
Two Measurement Settings can Suffice to Verify Multipartite
Entanglement

Géza Tóth∗ and Otfried Gühne†∗∗

∗Theoretical Division, Max Planck Institute for Quantum Optics, Hans-Kopfermann-Straße 1,
D-85748 Garching, Germany

†Institut für Quantenoptik und Quanteninformation,Österreichische Akademie der Wissenschaften,
A-6020 Innsbruck, Austria

∗∗Institut für Theoretische Physik, Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany

Abstract. We present entanglement witnesses for detectinggenuinemulti-qubit entanglement. Our constructions are robust
against noise and require only twolocal measurement settings, independent of the number of qubits. Thus they allow us to
verify entanglement of many qubits in experiments while requiring only a small effort. In contrast, usual methods need an
effort which increases exponentially with the number of qubits. The witnesses detect states close to GHZ states and cluster
states.

INTRODUCTION

Entanglement, a strange phenomenon of the quantum world, has been known since the first half of the previous century.
Recently, new insight on entanglement was gained through quantum information science which connects physics with
algorithmic theory. In this context, besides asking "What are the characteristics of an entangled state?", we can also
ask "What kind of tasks can be done with entangled states?" or "What types of entangled states can be created?"

Questions of the second type lead to the classification of multi-partite entangled states. For two-qubits it is enough
to say: "This state is entangled" or "This state is separable". From an ensemble of two-qubit systems it is always
possible to distill, with local operations and classical communication (LOCC), a maximally entangled singlet state, if
the corresponding density matrix is entangled.

But already for three qubits, the situation is much more complicated. First of all, we have to differentiate the case
when two qubits are entangled and the third is not entangled with them (e.g.,|φ1〉 = |0〉(|00〉+ |11〉)/√2) from real
three qubit entanglement (e.g.,|φ2〉 = (|000〉+ |111〉)/√2). Moreover, given two genuine tripartite entangled three
qubit states, one may ask whether it is possible to convert a state into another one using only LOCC. Surprisingly,
it turns out that not all pure states withgenuinethree-qubit entanglement are equivalent under LOCC, not even
stochastically. In fact, there are two inequivalent classes, the W and the GHZ class [1]. This classification can be
extended to mixed states [2] where the W class is inclusive of the GHZ class. For pure four qubit states, the number of
equivalence classes is infinite [3] and the extension of the classification to mixed states does not seem to be useful.

Thus for pure states of many qubits we are left with three qualitatively different cases: Thefully separablestates
are product states with no correlations between the parties. For thebiseparablestates there always exists one partition
of the qubits into two parties, which are separable and not correlated. However, the qubits inside one party may be
entangled. Forgenuine multipartite entangledstates no such splitting can be found. Amixedstate is biseparable
(respectively, fully separable) if it can be constructed by mixing biseparable (respectively, fully separable) pure states.

In this paper we will describe a method how to detect genuineN-qubit entanglement around GHZ (Greenberger-
Horne-Zeilinger, [4]) and cluster states [5]. Besides being theoretically interesting, the motivation for detecting multi-
qubit entanglement also comes from the side of the experimentalists. Recently, several experiments succeeded in
creating various multi-qubit states with photons [6], trapped ions [7] or cold atoms trapped with optical lattices [8].
For all these experiments it is crucial to prove that the quantum state is genuine multipartite entangled: A multi-qubit
experiment presents something qualitatively new only if provably more than two qubits are entangled.

Detecting genuine multi-qubit entanglement is a difficult problem since it is inherentlynonlocal, while in most
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FIGURE 1. (a) The 2N measurement settings needed using Bell inequalities for detecting multi-qubit entanglement close to a
GHZ state. For each qubit the measured spin component is indicated. (b) The two settings needed for our witnesses detecting
genuine multi-qubit entanglement close to GHZ and (c) cluster states.

experiments onlylocal measurements are possible. One option is using Bell inequalities. These indicate the violation
of local realism, a notion independent of quantum physics. However, in some cases they can be used not only for
detecting quantum entanglement, but for detecting genuineN-qubit entanglement [9]. Bell inequalities typically
require measuring two variables at each qubit and computing an expression constructed as a sum of someN-qubit
correlations. If the value of this expression is larger than a certain bound the system isN-qubit entangled. The drawback
of this method is that it requires using very manymeasurement settings. As shown in Fig. 1(a), they need typically 2N

local measurement settings for detecting entanglement close to GHZ states.
Let us shortly explain what we understand by such a local measurement setting. Measuring a local setting{O (k)}

with k = 1, ...,N consists of simultaneously performing the von Neumann measurementsO (k) on the corresponding
qubits, indexed byk. After repeating the measurements several times, the coincidence probabilities for the outcomes
are collected. ForN qubits there are 2N different outcome probabilities. Given these probabilities it is possible
to compute all the two point correlations〈O(k)O(l)〉, three-point correlations〈O(k)O(l)O(m)〉, etc. Since all these
correlation terms can be measured with one setting, the number of settings determines the experimental effort rather
than the number of measured correlation terms. Obviously, with one local measurement setting it is not possible to
detect entanglement. Thus, two measurement settings are the minimal effort needed for the detection of entanglement.

In this paper we explain some of the ideas of Ref. [10] on the detection of genuine multi-qubit entanglement. We
will present entanglement conditions which require onlytwosettings independent from the number of qubits. Since the
number of measurement settings needed for existing methods increases exponentially with the number of qubits, our
conditions provide a very effective way to detect entanglement. For instance, they need 2N−1 times less measurement
settings than Bell inequalities. For a large number of qubits this difference is crucial — the new conditions do not
improve things only quantitatively, they make detection possible when it would be unrealistic otherwise.

Our conditions will be presented in the form ofentanglement witnesses[11]. These are operators which have a
positive or zero expectation value for all separable states. Thus a negative expectation value signals the presence of
entanglement. In constructing the entanglement witnesses for cluster states and GHZ states we use thestabilizing
operatorsof these states. An observableS is a stabilizing operator of a state|Ψ〉 if it satisfies

S|Ψ〉= |Ψ〉. (1)

In our case the operatorsSare tensor products of Pauli spin matrices. They can, therefore, easily be measured locally.

DETECTING GHZ STATES

Let us start with GHZ states. AnN qubit GHZ state is defined as

|GHZN〉 =
1√
2
(|0...0〉+ |1...1〉). (2)
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As maximally entangled multi-qubit states, GHZ states are intensively studied [12] and have been realized in numerous
experiments [6, 7]. The stabilizing operators of anN qubit GHZ state are

S(GHZN)
1 :=

N

∏
k=1

σ (k)
x ,

S(GHZN)
k := σ (k−1)

z σ (k)
z ; k∈ {2,3, ..,N}. (3)

In fact, one can easily calculate that for these observablesS(GHZN)
k |GHZN〉= |GHZN〉 holds. Note that not onlyS(GHZN)

k
stabilize the GHZ state, but any products of these operators does it as well. These operators form a commutative group

and theS(GHZN)
k are the generators of the group.

One entanglement witness detecting genuineN-qubit entanglement close to GHZ states is given by

WGHZN := 3 ·�−2

[
S(GHZN)

1 +�

2
+

N

∏
k=2

S(GHZN)
k +�

2

]
. (4)

The witnessWGHZN uses only two measurement settings, namely the ones in Fig. 1(b). The structure ofW GHZN given
in Eq. (4) can be interpreted as follows. The two terms in the square brackets are two projectors. The first is a projector

on the subspace for which〈S(GHZN)
1 〉 = +1. The second one is a projector on the subspace for which〈S(GHZN)

k 〉 = +1
for any k ∈ {2,3, ...,N}. The GHZ state is the only state which is in both spaces, thus the mean value ofW GHZN is
−1 only for this state. For any other state it is larger. In general, the more negative〈W GHZN〉|Ψ〉 is, the closer|Ψ〉 is,
in some sense, to the GHZ state [13]. It is known that in the proximity of the GHZ state there are only states with
genuineN-qubit entanglement, so the constant in Eq. (4) is chosen such that if〈W GHZN 〉 < 0 then the state is in this
neighborhood and is detected as entangled.

From the practical point of view it is very important to know, how large the neighborhood of the GHZ state is which
is detected as entangled by the witness. This is usually characterized by the robustness to noise. Let us consider a GHZ
state mixed with white noise

ρ(pnoise) := pnoise· �2N +(1− pnoise)|GHZN〉〈GHZN|. (5)

The witnessWGHZN detects the state as entangled ifpnoise< 1(3−4/2N). The bound on noise is explicitly shown in
Table I. Our witness is quite robust — it tolerates at least 33% noise even for largeN.

DETECTING CLUSTER STATES

Now let us turn to cluster states. These have recently raised a lot of interest both theoretically and experimentally.
They can easily be created in a spin chain with Ising-type interaction [5] and have been realized in optical lattices of
two-state atoms [8]. Remarkably, their entanglement is more persistent to noise than that of a GHZ state [5]. They
play a central role in error correction [14], fault-tolerant quantum computation, cryptographic protocols such as secret
sharing [15], and measurement-based quantum computation [16].

For three qubits the cluster state|C3〉 is equivalent to a GHZ state up to local unitary transformations. For four qubits
the state|C4〉 can be transformed by some local unitaries into|φ〉 = (|0000〉+ |0011〉+ |1100〉− |1111〉)/2. For an
arbitrary number of qubits it is more convenient to use a general definition via stabilizing operators than writing it out
explicitly in some basis. The stabilizing operators of anN-qubit cluster state are

S(CN)
1 := σ (1)

x σ (2)
z ,

S(CN)
k := σ (k−1)

z σ (k)
x σ (k+1)

z ;k∈ {2,3, ..,N−1},
S(CN)

N := σ (N−1)
z σ (N)

x . (6)

Given these stabilizing operators, the cluster state|CN〉 is definedas the state fulfilling

S(CN)
i |CN〉 = |CN〉. (7)
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TABLE 1. Noise tolerance for the GHZ state and the cluster state witnesses vs.
number of qubits

N 2 3 4 5 6 7 8 9 10

|GHZN〉 0.50 0.40 0.36 0.35 0.34 0.34 0.34 0.33 0.33
|CN〉 0.50 0.40 0.33 0.31 0.29 0.28 0.27 0.26 0.26

On can show that the cluster state is uniquely defined by these equations. Our witness for the detection ofN-qubit
entanglement around a cluster state is

WCN := 3 ·�−2

[
∏

even k

S(CN)
k +�

2
+ ∏

odd k

S(CN)
k +�

2

]
. (8)

If the expectation value ofWCN is negative then the system is genuineN-qubit entangled. Again, only two settings
are needed. These are shown in Fig. 1(c). The witness tolerates at least 25% noise as shown in Table I. The structure
of WCN is similar to that ofWGHZN . In the square brackets there are two terms. The first term is a projector on the

subspace for which〈S(CN)
k 〉 = +1 for evenk. The second term is a projector on the subspace for which〈S(CN)

k 〉 = +1
for oddk.

SUMMARY

In summary, we have presented entanglement witnesses for detecting genuine multi-qubit entanglement close to GHZ
and cluster states. These witnesses are easy to measure since they require only two measurement settings. For further
details, especially for the proofs of the theorems presented here, please see Ref. [10]. This reference also describes
how to generalize the results for graph states.
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