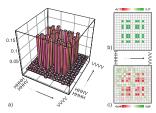
An algorithm for permutationally invariant state reconstruction for larger qubit numbers

¹ IQOQI, Innsbruck, ² Department Physik, Siegen, ³ Department Theoretical Physics, Bilbao, ⁴ IKERBASQUE, Bilbao, ⁵ Research Institute for Solid State Physics and Optics, Budapest, ⁶ MPG, Garching, ⁷ Fakultät Physik, LMU, München, ⁸ DTU Mathematics, Lyngby

DPG Meeting, Stuttgart, 12/03/2012

Quantum State Tomography

- Task: Determine a previously unknown quantum state ρ_0
 - $\star\,$ Measurement scheme
 - $\star\,$ State reconstruction part



- Measurement effort of standard tomography schemes increases exponentially with the particle number (since they work for all quantum states).
- New protocols [Compressed sensing, PI-Tomography] reduce this cost, because they are tailored to special classes of states.

Permutationally invariant tomography

• Class of states: Permutationally invariant states satisfy

$$\rho_{\rm PI} = V(p)\rho_{\rm PI}V(p)^{\dagger}$$

for all possible permutations p of N particles.

• Measurement scheme for *N*-qubits: For each setting $\hat{s} \in \mathbb{R}^3$ one measures in the eigenbasis of $\hat{s} \cdot \vec{\sigma} = |0\rangle_s \langle 0| - |1\rangle_s \langle 1|$ and uses only the coarse-grained outcomes

$$M_{k|s} = \left[|0\rangle_{s} \langle 0|^{\otimes N-k} \otimes |1\rangle_{s} \langle 1|^{\otimes k} \right]_{\mathrm{PI}}, \forall k = 0, \dots, N.$$

• Measurement effort:

$$(N^2 + 3N + 2)/2$$
 settings
 $N + 1$ outcomes \Rightarrow cubic scaling

State reconstruction

- Real probabilities $P(k|s) = tr(\rho_0 M_{k|s})$ can only be approximated by relative frequencies $f_{k|s} = n_{k|s}/N_s$ in an experiment.
- \Rightarrow Problems in actual reconstruction

$$\operatorname{tr}(\hat{\rho}_{\mathrm{lin}}M_{k|s}) = f_{k|s}$$

since the solution (if any) $\hat{\rho}_{\text{lin}} \not\geq 0$ is often not a valid state.

• Statistical state reconstruction: Reconstructed state $\hat{\rho}$ is the unique optimum of a fit-function $F(\rho; f_{k|s})$,

$$\hat{\rho} = \arg\min_{\rho \ge 0} F(\rho; f_{k|s}).$$

• Common reconstruction functions are maximum likelihood or least-squares methods.

Permutationally invariant state reconstruction

• State reconstruction

$$\hat{\rho}_{\mathrm{PI}} = \arg\min_{\rho_{\mathrm{PI}} \ge 0} F[\rho_{\mathrm{pi}}, f_k]$$

needs to be solved for **large particle numbers**! Otherwise the PI Tomography protocol is useless for experiments.

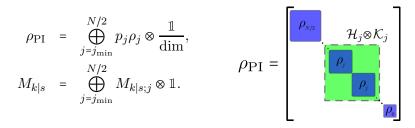
- Two major challenges:
 - Large dimensions

 \Rightarrow Reduction method [next slide]

- Optimization
 - \Rightarrow Convex optimization
 - + Systematic approach for any convex fit-function, achieves global optimum, good error control on algorithm, high accuracy and good convergence rate
 - More work

Reduction - PI toolbox

Large dimensions are handled by exploiting a particular form of permutationally invariant states/operators [Spin-coupling]:



- i: Efficient storage since all ρ_i need roughly N^3 parameters.
- ii: Operational way to characterize states, since $\rho_{\rm PI}$ is a state if and only if all ρ_j are states (and p_j valid probabilities).
- iii: Efficient way to compute expectation values since $M_{k|s;j}$ can also be computed efficiently.

Current performance

