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Which quantum states are interesting?

We have infinite possibilities to pick a quantum state in a
multi-qubit system.

We would like to find useful ones or states that have interesting
symmetries.
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Single particle states

Pure states. The von Neumann entropy S = 0.

Completely mixed state

ϱcm =
1
d

d∑
k=1

|k⟩⟨k |.

The von Neumann entropy S = log d , maximal.
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Bipartite singlet state
The two-qubit singlet state looks like

|Ψsinglet⟩ =
1
√

2
(|01⟩ − |10⟩).

We get the same form after any basis transformation ( if we
transform the bases of the two qubits in the same way).This can
be seen as follows. Let us choose two vectors as

|v⟩ = α|0⟩+ β|1⟩,
|v⊥⟩ = β∗|0⟩ − α∗|1⟩.

Clearly,

⟨v |v⊥⟩ = 0,

Then, simple algebra yields

1
√

2
(|v⟩ ⊗ |v⊥⟩ − |v⊥⟩ ⊗ |v⟩) =

1
√

2
(|01⟩ − |10⟩).

This is true for any |v⟩ and |v⊥⟩.



Bipartite singlet state II

Due to the independence from the choice of the local basis, it is
invariant under a transformation of the type U ⊗ U, apart from a
global phase ϕ.

U ⊗ U |Ψsinglet⟩ = |Ψsinglet⟩ exp(−iϕ).

We can also say that

U ⊗ U |Ψsinglet⟩⟨Ψsinglet|(U ⊗ U)† = |Ψsinglet⟩⟨Ψsinglet|.

Hence,

U ⊗ U |Ψsinglet⟩⟨Ψsinglet| = |Ψsinglet⟩⟨Ψsinglet|U ⊗ U.

Thus, the density matrices of such states will commute with all
U ⊗ U :

[U ⊗ U, |Ψsinglet⟩⟨Ψsinglet|] = 0

for any U.



Bipartite singlet state III

Let us consider some operators of the form

σn⃗ =
∑

l=x ,y ,z

nlσl

where |n⃗| = 1. For n⃗ = (1, 0,0), σn⃗ = σx . For n⃗ = (0, 1,0),
σn⃗ = σy , and in general it is a generalization of the Pauli spin
matrices to an arbitrary direction.

Such operators all have eigenvalues ±1. If you measure σn⃗ on
party A and get a result, then if you also measure it on party B,
you will get the opposite result. This is true for every σn⃗.

This can be used in quantum communication to establish a bit
sequence that is known only by Alice and Bob and by nobody else.



Bipartite singlet state IV

For the singlet state

|Ψsinglet⟩ =
1
√

2
(|01⟩ − |10⟩).

we have anticorrelations

⟨σx ⊗ σx ⟩ = −1,
⟨σy ⊗ σy ⟩ = −1,
⟨σz ⊗ σz⟩ = −1.

For the collective angular moment, we have

[∆(σ
(1)
x + σ

(2))
x )]2 = [∆(σ

(1)
y + σ

(2))
y )]2 = [∆(σ

(1)
z + σ

(2))
z )]2 = 0.



Bipartite singlet state V
Why is it called a singlet? Remember the theory of angular
momentum, triplet and singlet subspace.
Alternatively, in quantum information, the maximally entangled
state

|Ψme⟩ =
1
√

2
(|00⟩+ |11⟩)

can also be called singlet.
A generalization for higher dimensions is the maximally entangled
state

|Ψme⟩ =
1
√

d

d∑
k=1

|kk⟩.

For the maximally entangled state, the reduced state is the
completely mixed state

TrA(|Ψme⟩⟨Ψme|) = TrB(|Ψme⟩⟨Ψme|) =
1

d
.

Thus, if we have access only to one of the two subsystems, we
know nothing.



Bipartite singlet state VI

For the maximally entangled state

|Ψme⟩ =
1
√

2
(|00⟩+ |11⟩)

we have

⟨σx ⊗ σx ⟩ = +1,
⟨σy ⊗ σy ⟩ = −1,
⟨σz ⊗ σz⟩ = +1.

For the collective angular moment, we have

[∆(σ
(1)
x − σ

(2))
x )]2 = [∆(σ

(1)
y + σ

(2))
y )]2 = [∆(σ

(1)
z − σ

(2))
z )]2 = 0.
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Flip operator

Flip operator
F |Ψ⟩|Φ⟩ = |Φ⟩|Ψ⟩.

For two-qubits

F =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
.

F =
1
2
(1 ⊗ 1+ σx ⊗ σx + σy ⊗ σy + σz ⊗ σz).

.
Eigenvalues of F : -1,1,1,1 (-1 for antisymmetric states, +1 for
symmetric states).



Flip operator II

For a comparison, remember that for the projector to the singlet
state we have

|Ψsinglet⟩⟨Ψsinglet| =
1
4
(1 ⊗ 1 − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz).

For the projector to the maximally entangled state we have

|Ψme⟩⟨Ψme| =
1
4
(1 ⊗ 1+ σx ⊗ σx − σy ⊗ σy + σz ⊗ σz).



Werner states
Definition. Werner states are states that are invariant under a
transformation of the type U ⊗ U (Werner, 1989).
For qubits, Werner states are noisy singlets for two-qubits

ϱWerner(p) = (1 − p)|Ψsinglet⟩⟨Ψsinglet|+ p
1

4
.

For two qudits, their density matrix is defined as

α1+ βF

where F is the flip operator. For systems larger than qubits, we do
not have a pure Werner state.
Twirling

τ(ϱ) =

∫
M(dU)U ⊗ Uϱ(U ⊗ U)†.

Used to transform states into a normal form, for example, before
distilling entanglement. Twirling leaves Werner states unchanged.
It transforms all quantum states to Werner states.



Werner states II

Multipartite Werner states are defined as states that are invariant
under U⊗N .

For d = 3, there are three-qudit Werner states that are pure. Such
a state is the fermionic singlet

Ψfs =
1
√

6
(|123⟩ − |132⟩+ −...).

There are entangled Werner states that do not violate any Bell
inequality. (See Bell inequalities later.)
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Isotropic states

Isotropic states are invariant under any transformation of the type
U ⊗ U∗.

Isotropic states are defined as the maximally entangled state

|Ψme⟩ =
1
√

d

d∑
k=1

|kk⟩.

mixed with white noise.

The maximally entangled state above is the pure isotropic state for
any dimension.
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Schrödinger cat states

Think on the usual the Schrödinger’s cat experiment. The cat is in
a superposition of being dead and alive.

Questions about the linearity of quantum mechanics, etc. Can
superpositions of macroscopically different objects exist?
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Greenberger-Horne-Zeilinger (GHZ) state

A possible generalization of the maximally entangled state to N
qubits is the GHZ state defined as

|GHZ⟩ =
1
√

2
(|00...00⟩+ |11..11⟩)

The entanglement of the GHZ state is very fragile. Measuring one
qubit destroys it, the state becomes separable:

Tr1(|GHZN⟩⟨GHZN |) =
1
2
(|0⟩⟨0|⊗(N−1) + |1⟩⟨1|⊗(N−1)).

Realized experimentally with trapped ions, superconducting
circuits for ∼ 100 qubits. It has also been realized in photons.



Greenberger-Horne-Zeilinger (GHZ) state II

Interestingly, the GHZ state is an eigenstate of operators that are
the products of single-qubit operators. For example, it is the
eigenstate of

σx ⊗ σx ⊗ ... ⊗ σx = σ⊗N
x

with an eigenvalue +1.What does this mean? If they flip all the
qubits, we get back the original states.

The GHZ state is also the eigenstate of the operators of the type

σ
(m)
z σ

(n)
z ,

for all m , n with an eigenvalue +1.



Greenberger-Horne-Zeilinger (GHZ) state III

If a state is eigenstate of operators O1 and O2, then it is also an
eigenstate of O1O2. Because of that the state is an eigenstate of
the products of such operators.

Note that all these operators commute with each other.

For all operators, we have O2 = 1.

These operators form a group that is called stabilizer. The group
has N generators and 2N elements. Phys. Rev. A. 1996.

(Definition of a discrete group: If A and B are in the group, so is
their product AB.)

Stabilizer theory is important for quantum error correction.

https://doi.org/10.1103/PhysRevA.54.1862


Greenberger-Horne-Zeilinger (GHZ) state IV

Just an example: for three-qubit GHZ states, we have the
following 8 operators

σx ⊗ σx ⊗ σx ,

σz ⊗ σz ⊗ 1,

1 ⊗ σz ⊗ σz ,

σz ⊗ 1 ⊗ σz ,

−σy ⊗ σy ⊗ σx ,

−σx ⊗ σy ⊗ σy ,

−σy ⊗ σx ⊗ σy ,

1 ⊗ 1 ⊗ 1.



Greenberger-Horne-Zeilinger (GHZ) state V

The fidelity with respect to GHZ states:

F (ϱ, |GHZ⟩⟨GHZ|) = Tr(ϱ|GHZ⟩⟨GHZ|)

=
1
2

Tr


ϱ


1 0 ... 0 1
0 0 ... 0 0
... ... ... ... ...

0 0 ... 0 0
1 0 ... 0 1




=

1
2
(ϱ1,1 + ϱ2N ,1 + ϱ1,2N + ϱ2N ,2N).

It is enough to know four elements of the density matrix.



Greenberger-Horne-Zeilinger (GHZ) state VI

For any N , we can define the following operators.

S(GHZ)
1 = σ

(1)
x ⊗ σ

(2)
x ⊗ ... ⊗ σ

(N)
x ,

S(GHZ)
k = σ

(k)
z σ

(k+1)
z , k = 2, ..,N .

They all commute with each other. The GHZ state is uniquely
determined by

Sk |GHZ⟩ = |GHZ⟩, k = 1, 2, ...,N .

The projector can be written as

|GHZ⟩⟨GHZ| =
1 + S1

2
1 + S2

2
· · ·

1 + SN

2
.

S1: xxxx...xx measurement, Sk , k ≥ 2 : zzzz...zz measurement.



Greenberger-Horne-Zeilinger (GHZ) state VII

Simple lower bound

|GHZ⟩⟨GHZ| ≥
1 + S1

2
+

(
1 + S2

2

) (
1 + S3

2

) (
1 + S4

2

)
... − 1.

It is easier to measure than the projector. Phys. Rev. Lett. 2005.

The S(GHZ)
k operators commute with each other and their square

is the identity 1.

Hence, any element of the group generated by them can be
obtained as(

S(GHZ)
1

)α1
(
S(GHZ)

2

)α2
(
S(GHZ)

3

)α3
...

(
S(GHZ)

N

)αN
,

where αk = 0,1. There are 2N elements of the group.

https://doi.org/10.1103/PhysRevLett.94.060501


Application: Quantum error correction

Classical error correction: we store 1 bit with odd number of bits
(e.g., 3).

If they are not the same, then majority vote matters. (This is the
reason for the odd number. Even number of voters cannot always
decide.)

Quantum error correction: we store 1 qubit on several qubits.

However, we must be careful. We cannot jut read out and correct.
Reading out would destroy the quantum state.



Bit-flip code

The bit flip code can correct a bit flip, as the name suggests. Thus,
it helps to fight the error of the type

ϵ(ϱ) = (1 − p)ϱ+ pσxϱσx .

It is based on using using redundancy:

α|0⟩+ β|1⟩ → α|000⟩+ β|111⟩.

Thus, one qubit is now stored on three qubits.



Bit-flip code II

The bit flip code can handle the case of 0 or 1 bit flip. Let us see in
detail.
First we need to detect which bit is flipped. This can be done by
measuring ⟨σ(1)z σ

(2)
z ⟩ and ⟨σ(2)z σ

(3)
z ⟩.

⟨σ
(1)
z σ

(2)
z ⟩ = +1, ⟨σ(2)z σ

(3)
z ⟩ = +1→ No error,

⟨σ
(1)
z σ

(2)
z ⟩ = −1, ⟨σ(2)z σ

(3)
z ⟩ = +1→ Error on qubit 1,

⟨σ
(1)
z σ

(2)
z ⟩ = +1, ⟨σ(2)z σ

(3)
z ⟩ = −1→ Error on qubit 3,

⟨σ
(1)
z σ

(2)
z ⟩ = −1, ⟨σ(2)z σ

(3)
z ⟩ = −1→ Error on qubit 2.

After detecting the error, we can correct it. We can just flip the
qubit on which we found an error.

We keep repeating these two steps to protect the qubit stored on
three qubits.



Bit-flip code III
Concrete example: let us assume a bit-flip error on the first qubit.
Then, our state is

α|100⟩+ β|011⟩.

For this state, we have

⟨σ
(1)
z σ

(2)
z ⟩ = −1, ⟨σ(2)z σ

(3)
z ⟩ = +1.

We can correct it by flipping the first qubit, i.e.,

ϱ→ σ
(1)
x ϱσ

(1)
x .

Then, at the end we will have

α|000⟩+ β|111⟩.
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Cluster states

Cluster states are defined with the stabilizing operators

S(GHZ)
1 = σ

(1)
x ⊗ σ

(2)
z ,

S(GHZ)
k = σ

(k−1)
z σ

(k)
x σ

(k+1)
z , k = 2, ..,N − 1,

S(GHZ)
N = σ

(N−1)
z ⊗ σ

(N)
x .

It can be obtained with an Ising type interaction as

|Ψ⟩ = e−iH π4

(
|0⟩+ |1⟩
√

2

)
⊗N ,

where an Ising spin-chain Hamiltonian is given as

H =
N−1∑
n=1

(1 − σ
(n)
z )(1+ σ

(n+1)
z ).



Cluster states II

Cluster states are defined with the stabilizing operators The
projector can be obtained

|C⟩⟨C| =
1 + S1

2
1 + S2

2
· · ·

1 + SN

2
.

S1,S3,S5: zxzxzx... measurement, S2,S4,S6, xzxzxz ...
measurement.
Simple lower bound

|C⟩⟨C| ≥
(
1 + S1

2

) (
1 + S3

2

) (
1 + S5

2

)
...

+

(
1 + S2

2

) (
1 + S4

2

) (
1 + S6

2

)
... − 1.

It is easier to measure than the projector, it has been used >10
times in experiments.
Phys. Rev. Lett. 2005, Phys. Rev. Lett. 2005.

https://doi.org/10.1103/PhysRevLett.94.060501
https://doi.org/10.1103/PhysRevLett.95.210502
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W state

It is defined as

1
√

N
(|100...⟩+ |010...⟩+ |001...⟩+...+|000..01⟩).

Interestingly, it maximizes the two-body concurrence among
symmetric states.

I we loose a single particle, we obtain

Tr1(|WN⟩⟨WN |) =
1
N
|0⟩⟨0|⊗(N−1) +

N − 1
N
|WN−1⟩⟨WN−1|.

The entanglement of the W state is robust. Loosing one qubit
does not destroy the entanglement.

Realized with trapped ions, photons, cold atoms, up to thousands
of particles.
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Symmetric Dicke states of qubits



Symmetric Dicke states of qubits II
Dicke states are simultaneous eigenstates of J⃗2 = J2

x + J2
y + J2

z
and Jz

J⃗2|j , jz , α⟩ = j(j + 1)|j , jz , α⟩,
Jz |j , jz , α⟩ = jz |j , jz , α⟩,

where α is a label needed for degeneracies.

For qubits, for j = N/2 (maximal) all Dicke states are symmetric.
J⃗2 is also maximal. jz = −N/2,−N/2 + 1, ...,N/2.

In this case, the α label is not needed. There is only a single state
for a given jz and j = N/2

Symmetric Dicke states of qubits are the equal superpositions of
the permutations of a series of 0’s and 1’s

|D(m)

N ⟩ ∝
∑

k

Pk (|0⟩⊗(N−m) ⊗ |1⟩⊗(m)),

where the sum is over all distinct permutations of 0’s and 1’s.



Symmetric Dicke states of qubits III

For |0⟩⊗N , we have ⟨Jz⟩ = +N/2.

For |1⟩⊗N , we have ⟨Jz⟩ = −N/2.

If half of the particles are 1, half of them are 0, we have m = N/2.
In this case, ⟨Jz⟩ = 0.

For example, for N = 4 the symmetric Dicke state is

|D(2)
4 ⟩ =

1
√

6
(|0011⟩+ |0101⟩+ |1001⟩+ |0110⟩+ |1010⟩+ |1100⟩).

Relation to W states: |D(1)
N ⟩ = |WN⟩.

Realized with trapped ions, photons, cold gases, up to thousands
of particles.
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