A local setting means measuring operator A(k) at qubit k for all qubits.

A(1) A(2) A(3) A(N)...

All two-qubit, three-qubit correlations, etc. can be obtained.

〈A(1)A(2)〉,〈A(1)A(3)〉, 〈A(1)A(2)A(3)〉...



Decomposition of an operator

All operators must be decomposed into the sum of locally
measurable terms and these terms must be measured individually.
For example,

|GHZ3〉〈GHZ3| =
1
8

(1 + σ
(1)
z σ

(2)
z + σ

(1)
z σ

(3)
z + σ

(2)
z σ

(3)
z )

+
1
4
σ

(1)
x σ

(2)
x σ

(3)
x

−
1
16

(σ
(1)
x + σ

(1)
y )(σ

(2)
x + σ

(2)
y )(σ

(3)
x + σ

(3)
y )

−
1
16

(σ
(1)
x − σ

(1)
y )(σ

(2)
x − σ

(2)
y )(σ

(3)
x − σ

(3)
y ).

O. Gühne and P. Hyllus, Int. J. Theor. Phys. 42, 1001-1013 (2003). M.
Bourennane et al., Phys. Rev. Lett. 92 087902 (2004)

As N increases, the number of terms increases exponentially for
projectors to quantum pure states.



Basic methods for designing witnesses

Three methods for designing witnesses:

Projector witness, i.e., witness defined with the projector to a
highly entangled quantum state

Witness based on the projector witness

Witness independent of the projector witness



Projector witness

A witness detecting genuine multi-qubit entanglement in the
vicinity of a pure state |Ψ〉 is

W
(P)
Ψ

:= λ2
Ψ1 − |Ψ〉〈Ψ|,

where λ is the maximum of the Schmidt coefficients for |Ψ〉, when
all bipartitions are considered.
M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P.
Hyllus, D. Bruß, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 2004

A symmetric witness operator can always be decomposed as

P =
∑

ckAk ⊗ Ak ⊗ Ak ⊗ ... ⊗ Ak .

For symmetric operators, the number of settings needed is
increasing polynomially with the number of qubits.
GT, W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, and H. Weinfurter,
New J. Phys. 2009



Projector witness II

GHZ states (robustness to noise is 1
2 for large N!)

W
(P)
GHZ := 1

21 − |GHZN〉〈GHZN |.

Cluster states
W

(P)
CL := 1

21 − |CLN〉〈CLN |.

Dicke state

W
(P)

D(N,N/2)
:= 1

2
N

N−11 − |D
(N/2)

N 〉〈D(N/2)

N |.

W-state
W

(P)
W := N−1

N 1 − |D(1)

N 〉〈D
(1)

N |.



Witnesses based on the projector witness

We construct witnesses that are easier to measure than the
projector witness.

Idea: IfW(P) is the projector witness and

W− αW(P) ≥ 0

is fulfilled for some α > 0, thenW is also a witness.
GT and O. Gühne, Phys. Rev. Lett. and Phys. Rev. A 2005



Witnesses based on the projector witness II

Example
Witness requiring only two measurement settings for GHZ states

W
(P)
GHZ : = 1

21 − |GHZN〉〈GHZN |

≤W
(P2)
GHZ := 1 −

1
2

X1X2X3...XN −


1

0
...

0
1


.

Measurement settings⇒ [X X X X ...] [Z Z Z Z ...]

Any state detected byW(P2)
GHZ is also detected byW(P)

GHZ.
GT and O. Gühne, Phys. Rev. Lett. and Phys. Rev. A 2005



Witnesses independent from the projector witness

Witnesses without any relation to the projector witness.

With an easily measurable operator M , we make a witness of the
form

W := c1 −M ,

where c is some constant.

We have to set c to
c = max

|Ψ〉∈B
〈M〉|Ψ〉,

where B is the set of biseparable states. This problem is typically
hard to solve.
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An experiment: Cluster state with photons

Experiment for creating a four-photon cluster state (Weinfurter group,
2005)

PDBS

a

b'

PBS

c'

UV pulses

type II
SPDC

BBO

HWP

M

F

PDBS PDBS

QWP

T = 1/3
T = 1
H

V

T = 1/3
T = 1
H

V

1

2 3
T = 1

T = 1/3
H

V

d

C-Phase Gate

cb
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An experiment: Cluster state with photons II

Note: the experiment works with conditional detection.

So far the largest experiment is with 6 photons, and with 10 qubits.

1 photon can encode more than 1 qubit: hyperentanglement.

42 / 85



An experiment: Dicke state with photons

43 / 85



An experiment: Dicke state with photons II

A photo of a real experiment (six-photon Dicke state, Weinfurter group,
2009):

44 / 85



Experiment: W-state with ions

Experimental observation of an 8-qubit W-state with trapped ions.

H. Haeffner, W. Haensel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T.
Koerber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, R. Blatt,
Nature 438, 643-646 (2005).

45 / 85



Quantum state tomography

The density matrix can be reconstructed from 3N measurement
settings.

The measurements are

1. XXXX

2. XXXY

3. XXXZ

...

34. ZZZZ

Note again that the number of measurements scales exponentially
in N .

46 / 85
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Physical systems

State-of-the-art in experiments
100,000 atoms realizing an array of 1D Ising spin chains (Nature,
2003)

Spin squeezing with 106 - 1012 atoms (Nature, 2001)

Main challenge
The particles cannot be addressed individually.

Only collective quantities can be measured.

New type of entangled states and entanglement criteria are
needed.



Many-particle systems

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ
(k)

l ,

where l = x , y , z and σ(k)

l a Pauli spin matrices.

We can also measure the

(∆Jl)
2 := 〈J2

l 〉 − 〈Jl〉
2

variances.
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Spin squeezing

Definition
Uncertainty relation for the spin coordinates

(∆Jx )2(∆Jy )2 ≥ 1
4 |〈Jz〉|

2.

If (∆Jx )2 is smaller than the standard quantum limit 1
2 |〈Jz〉| then the

state is called spin squeezed (mean spin in the z direction!).
[ M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993) ]

J
z
 is large

Variance of J
x 
is small

z

y
x



Spin squeezing II

Definition
Spin squeezing criterion for the detection of quantum entanglement

(∆Jx )2

〈Jy 〉2 + 〈Jz〉2
≥

1
N
.

If a quantum state violates this criterion then it is entangled.

Application: Quantum metrology, magnetometry.

[ A. Sørensen et al., Nature 409, 63 (2001) ]



Complete set of the generalized spin squeezing
criteria

Let us assume that for a system we know only

~J := (〈Jx 〉, 〈Jy 〉, 〈Jz〉),

~K := (〈J2
x 〉, 〈J

2
y 〉, 〈J

2
z 〉).

Then any state violating the following inequalities is entangled

〈J2
x 〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤ N(N + 2)/4,

(∆Jx )2 + (∆Jy )2 + (∆Jz)2 ≥ N/2,

〈J2
k 〉+ 〈J2

l 〉 − N/2 ≤ (N − 1)(∆Jm)2,

(N − 1)
[
(∆Jk )2 + (∆Jl)

2
]
≥ 〈J2

m〉+ N(N − 2)/4.

where k , l ,m takes all the possible permutations of x , y , z.
[ GT, C. Knapp, O. Gühne, and H.J. Briegel, Phys. Rev. Lett. 2007 ]



The polytope

The previous inequalities, for fixed 〈Jx/y/z〉, describe a polytope in
the 〈J2

x/y/z〉 space.

Separable states correspond to points inside the polytope. Note:
Convexity comes up again!

0
5

10

0

5

10

0

5

10

〈 J2
y
 〉

〈 J2
x
 〉

〈 J
2 z 〉

A
z
 

A
y
 

A
x
 

B
x
 

B
z
 

B
y
 

S 



The derivation of such criteria
The derivation of such criteria is partly based on entanglement
detection with uncertainty relations.
For a multi-qubit pure product state |ΨP〉 =

⊗
k |ψk 〉we have

(∆Jl)
2 =

∑
k

(∆j(k)

l )2
ψk
.

Hence, ∑
l=x ,y ,z

(∆Jl)
2
|ΨP〉

=
∑

l=x ,y ,z

N∑
k=1

(∆Jl)
2
|Ψk 〉

=

1
4

N∑
k=1

(3 − 〈σ(k)
x 〉

2 − 〈σ
(k)
y 〉

2 − 〈σ
(k)
z 〉

2) =
N
2
.

Due to the concavity of the variance, for mixed separable states
we have ∑

l=x ,y ,z

(∆Jl)
2 ≥

N
2
.

[G. Tóth, PRA 2004; O. Gühne, PRL 2004; H.F. Hofmann and S. Takeuchi, PRA 2003.]
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The physical system

Bose Eisnetin condensate of atoms: the atoms interact with each
other

Cold gases: the atoms do not interact with each other



The physical system II

Cold gases: Rb atoms + light

MeasurementLaser

feedback



Experimental details

Atoms interact with light. The light is measured, projecting the
atoms into a squeezed state.

Room temperature experiments: 1012 atoms
[ B Julsgaard, A Kozhekin, ES Polzik, Nature 2001 ].

Vapor cells

Cold atom experiments: 106 atoms.

Laser cooling, sample in an optical dipole trap.
Atoms are transferred from a MOT to a dipole trap.



An experiment

Spin squeezing in a cold atomic ensemble (not BEC!)

Picture from M.W. Mitchell, ICFO, Barcelona.
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Quantum Fisher information

One of the important applications of entangled multipartite
quantum states is sub-shotnoise metrology.
[V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).]

Multipartite entanglement, not simple nonseparability, is needed
for extreme spin squeezing, which can be applied in spectroscopy
and atomic clocks.
[A.S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431 (2001).]

Not all entangled states are useful for phase estimation, at least in
a linear interferometer.
[P. Hyllus, O. Gühne, and A. Smerzi, arXiv:0912.4349.]



Quantum Fisher information II

Let us consider the following process:

U=exp(-iJxθ)

The dynamics described above is %out = e−iθJ~n%e+iθJ~n .

We would like to determine the angle θ by measuring %out.



Quantum Fisher information III

Quantum Cramér-Rao bound
For such a linear interferometer the phase estimation sensitivity is
limited by the Quantum Cramér-Rao bound as

∆θ ≥
1√

FQ[%, J~n]
,

where FQ is the quantum Fisher information, % is a quantum state and
J~n is a component of the collective angular momentum in the direction
~n.

[C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New
York, 1976);
A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (North-Holland,
Amsterdam, 1982).]



Quantum Fisher information IV

The quantum Fisher information is the supremum of the following
[Braunstein, Caves, 1994]

F (%(θ), {E(ξ)}) =

∫
[Tr%(θ)′E(ξ)]2

Tr%(θ)E(ξ)
dξ.

In another context, there are several possible Fisher informations.
The Braunstein-Caves’s one is the minimal Fisher information.

F [%,X ] =
∑

ij

2(λi − λ)2

λi + λj
|Xij |

2.

[D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244(1996), 81–96;
D. Petz and Cs. Sudár, World Scientific, 1999;
D. Petz and C. Ghinea, arXiv:1008.2417.]
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Properties of the Quantum Fisher information

For calculating many quantities, it is sufficient to know that following
two relations.

1 For a pure state %, we have F [%, Jl ] = 4(∆Jl)
2
% .

2 F [%, Jl ] is convex in the state, that is
F [p1%1 + p2%2, Jl ] ≤ p1F [%1, Jl ] + p2F [%2, Jl ].

From these two statements, it also follows that F [%, Jl ] ≤ 4(∆Jl)
2
% .

[C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New
York, 1976);
A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (North-Holland,
Amsterdam, 1982);
S.L. Braunstein and C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994); L. Pezzé and A.
Smerzi, Phys. Rev. Lett. 102, 100401 (2009). ]



Properties of the Quantum Fisher information II

For computing the Fisher information numerically, we recall that the
quantum Fisher information FQ[%, J~n] for any ~n can be given as

FQ[%, J~n] = 4~nT ΓC~n.

Here, the ΓC matrix is defined as

[ΓC ]ij =
1
2

∑
l ,m

(λl + λm)

(
λl − λm

λl + λm

)2

〈l |Ji |m〉〈m|Jj |l〉,

where the sum is over the terms for which λl + λm , 0, and the density
matrix has the decomposition

% =
∑

k

λk |k〉〈k |.

For pure states, and [ΓC ]ij = 〈JiJj + JjJi〉/2 − 〈JiJj〉.

[P. Hyllus, O. Gühne, and A. Smerzi, arXiv:0912.4349.]
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Quantum Fisher information and entanglementand

Pezzé, Smerzi, PRL 2009
For N-qubit separable states, the values of FQ[%, Jl ] for l = x , y , z are
bounded as

FQ[%, Jl ] ≤ N .

Here, Jl = 1
2
∑N

k=1 σ
(k)

l where σ(k)

l are the Pauli spin matrices for qubit
(k). The maximum for the left-hand side is N2.

Thus, for separable states

∆θ ≥
1
√

N
,

while for entangled states

∆θ ≥
1
N
.



Quantum Fisher information and entanglement II

Observation 1
For N-qubit separable states, the values of FQ[%, Jl ] for l = x , y , z are
bounded as ∑

l=x ,y ,z

FQ[%, Jl ] ≤ 2N . (2)

Later we will also show that Eq. (2) is a condition for the average
sensitivity of the interferometer. All states violating Eq. (2) are
entangled.

[GT, arxiv:1006.4368; P. Hyllus et al., arXiv:1006.4366.]



Quantum Fisher information and entanglement III

Observation 2
For quantum states, the Fisher information is bounded by above as∑

l=x ,y ,z

FQ[%, Jl ] ≤ N(N + 2). (3)

Greenberger-Horne-Zeilinger (GHZ) states and N-qubit symmetric
Dicke states with N

2 excitations saturate Eq. (3).

The above symmetric Dicke state has been investigated recently
due to its interesting entanglement properties. It has also been
noted that above Dicke state gives an almost maximal phase
measurement sensitivity in two orthogonal directions.

In general, pure symmetric states for which 〈Jl〉 = 0 for l = x , y , z
saturate Eq. (3).

[GT, arxiv:1006.4368; P. Hyllus et al., arXiv:1006.4366.]



Quantum Fisher information and multipartite
entanglement
Next, we will consider k -producible or k -entangled states:

Observation 3
For N-qubit k -producible states states, the sum of three Fisher
information terms is bounded from above by∑

l=x ,y ,z

FQ[%, Jl ] ≤ nk(k + 2) + (N − nk)(N − nk + 2).

where n is the integer part of N
k . For the k = N − 1 case, this bound

can be improved ∑
l=x ,y ,z

FQ[%, Jl ] ≤ N2 + 1. (4)

Eq. (4) is also the inequality for biseparable states. Any state that
violates Eq. (4) is
genuine multipartite entangled.



Quantum Fisher information and multipartite
entanglement II

Fact
Genuine multipartite entanglement, not simple nonseparability is
needed to achieve maximum sensitivity in a linear interferometer.



Quantum Fisher information and multipartite
entanglement III

0
10

20
30 0

10
20

30
0

5

10

15

20

25

30

F
Q

[ρ,J
y
]

D
z

G
z

D
y

G
y

F
Q

[ρ,J
x
]

D
x

S
z

G
x

S
y

S
x

C

F
Q

[ρ
,J

z
]

Figure: Interesting points in the (FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space for N = 6
particles. Points corresponding to separable states satisfy Eq. (2) and are not
above the Sx − Sy − Sz plane. Biseparable states satisfy Eq. (4) and are not
above the Gx −Gy −Gz plane.



Proof of Observation 1

First, we shown that Observation 1 is true for pure states. For every
N-qubit pure product state of the form

|ΨP〉 = ⊗N
k=1|Ψk 〉

we have

∑
l=x ,y ,z

(∆Jl)
2
|ΨP〉

=
∑

l=x ,y ,z

N∑
k=1

(∆Jl)
2
|Ψk 〉

=

1
4

N∑
k=1

(3 − 〈σ(k)
x 〉

2 − 〈σ
(k)
y 〉

2 − 〈σ
(k)
z 〉

2) =
N
2
.

For mixed states,
∑

l=x ,y ,z FQ[%, Jl ] ≤ 2N follows from the convexity of
the Fisher information. This finishes the proof.
[G. Tóth, Phys. Rev. A 69, 052327 (2004).]



Which part of the space corresponds to quantum
states

We discuss which part of the (FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space
contains points corresponding to states with different degree of
entanglement.

This is important, since apart from finding inequalities for states
of various types of entanglement, we have to show that there are
states that fulfill these inequalities.



Which part of the space corresponds to quantum
states

Let us see first the interesting points of the
(FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space and the corresponding quantum
states:

A completely mixed state

%C =
1

2N
.

corresponds to the point C(0,0,0).

States corresponding to the points
Sx (0,N ,N),Sy (N ,0,N),Sz(0,N ,N) are

|Ψ〉Sl = |+
1
2
〉
⊗N/2
l ⊗ | −

1
2
〉
⊗N/2
l

for l = x , y , z.



Which part of the space corresponds to quantum
states II

For the point Dz(N(N + 2)/2,N(N + 2)/2,0), a corresponding
quantum state is an N-qubit symmetric Dicke state with N/2
excitations in the z basis.

|D
(N/2)

N 〉 =

(
N

N/2

)− 1
2 ∑

k

Pk {|0)⊗
N
2 ⊗ |1)⊗

N
2 },

where
∑

k Pk denotes summation over all possible permutations.

For the point (N ,N ,N2), a corresponding quantum state is an
N-qubit GHZ states in the z basis

|Ψ〉GHZz =
1
√

2

(
|0〉⊗N + |1〉⊗N

)
.



Which part of the space corresponds to quantum
states III
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For all points in the Sx ,Sy ,Sz polytope, there is a corresponding
pure product state for even N .

For given F [%, Jl ] for l = x , y , z, such a state is defined as

% =

12 +
1
2

∑
l=x ,y ,z

clσl


⊗N/2

⊗

12 − 1
2

∑
l=x ,y ,z

clσl


⊗N/2

,

where c2
l = 1 − FQ [%,Jl ]

N , where
∑

l c2
l = 1.



Which part of the space corresponds to quantum
states V
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Figure: Randomly chosen points in the (FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space
corresponding to states of the form
|Ψ(αx , αy , αz)〉 = αx |D

(N/2)

N 〉x + αy |D
(N/2)

N 〉y + αz |D
(N/2)

N 〉z , for N = 8. All the
points are in the plane of Dx ,Dy and Dz .



Which part of the space corresponds to quantum
states VI

Three-dimensional polytopes. The points corresponding to the
mixed state are on a curve in the
(FQ[%, Jx ],FQ[%, Jy ],FQ[%, Jz ])-space. In the general case, this
curve is not a straight line. For the case of mixing a pure state with
the completely mixed state the curve is a straight line. Such a
state is defined as

%(mixed)(p) = p% + (1 − p)
1

2N

Using the formula for ΓC , after simple calculations we have

Γ
(mixed)

C (p) =
p2

p + (1 − p)2−(N−1)
Γ

(%)

C .



Which part of the space corresponds to quantum
states VII
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Observation 5. If N is even, then there is a separable state for each
point in the Sx ,Sy ,Sz ,C polytope.

Proof. This is because there is a pure product state corresponding to
any point in the Sx ,Sy ,Sz polytope. When mixing any of these states
with the completely mixed state, we obtain states that correspond to
points on the line connecting the pure state to point C.



Which part of the space corresponds to quantum
states VIII
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Observation 6. If N is divisible by 4, then for all the points of the
Dx ,Dy ,Dz ,Gx ,Gy ,Gz polytope, there is a quantum state with genuine
multipartite entanglement.

Proof. There is a quantum state for all points in the Dx ,Dy ,Dz polytope.
Mixing them with the completely mixed state, states corresponding to
all points of the C,Dx ,Dy ,Dz polytope can be obtained. Based on
Observation 2, states corresponding to the points in the
Dx ,Dy ,Dz ,Gx ,Gy ,Gz polytope are genuine multipartite entangled.

Finally, note that all the quantum states we presented in this section
have a diagonal ΓC matrix.



Summary
We discussed entanglement detection in multipartite systems.

We considered
systems with few particles in which the particles could be
individually addressed.

systems with very many particles, without the possibility of
individual addressing

Review: O. Gühne and GT, “Entanglement detection”,

Physics Reports 474, 1-75 (2009).

THANK YOU FOR YOUR ATTENTION!
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