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Introduction

◮ It has been realized that entanglement can be a

useful resource in very general metrological tasks.

Even bound entangled states can be more useful

than separable states [1,2]. Such states are called

”useful” in short. However, there are highly entan-

gled states that are not useful for metrology [3].

◮ In the spirit of Ref. [4], we show that some bipartite

entangled quantum states that are not useful in lin-

ear interferometers become useful if several copies

are considered or ancillas are added [5].

◮ To support our claims, we present a general

method to find the local Hamiltonian for which a

given bipartite quantum state provides the largest

gain compared to separable states. Note that this

task is different, and in a sense more complex, than

maximizing the quantum Fisher information [5].

Quantum Fisher information

◮ A basic metrological task in a linear interferometer

is estimating the small angle θ for a unitary dynam-

ics Uθ = exp(−iH θ), where the Hamiltonian is the

sum of local terms. For bipartite systems it is

H = H1 +H2, (1)

where Hn are single-subsystem operators.

◮ Cramér-Rao bound:

(∆θ)2 ≥
1

mFQ[ρ,H ]
, (2)

where m is the number of indepedendent repeti-

tions, and the quantum Fisher information is de-

fined by the formula

FQ[ρ,H ] = 2∑
k,l

(λk −λl)
2

λk +λl

|〈k|H |l〉|2. (3)

Here, λk and |k〉 are the eigenvalues and eigenvec-

tors, respectively, of the density matrix ρ, which is

used as a probe state for estimating θ.

Metrological gain

◮ We define the metrological gain compared to sep-

arable states, for a given Hamiltonian, by [5]

gH (ρ) = FQ[ρ,H ]/F
(sep)

Q (H ), (4)

where the separable limit for local Hamiltonians is

F
(sep)

Q (H ) = ∑
n=1,2

[σmax(Hn)−σmin(Hn)]
2. (5)

◮ We are interested in the quantity [5]

g(ρ) = max
localH

gH (ρ), (6)

where a local Hamiltonian is just the sum of single

system Hamiltonians as in Eq. (1).

◮ The maximization task looks challenging since we

have to maximize a fraction, where both the numer-

ator and the denominator depend on the Hamilto-

nian.

Ancilla
◮ For the 3× 3-case, we consider the maximally en-

tangled state mixed with noise

ρ
(p)
AB = (1− p)|Ψ(me)〉〈Ψ(me)|+ p1/d2, (7)

which is useful if p < 0.3655.

◮ If a pure ancilla qubit is added [5]

ρ(anc) = |0〉〈0|a ⊗ρ
(p)
AB . a A B

then the state is useful if p < 0.3752.

◮ The Hamiltonian is

H (anc) = 1.2CaA ⊗1B +1aA⊗DB, (8)

where

CaA =
9

20
(2σx +σz)a ⊗|0〉〈0|a

+ 1a ⊗ (|2〉〈2|a −|1〉〈1|a),

D = diag(+1,−1,+1). (9)

Two copies

◮ We consider now two copies of the noisy 3×3 max-

imally entangled state [5]

ρ(tc) = ρ
(p)
AB ⊗ρ

(p)
A′B′ .

A′ B ′

A B

◮ Then, with the two-copy operator

H (tc) = DA⊗DA′ ⊗1BB′ +1AA′ ⊗DB⊗DB′ , (10)

the state is useful if p < 0.4164.

◮ The Hamiltonians presented are not the optimal

ones.

◮ Let us look for the optimal Hamiltonians, for which

gH is the largest.

Optimal Hamiltonian

◮ Instead of the quantum Fisher information, let us

consider the error propagation formula

(∆θ)2
M =

(∆M)2

〈

i[M,H ]
〉2
, (11)

which provides a bound on the quantum Fisher in-

formation

FQ[ρ,H ]≥ 1/(∆θ)2
M . (12)

◮ We will minimize Eq. (11) using the idea [4]

max
H

FQ[ρ,H ] = max
H ,M

〈

i[M,H ]
〉2

(∆M)2
. (13)

Based on these, we realize a see-saw, optimizing

alternatingly over H and M.

Analytic example Numerics

Ancilla 0.3752 0.3941

Second copy 0.4164 0.4170

See-saw iteration Pure states

◮ General case, pure state with a Schmidt decompo-

sition

|Ψ〉=
s

∑
k=1

σk|k〉a|k〉B,

where s is the Schmidt number, and the real pos-

itive σk Schmidt coefficients are in a descending

order.

◮ Direct calculation yields [4]

FQ[|Ψ〉,HAB] = 4(∆HAB)
2
Ψ

= 8 ∑
n=1,3,5,...,s̃−1

(σn +σn+1)
2,

which is larger than the separable bound, F
(sep)

Q =
8, whenever the Schmidt rank is larger than 1.
Here, s̃ is the largest even number for which s̃ ≤ s.
(For the Hamiltonian HAB, see Ref. [5].)

◮ In the limit of infinite copies, all entangled bipartite

pure states are maximally useful [5].
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