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@ Geometry of quantum states
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Bloch vector

@ For a single qubit, the density matrix has three real
parameters. It can be written as

[]l+ Z V/O‘/], (1)

I=x,y,z

where o are the Pauli spin matrices.
@ Using Tr(oko) = 26, we can write

Tr(o%)

That is, the Bloch vector has a maximal length for pure states.



Bloch vector Il

@ From Tr(0?) < 1, the condition for being physical is Eq. (2?), which

is equvalent to
D, P <1, )

I=x,y,z

The three-element vector is called the Bloch vector.



Bloch vector Il

@ Let us identify the points in (vy, vy, vz) corresponding to physical
states. They are in a ball.

@ The pure states are on the surface.

@ Mixed states are inside the Ball. This is because Tr(¢?) is directly
related to the length of the Bloch vector.

@ The |0) and |1) correspond to the North and South Pole.
@ |0) + exp(—i¢)|1) correspond to points on the equator.

Set of physical quantum states for a single qubit. The axes
correspond to v, for | = x, y, z. Pure states correspond to points
on the surface, mixed states correspond to internal points.



A single qudit (qunit):d-dimensional systems

@ For higher dimensional systems the picture is much more
complicated. Let us consider qudits with dimension d.

@ Similarly to the case before, a d x d Hermitian matrix with a unit
trace has d° — 1 degrees of freedom.

@ Hence, we can write a density matrix as a linear combination of
d? — 1 SU(d) generators as

1 1%
Q:aﬂ+§ ; Vig. (4)
Here,
Tr(gkgr) = 26k (5)

(Like for the Pauli matrices. Thus, we have something like the
generalized Pauli matrices. d = 3 : Gell-Mann matrices.)



A single qudit (qunit):d-dimensional systems

@ For higher dimensional systems the picture is much more
complicated. Let us consider qudits with dimension d.

@ Similarly to the case before, a d x d Hermitian matrix with a unit
trace has d° — 1 degrees of freedom. Hence, we can write a
density matrix as a linear combination of d? — 1 SU(d) generators

as .
-1
1 d

1
Q:aﬂ‘FE ; Vigi. (6)

Here,
Tr(gkg/) = 20x. (7)

@ Like for the Pauli matrices. Thus, we have something like the
generalized Pauli matrices. d = 3 : for instance, Gell-Mann
matrices.
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@ Gell-Mann matrices:

010 0 — 0 1 0 0
AM=11 0 0 =]z 0 0 AM=10 -1 0

000 0 0 0 0o 0 O

0 01 00 —:
AM=1]0 0 0 AM=]10 0 0

1 00 i 0 0

000 00 O 1 1 0 0
M=10 0 1 =10 0 —i d=—|01 0 ].

010 0 ¢+ O V3 00 -2

There are other possibilities: J. Lawrence, quant-ph/0403095.
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@ Let us again look at the points (v4, va, ..., V42_1) corresponding to
physical states.

@ First note that the set of convex. This is because mixing two
physical states o1 and o2, we always get a physical state

0 = po1 + (1 - p)oz. (8)
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Two convex objects and one that is not convex.
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@ On the next figure we will show the set of quantum states.
@ The cooridnate axis could be the v;, for example.
@ Inside the set there are the density matrices with full rank.

@ On the boundary there are the states with less than full rank, such
as for example rank-1 states, which are pure states.

D

Set of physical quantum states. Note that the set is convex.
A,B,D: rank-1 states. C: rank-2 state. E: full rank states.



A single qudit (qunit):d-dimensional systems VI

@ Observation. The following inequality is true

Amin(A + B) = Amin(A) + Amin(B). (9)

Proof. Let us consider that for a Hermitian matrix X we have
Amin(X) = min(1X1y). (10)
Then, for A and B Hermitian matrices we have
Amin(A+ B) = m()ﬂ(LDIA + Bly) > mwin(lﬁIAlw + m()h(lﬁlBIl/O
= Amin(A) + Amin(B). (11)

m]
We can prove similarly that

/lmax(A + B) < /lmax(A) + /lmax(B)- (1 2)



Full rank states

@ Using this, we can say the following.

@ Observation. Full-rank states are inside the set.
Proof. If the state is full rank, it means that for some small €

o =o+eH (13)

is also physical, where H is a trace 0 Hermitian matrix. Why is
that? See also the next figure.



Full rank states Il

(Y

We take an internal state o and consider the states ¢’ in its
neighborhood.



Full rank states Il

@ ltis physical since
©Q Traceis 1.
© Hermitian.
© Full rank means that
Amin(Q) >0, Amax(@) <1. (14)

Eigenvalues are nonzero for small |e|. This is because
/lmaX(Q) + /lmax(eH) = /lk(Q,) > /lmin(Q) + /lmin(EH)- (15)
Here we have

+edmin(H), ife>0,

/1min H) = .
() {—Ielzlmax(H), if e < 0.

Similar statement holds for An.x(eH). O



Non-full-rank states

@ Observation. Non-full-rank states are on the surface of the set.

@ Proof. If the state is not full rank, then it has zero eigenvalues.
Thus, there is an H such that ¢’ is aphisical for any € > 0 or any
e<0.

@ To be more explicit, let us write
o= UDU', (17)
such that D contains the eigenvalues. Here,
D = diag(24, A2, 13, ..., Aq), (18)
and the eigenvectors are

U =[V1), V), |W3), ..., [Wa)]. (19)



Non-full-rank states Il

@ Assume that 14y = 0. Then,
o =0+ (Vg Vyl-1/d) (20)

has a negative eigenvalue for any € < 0. The Identity is needed to
make the expression zero-trace.

@ This is because the eigenvalues of this matrix are
D' = diag(A1 —€/d, A2 —€/d, A3 —€/d, ..., A4g + €(1 - 1/d)). (21)

O
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