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Abstract
◮ Entanglement detection with collective measure-

ments is important since in many experiments
(e.g., optical lattices of bosonic two-state atoms)
the qubits cannot be accessed individually.

◮ Even if the qubits can be individually accessed,
measurement schemes based on collective ob-
servables are still useful since they need few mea-
surements which is also important in experiments
(e.g., see [1]).

◮ We present entanglement criteria, somewhat sim-
ilar to the spin squeezing criterion, based on the
moments or variances of the collective spin opera-
tors.

◮ Surprisingly, these criteria are based on an up-
per bound for variances for separable states. We
present both criteria detecting entanglement in
general and criteria detecting only genuine multi-
partite entanglement.

◮ Our criteria detect entanglement in the vicinity of
N-qubit Dicke states with N/2 excitations.

Summary of related work
◮ Entanglement conditions based on collective mea-

surements are built using the collective spin opera-
tors

Jx/y/z =
N

∑
k=1

σ(k)
x/y/z, (1)

where σ(k)
x/y/z denote Pauli spin matrices acting on

qubit k.

◮ Spin squeezing criterion [2]. For separable states

(∆Jx)
2

〈Jy〉2 + 〈Jz〉2 ≥ 1
N

. (2)

Any state violating this condition is entangled.

◮ Entanglement detection around a singlet [3]. For
separable states

(∆Jx)
2 +(∆Jy)

2 +(∆Jz)
2 ≥ 2N. (3)

The left hand side is minimal for many-body sin-
glets.

Our work [4]

◮ Our condition: For separable states

〈J2
x 〉+ 〈J2

y 〉 ≤ N(N + 1). (4)

For the proof see Lemma.

◮ For even N, the left hand side is the maximal
N(N + 2) only for an N-qubit Dicke state with N/2
excitations. Such a state is the equal superposition
of product states having N/2 ones and N/2 zeros.

◮ It can also be seen that the bound in Eq. (4) is
sharp since a separable state of the from

|Ψxy〉 := (|0〉+ |1〉eiφ)⊗N . (5)

for any real φ saturates the bound.

Lemma
◮ For separable states the maximum of the expres-

sion

ax〈J2
x 〉+ ay〈J2

y 〉+ az〈J2
z 〉+ bx〈Jx〉+ by〈Jy〉+ bz〈Jz〉

(6)
with ax/y/z ≥ 0 and real bx/y/z is the same as
its maximum for translationally invariant product
states (i.e., for product states of the form |Ψ〉 =
|ψ〉⊗N )

◮ Proof. When looking for the maximum of Eq. (6) for
separable states, it is clearly enough to look for the
maximum for pure product states.

◮ Let us consider a product state of the form

|Ψ〉 = ⊗N
k=1|ψk〉 and use the notation s(k)

x/y/z :=

〈Ψ|σ(k)
x/y/z|Ψ〉.

◮ We can rewrite Eq. (6) as

f := (ax +ay+az)N +2 ∑
l=x,y,z

al ∑
j<k

s( j)
l s(k)

l +bl ∑
k

s(k)
l .

Lemma - Slide 2
◮ Let us look for the maximum of Eq. (7) with the con-

straints

∑
k

s(k)
l = Kl

for l = x,y,z. Note that f can be written as f =
(ax + ay + az)N + ax fx + ay fy + az fz.

◮ Now let us first take fx, that is, the part which de-

pends only on the s(k)
x coordinates. It can be written

as
fx = ∑

j<k

s( j)
x s(k)

x + αx ∑
k

s(k)
x , (7)

where αx = bx/2ax. We build the constraint Eq. (7)
into our calculation by the substitution

s(N)
x = Kx −

N−1

∑
k=1

s(k)
x . (8)

Lemma - Slide 3
◮ Thus we obtain

fx = ∑
j<k<N

s( j)
x s(k)

x + αx

N−1

∑
k=1

s(k)
x

+ (Kx −
N−1

∑
k=1

s(k)
x )(

N−1

∑
k=1

s(k)
x + αx).

Hence for any m < N

∂ fx

∂s(m)
x

= −s(m)
x +(Kx−

N−1

∑
k=1

s(k)
x ). (9)

In an extreme point this should be zero. Hence it

follows that for all m < N we have s(m)
x = s(N)

x , thus
fx takes its extremum for all s(m)

x ’s equal.

◮ Proving that the extremum is a maximum, and re-
peating the previous steps for fx and fy finish our
proof.

◮ The proof of criterion (4) is obvious based on our
Lemma.

Multipartite entanglement ...
◮ In a multi-qubit experiment it is important to de-

tect genuine multi-qubit entanglement. We have to
show that all the qubits were entangled with each
other, not only some of them. An example of the
latter case is a state of the form

|Ψ〉 = |Ψ1..m〉⊗ |Ψm+1..N〉 (10)

◮ Note that the state given by Eq. (10) might be en-
tangled, but it is separable with respect to the par-
tition (1,2, ..,m)(m + 1,m + 2, ..,N). Such states
are called biseparable [5] and can be created from
product states such that two groups of qubits do not
interact.

◮ These concepts can be extended to mixed states.
A mixed state is biseparable if it can be created by
mixing biseparable pure states of the form Eq. (10).
An N-qubit state is said to have genuine N-partite
entanglement if it is not biseparable.

... and its detection
◮ For biseparable three-qubit states

〈J2
x 〉+ 〈J2

y 〉 ≤ 8+ 2
√

5 ≈ 12.47. (11)

Both the state |W 〉 = (|100〉+ |010〉+ |001〉)/
√

3
and the state |W 〉 = (|110〉+ |101〉+ |011〉)/

√
3

give the maximal 15 for the left-hand side of
Eq. (11).

◮ For a four-qubit biseparable state

〈

J2
x

〉

+
〈

J2
y

〉

≤ 14+ 4
√

3 ≈ 20.93 (12)

For the left hand side of Eq. (12) the maximum
is 24 and it is obtained uniquely for the four-
qubit Dicke state with two excitations. This state
has the form (|1100〉+ |1010〉+ |1001〉+ |0110〉+
|0101〉+ |0011〉)/

√
6.

◮ These inequalities have recently been used for
the experimental detection of multipartite entangle-
ment [6].

Conclusions
◮ We have presented a method for detecting en-

tanglement based on collective measurements.
Surprisingly, it is based on an upper bound on
variances of collective observables for separable
states.

Related bibliography:
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