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Optical lattices of cold atoms

PHASE TRANSITION IN A 2D BOSE GAS
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@ Hamiltonian: Bose-Hubbard model for two-state atoms:
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@ Tunneling between sites for species a and b, self-interaction for
species a and b, and interaction between the two species.



Trapping atoms in an optical lattices

@ The idea of trapping with light is that they can trap the atoms such
that the atoms "feel a force" towards areas with a high light
intensity.

@ This happens when they use red detuning, that is, they use a
frequency smaller than the energy difference between the ground
state and the excited state of a two-state atom. (It can also
happen that they feel a force towards low areas with a low light
intensity, when they use blue detuning.)

@ This is the basis of optical dipole traps for neutral atoms.

@ See Egs. (15) and (16), and Fig. 1 in

R. Grimm, M Weidemldiller, and Y. B. Ovchinnikov,
Advances in Atomic, Molecular and Optical Physics Vol. 42, 95-170 (2000);
link: https://arxiv.org/abs/physics/9902072.


https://arxiv.org/abs/physics/9902072
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@ We will now review the paper

O. Mandel, M. Greiner, A. Widera, T. Rom, Th. W. Hansch and |. Bloch,
Controlled collisions for multi-particle entanglement of optically trapped atoms,
Nature 425, 937 (2003).

@ In the experiment described in the paper, they use two potentials
for two atomic states

@ Atoms in the two basis states can be trapped by different
potentials
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@ An atom can be delocalized by several lattices sites.



Controlled collisions Il

@ Two-particle example. They start from a |00), state.

lattice sites. To illustrate this, let us consider the case of two
neighbouring atoms, initially in state |¥) = |0);[0),., placed on
the jthand (j 4 1)th lattice site of the periodic potential in the spin-
state |0). First, both atoms are brought into a superposition of two

@ They create an |11) state by a n/2 rotation around the y-axis.

state |0). First, both atoms are brought into a superposition of two
internal states |0) and 1), using a w/2 pulse such that |¥)=
(10); 4 11),)(10);5y +[1);11)/2. Then, a spin-dependent transport'

@ They move the optical lattice trapping atoms in state |1) with
respect to the lattice trapping atoms in state |0)

(10); 4 11);)(10);.1 +[1);41)/2. Then, a spin-dependent transport'*
splits the spatial wave packet of each atom such that the wave packet
of the atom in state |0) moves to the left, whereas the wave packet of
the atom in state |1) moves to the right. The two wave packets are
separated by a distance Ax = A/2, such that now | ¥) = (|0);(0);;, +
10);11)j42 4+ 11);4110)1 +11);4111)542)/2, where in the notation
atoms in state |0) have retained their original lattice site index
and A is the wavelength of the laser forming the optical periodic
potential. The collisional interaction between the atoms™'*' over a

@ Note the term [1);;110);11, which corresponds to the case that the
two atoms are at the same site.
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@ Atoms on the same site interact with each other, due to that the
term |1);,1]0);11, picks up a phase

potential. The collisional interaction between the atoms™'>'* over a
time tpq will lead to a distinct phase shift ¢ = Ug;tpoa/hi, when

both atoms occupy the same lattice site j + I resulting in: |¥) =
(10)10);1.1 410511142+ #11);1 10041 +11)j4111);42)/2. Here Ugy

@ This way they realize a two-qubit unitary gate

U = diag(1,1,exp(-i¢),1) = exp(_,':Il —20-2 ® 1 +202¢).

@ After another n/2 pulse (rotating back) we obtain

proposed'" for generating a state-dependent phase shift ¢. The final
many-body state after bringing the atoms back to their original
site and applying a last /2 pulse can be expressed as |¥)=
L 1)11)j40 +14—IBELL). Here |BELL) denotes the Bell-

like state corresponding to (|0)(10);,; — [1);1) + 1110}, +
11j4)/2.

Thus, for ¢ = n, we get the Bell state. For ¢ = 2z, we obtain again
the initial state.
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@ For three particles, we can produce a Grenberger-Horne-Zielinger
(GHZ) state

This scheme can be generalized when more than two particles are
placed next to each other, starting from a Mott insulating state of
matter™. In such a Mott insulating state, atoms are localized to
lattice sites, with a fixed number of atoms per site. For three particles
for example, one can show that if ¢ = (2n + 1)w (with n being
an integer), so-called maximally entangled Greenberger-Horne—
Zeilinger (GHZ) states™ are realized. For a string of N > 3 atoms,

@ For more three particles, we can produce a so-called cluster state.
It is a highly entangled state

Zeilinger (GHZ) states™ are realized. For a string of N > 3 atoms,
where each atom interacts with its left- and right-hand neighbour
(see Fig. 1), the entire string of atoms can be entangled to form so-
called cluster states in a single operational step™. The controlled
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@ The dynamics for N particles is

N-1 (n) (n+1)
B , 1-o0, 140,
U= exp[ Ir; 5 ® 5 ¢).

Apart from local unitaries, this is an Ising dynamics.

@ This can be considered as two-qubit phase gates acting in
paralelel:

called cluster states in a single operational step™. The controlled

interactions described above can be viewed as being equivalent to an
ensemble of quantum gates acting in parallel™*.

U = Ur2Uzs...Un-1)n
where the two-qubit gate is

PR OB

Un(ny1) = exp|—i 5 ® > o|.
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