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What are Bell inequalities?

@ Historically, the first inequalities showing that many-body quantum
phenomena can lead to consequences very different from
classical ones.

@ Introduced by John Bell in 1964.
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EPR paradox

DESCRIPTION OF PHYSICAL REALITY

of lanthanum is 7/2, hence the nuclear magnetic
moment as determined by this analysis is 2.5
nuclear magnetons. This is in fair agreement
with the value 2.8 nuclear magnetons deter-
mined from La III hyperfine structures by the
writer and N. S. Grace.®

? M. F. Crawford and N. S. Grace, Phys. Rev. 47, 536
(1935).
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINsTEIN, B. PopoLskY AND N. RoOSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corr di

quantum is not or (2) these two

to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

1.

NY serious consideration of a physical
theory must take into account the
L

dis-
N

quantities cannot have si reality. Consi ion
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory seems to be a necessary one: every
element of the phvysical reality must have a counter-




EPR paradox I

Paper by Einstein, Podolsky, and Rosen (EPR), Phys. Rev. 1935.
@ The paper considered two particles in a singlet state
1

I\Usinglet> = \/§(|01> - |1 0))

@ Let us call the two parties A and B (Alice and Bob).

@ Some simple measurement scenarios are the following

Alice Bob
z=4+1 z=-1
z=-1 z=+1
X=4+1 z==+1




EPR paradox Il

Questions:
@ How does Bob’s particle know, what Alice measured?

@ The outcome is random in some cases. We should be able to
determine the outcome of the measurement. Is not physics
deterministic?

@ Maybe, we just do not have enough information. There can be
sofar unknown elements of reality that determine the
measurement outcome.
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Local hidden variable models

@ Do the measured quantities correspond to an element of reality
before the measurement? Let us assume that they do. (Reality)

@ Assume that no faster than light communication is possible.

(Locality).
A 9 g 82
Az B1
Figure:

Bipartite quantum system. We measure Ay and A, at party A, and
measure By and B, at party B.



Local hidden variable models i

@ Assume that we measure Ay and A, at party A, and measure B,
and B, at party B. Both A, and By have +1 measurement results.

@ A and By are quantum mechanically incompatible.

@ Let us assume that all the four measurement outcomes exist
before the measurement.

@ The idea is that at each measurement k, there are
a k, az k, b1,k, bg,k available.

@ We will show that quantum mechanics is not like that.



Local hidden variable models Il

@ We expect a measurement record like the following:

K| aix ax|bix box
. i e BT
I
T I
|
o 41
T

OOk WN =

@ Red color indicates the measured values. The other values we
cannot check, we can only assume that they were there.



Local hidden variable models IV

@ The correlations can be obtained as

M
1
(AmBn) = I ;; am kbn.k-

@ Here, k is the hidden variable. If | knew k, | could tell the outcome.
It is hidden, but it is there somewhere.



Local hidden variable models V

@ Usual formula, with 1 as a hidden variable for probablities of
outcomes for the discrete case

pla. bf) = fcm PLOANE) B,
Continuous case:
H(am, br) = f fa(am)gna(bn)dd

Here f’'s and g’s are probability density functions.

@ In words: all two-variable probability distributions can be given as
a sum of product distributions.
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The CHSH Bell inequality

@ Let us consider the following expression:
Ai1By + A2B1 + A1By — Ay Bs.
@ Let us now substitute +1 or —1 to A, and Byg. There are 16
combinations. We obtain
A1By + AsBy + A1Bo — AoBr <2
@ But, if we identify A with o and B with o, then there is a
quantum state for which
<Ux®o_x+U-y®0-x+o—x®0-y—0-y®0-y>:2\/5

This state is, apart from local transformations, the singlet
|01) —10). How is this possible?



The CHSH Bell inequality Il

@ The real measurement record is the following:

k|| aixk ak | bix bok
1 +1 +1

2 -1 -1

3 +1 | -1

4 -1 +1

5 +1 -1

6 -1 -1

@ The correlations can be obtained as

where Mp, , contains the indices corresponding to measuring Ap,
and B,. This is the reason that correlations do not fit an LHV
model.



Summary of Bell inequalities

@ Bell inequalities are made for bipartite (or multipartite systems).

@ At each party, we measure one of two (or more) operators, such
asoxandoy.

@ Bell inequalities are inequalities with correlation terms that are
constructed to exclude LHV models.

@ They have the form
(B)< C,

where B is the Bell operator and C is a constant.



Summary of Bell inequalities Il

@ C is the classical maximum. C is obtained from maximizing the
operator B for all cases when we replace the operators with the
measurement results. E.g., we replace ox with +1 or —1. In this
way we obtain the maximum assuming

o Reality: All outcomes of all measurement results exist before the
measurements.

o Locality: Alice does now know what Bob measures.

@ If for a quantum state |®) we have (B)¢ > C then we say that the
Bell inequality is violated by the quantum state.

@ We can also say that the measurement results cannot be
described by an LHV model.



Summary of Bell inequalities Il

@ The points corresponding to correlations fulfilling Bell inequalities
are within a polytope. Extreme points have correlations +1.

(4,B,)

<AzB1>=+1
<Asz>:+1

(4,B,)
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Mermin’s inequality

For N qubits, the Mermin inequality is given by

(X1 Xo X3 X4 X5 - - - Xn) — Z<Y1 YoX3XaXs - - - Xn)

+ Z<Y1 YoYsYaXs--- Xn) — ... + ... £ LMermin,

where Y, represents the sum of all possible permutations of the
particles that give distinct terms. Xj, Yx € {-1, +1}. Lvermin iS the
maximum for local states. It is defined as

. oN/2 for even N,
Mermin =\ 5(N-1)/2  for odd N.

@ The quantum maximum is 2N-1 (all terms are +1).



Mermin’s inequality Il

@ The state maximally violating the Mermin inequality is the GHZ
state.

@ The GHZ state is defined as
IGHZ) = — (]00...00) 4 [11..11)).

@ For the GHZ state we can identify X; and Yy with the Pauli spin
matrices ox and o,



Mermin’s inequality Il

@ Example for N = 3 qubits. The Mermin inequality is given as
(X1 X2X3) — (Y1 Y2 X3) = (Y1 X2 Y3) = (X1 Ya¥3) < 2.
@ Then, for the GHZ state we get 4 on the left-hand side, since for
the GHZ states
(X1 X2X3) = (Y1 Y2 X3) = (Y1 X2 Y3) = (X1 Y2 Y3) =4,
since

(Ox®@0x®0x) = +1,
(oy®@oy®oy) =1,
(cy®ox®0y) =-1,
(ox®oy®0y) =-1.
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Detection efficiency loophole

@ Only very small part of the photons are detected by a detector.
(The detector efficiency is typically much below 100%.)

@ Maybe, only the statistics of the detected events violate the Bell
inequalities.

@ If we knew the statistics of all events, we would not get a Bell
inequality violation.

@ Typically problem with photons.



Locality loophole

@ For each Bell inequality, at each party one of at least two
operators is measured.

@ If one party might know what is measured at the other party, some
unknown mechanism could still mimic the violation of the Bell
inequalities by communicating between the parties.

@ Typically problem with trapped cold ions.



Recent loophole free experiments

@ Lopphole free experiments are difficult, thus they have been
carried out only recently.

@ L. K. Shalm et al., Strong Loophole-Free Test of Local Realism,
Phys. Rev. Lett. 115, 250402 (2015).

@ M. Giustina et al., Significant-Loophole-Free Test of Bell’s
Theorem with Entangled Photons, Phys. Rev. Lett. 115, 250401
(2015).

@ B. Hensen et al., Loophole-free Bell inequality violation using
electron spins separated by 1.3 kilometres, Nature (London) 526,
682 (2015).

@ W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel,
M. Rau, and H. Weinfurter, Event-Ready Bell Test Using
Entangled Atoms Simultaneously Closing Detection and Locality
Loopholes, Phys. Rev. Lett. 119, 010402 (2017).
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