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0 Interesting quantum states
@ Motivation
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Which quantum states are interesting?

@ We have infinite possibilities to pick a quantum state in a
multi-qubit system.

@ We would like to find useful ones or states that have interesting
symmetries.



@ Interesting quantum states

@ A. Single particle states
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Single particle states

@ Pure states. The von Neumann entropy S = 0.

@ Completely mixed state

d
1
gem = ; Ik)(KI.

The von Neumann entropy S = log d, maximal.



@ Interesting quantum states

@ B. Bipartite singlet state
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Bipartite singlet state

@ The two-qubit singlet state looks like
1

|wsinglet> = \/E (|01> - |10>)

@ We get the same form after any basis transformation ( if we
transform the bases of the two qubits in the same way).This can
be seen as follows. Let us choose two vectors as

lvy =al0)+B[1),
lvi) =p%0)—a*(1).
Clearly,
(vivy)y =0,

Then, simple algebra yields

1 1
ﬁ(lv>® Vi) =lv)®Iv)) = E(IOU -110)).

This is true for any |v) and |v.).



Bipartite singlet state Il

@ Due to the independence from the choice of the local basis, it is
invariant under a transformation of the type U ® U, apart from a
global phase ¢.

U ® UVsinglet) = [Wsinglet) exp(—i¢).
We can also say that
U ® UWginglet(Wsingletl(U ® U)T = [Winglet X Wsinglet-
Hence,
U ® UWVsinglet X Vsingletl = [Wsinglet){Wsingletl U ® U.

Thus, the density matrices of such states will commute with all
U U:
[U e U, |wsinglet><wsinglet|] =0

for any U.



Bipartite singlet state lll

@ Let us consider some operators of the form

op= Z no

I=x,y,z

where || = 1. For i = (1,0,0), o5 = 0. For i = (0,1,0),
o = 0y, and in general it is a generalization of the Pauli spin
matrices to an arbitrary direction.

@ Such operators all have eigenvalues +1. If you measure o on
party A and get a result, then if you also measure it on party B,
you will get the opposite result. This is true for every .

@ This can be used in quantum communication to establish a bit
sequence that is known only by Alice and Bob and by nobody else.



Bipartite singlet state IV

@ For the singlet state

|wsinglet> R (|01> - |10>)

<|

we have anticorrelations

<O-X®O-X> = _19
<0-2®0-2> - _1

@ For the collective angular moment, we have

(A + NP = (a0 + PR = (A + N2 =0



Bipartite singlet state V

@ Why is it called a singlet? Remember the theory of angular
momentum, triplet and singlet subspace.

@ Alternatively, in quantum information, the maximally entangled
state

’
Wine) = — (/00 + |11
[Wme) @(I )+111))

can also be called singlet.
@ A generalization for higher dimensions is the maximally entangled
state

1 d
Wine) = —= |kk).
Vi 2

@ For the maximally entangled state, the reduced state is the
completely mixed state
1
)=
Thus, if we have access only to one of the two subsystems, we
know nothing.

TrA(|wme><wme|) = TrB(lwmexwmel



Bipartite singlet state VI

@ For the maximally entangled state

1
|Wme> = —= (|00> + |1 1 >)

V2
we have
<0-X®O-X> - +1’
(c;®0z) = +1.

@ For the collective angular moment, we have

(A NP2 = (a0 + PR = (A -2 = 0.



@ Interesting quantum states

@ C. Werner states
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Flip operator

@ Flip operator
FIW)[®) = |)|W).

@ For two-qubits

O OO =
o =+ 00
[eoNe o]
- O O o

1
F:E(]l®]l+0-x®0-x+o-y®0'y+a'z®a'z)

@ Eigenvalues of F : -1,1,1,1 (-1 for antisymmetric states, +1 for
symmetric states).



Flip operator I

@ For a comparison, remember that for the projector to the singlet
state we have

1
|wsinglet><wsinglet| = Z(]l QLl—-0x®0x— Oy®0y -0z ®0'z)~

@ For the projector to the maximally entangled state we have

1
ijexwmel:Z(ﬂ®]l+0'x®0'x—0'y®0'y+0'2®0'2).



Werner states

@ Definition. Werner states are states that are invariant under a
transformation of the type U ® U (Werner, 1989).

@ For qubits, Werner states are noisy singlets for two-qubits
1
QWerner(p) - (1 - p)|wsinglet><wsinglet| + pz
@ For two qudits, their density matrix is defined as

al 4+ BF

where F is the flip operator. For systems larger than qubits, we do
not have a pure Werner state.
@ Twirling

(o) = fM(dU)U@ Uo(Us U)'.

Used to transform states into a normal form, for example, before
distilling entanglement. Twirling leaves Werner states unchanged.
It transforms all quantum states to Werner states.



Werner states Il

@ Multipartite Werner states are defined as states that are invariant
under U®N.

@ For d = 3, there are three-qudit Werner states that are pure. Such
a state is the fermionic singlet

’
Y = —(|123) — [132) + —...).
f \/§(| )y —[132) )

@ There are entangled Werner states that do not violate any Bell
inequality. (See Bell inequalities later.)



@ Interesting quantum states

@ D. Isotropic states
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Isotropic states

@ Isotropic states are invariant under any transformation of the type
Ue U

@ Isotropic states are defined as the maximally entangled state

1 d
|wme> = |kk>
Vi

mixed with white noise.

@ The maximally entangled state above is the pure isotropic state for
any dimension.



@ Interesting quantum states

@ E. Schrédinger cat states
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Schrodinger cat states

@ Think on the usual the Schrédinger’s cat experiment. The cat is in
a superposition of being dead and alive.

@ Questions about the linearity of quantum mechanics, etc. Can
superpositions of macroscopically different objects exist?



@ Interesting quantum states

@ F. Greenberger-Horne-Zeilinger (GHZ) state
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Greenberger-Horne-Zeilinger (GHZ) state

@ A possible generalization of the maximally entangled state to N
qubits is the GHZ state defined as

1
GHZ) = — (100...00) + [11..11
| ) \/E(I )+ )

@ The entanglement of the GHZ state is very fragile. Measuring one
qubit destroys it, the state becomes separable:

Trl(lGHZN)(GHZNl) = %(|O><O|®(N_1) + |1 )(1 |®(N—1))

@ Realized experimentally with trapped ions, superconducting
circuits for ~ 100 qubits. It has also been realized in photons.



Greenberger-Horne-Zeilinger (GHZ) state Il

@ Interestingly, the GHZ state is an eigenstate of operators that are
the products of single-qubit operators. For example, it is the

eigenstate of
OxQ®0x®...00x = o"fN

with an eigenvalue +1. What does this mean? If they flip all the
qubits, we get back the original states.
@ The GHZ state is also the eigenstate of the operators of the type

O_(Zm)o_gn)’

for all m # n with an eigenvalue +1.



Greenberger-Horne-Zeilinger (GHZ) state lli

o If a state is eigenstate of operators O; and O, then it is also an
eigenstate of O; O.. Because of that the state is an eigenstate of
the products of such operators.

@ Note that all these operators commute with each other.

@ For all operators, we have O® = 1.

@ These operators form a group that is called stabilizer. The group
has N generators and 2V elements. Phys. Rev. A. 1996.

@ (Definition of a discrete group: If A and B are in the group, so is
their product AB.)

@ Stabilizer theory is important for quantum error correction.


https://doi.org/10.1103/PhysRevA.54.1862

Greenberger-Horne-Zeilinger (GHZ) state IV

@ Just an example: for three-qubit GHZ states, we have the
following 8 operators

Ox Q0x ®0y,
0, ®0,01,
1®0,®0;,
;1 ®0,,

-0y ®0y ®0y,
—Ox®0Ty ®0Ty,
-0y ®0x ®0Ty,

19l1®l.



Greenberger-Horne-Zeilinger (GHZ) state V

@ The fidelity with respect to GHZ states:

F(0,IGHZ)XGHZ|) = Tr(olGHZ)GHZ|)
1 0 .. 0 1
00 .. 00
1
0 0 .. 00
1 0 .. 0 1

1
= 5(@1,1 +0on 1 + 018 + 02N oN)-

@ It is enough to know four elements of the density matrix.



Greenberger-Horne-Zeilinger (GHZ) state VI

@ For any N, we can define the following operators.

81(GHZ) = cWeocPsg. .ecM,
S}((GHZ) = oWk k=2 N

They all commute with each other. The GHZ state is uniquely
determined by

SkIGHZ) = |GHZ),k = 1,2, ...,N.
@ The projector can be written as

1+S11+82‘ ‘1+SN

GHZ)(GHZ| = — 5 g

Sy xxxx...xx measurement, Sy, k > 2 : zzzz...zz measurement.



Greenberger-Horne-Zeilinger (GHZ) state Vi

@ Simple lower bound

IGHZ)(GHZ| >

1+S1+1+32 1+ S3\(1+ S, 1
2 2 2 2 '

It is easier to measure than the projector. Phys. Rev. Lett. 2005.

@ The S,((GHZ) operators commute with each other and their square
is the identity 1.

@ Hence, any element of the group generated by them can be
obtained as
(GHZ)\"' [ a(GHZ)\"2 [ o(GHZ)\"3 (GHZ)\*N
(s12) () (s57) (s

where ay = 0, 1. There are 2V elements of the group.


https://doi.org/10.1103/PhysRevLett.94.060501

Application: Quantum error correction

@ Classical error correction: we store 1 bit with odd number of bits
(e.g., 3).

@ If they are not the same, then majority vote matters. (This is the
reason for the odd number. Even number of voters cannot always
decide.)

@ Quantum error correction: we store 1 qubit on several qubits.

@ However, we must be careful. We cannot jut read out and correct.
Reading out would destroy the quantum state.



Bit-flip code

@ The bit flip code can correct a bit flip, as the name suggests. Thus,
it helps to fight the error of the type

e(0) = (1 = p)o + poxoox.
@ It is based on using using redundancy:
a|0) + B|1) — «|000) +B|111).

Thus, one qubit is now stored on three qubits.



Bit-flip code Il

@ The bit flip code can handle the case of 0 or 1 bit flip. Let us see in
detail.

@ First we need to detect which bit is flipped. This can be done by
measuring (0'(21)0'(22)> and <0'(22)0'(23)).

(Mo®y = 11, (e®eP®y = 11 > No error,

@Me@y — 1, (4" (2) (3)> +1 — Error on qubit 1,
<U(z1)022)> = 41, (0'2 sz )y = _1 = Error on qubit 3,
(@Me®y = 1, (7P®y = —1 5 Error on qubit 2.

@ After detecting the error, we can correct it. We can just flip the
qubit on which we found an error.

@ We keep repeating these two steps to protect the qubit stored on
three qubits.



Bit-flip code Il

@ Concrete example: let us assume a bit-flip error on the first qubit.
Then, our state is
a[100) + 5|011).

@ For this state, we have
(1)

@@y = 1, (®c®y = 11.

@ We can correct it by flipping the first qubit, i.e.,
(1, (1)

O >0y 00y .

@ Then, at the end we will have

|000) + B[111).



@ Interesting quantum states

@ G. Cluster states
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Cluster states

@ Cluster states are defined with the stabilizing operators

SgGHZ) — ag) ® (7(22),
SEHA) - Gk W0 o —p N1,
SI(VGHZ) _ ‘T(zN_” ® O'E(N)-

@ It can be obtained with an Ising type interaction as
iy 1
Nl) — e_IHZ (|O> +| >)®N,
V2
where an Ising spin-chain Hamiltonian is given as

N-1
H=> (1-o)1+o"").

n=1



Cluster states Il

@ Cluster states are defined with the stabilizing operators The
projector can be obtained

14+511+ S5 1+ Sy

2 2 2
Sy, S3, Sg: zxzxzx... measurement, So, Sy, Sg, XZXZXZ ...
measurement.

@ Simple lower bound

ICXCl =

1+ 5 1+S3 14+ Sy
IC><C|2( . )( . )( . )

()

2 2 2

It is easier to measure than the projector, it has been used >10
times in experiments.
Phys. Rev. Lett. 2005, Phys. Rev. Lett. 2005.



https://doi.org/10.1103/PhysRevLett.94.060501
https://doi.org/10.1103/PhysRevLett.95.210502

@ Interesting quantum states

@ H. W state
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@ It is defined as

%I (1100...) +1010...) + [001....)+...+/000..01)).

Interestingly, it maximizes the two-body concurrence among
symmetric states.

@ | we loose a single particle, we obtain
1 a(N-1) , N—1
Tr1 (IWNXWhI) = ~/10X0l + N Wh-1 X Wiv-l.

The entanglement of the W state is robust. Loosing one qubit
does not destroy the entanglement.

@ Realized with trapped ions, photons, cold atoms, up to thousands
of particles.



@ Interesting quantum states

@ |. Symmetric Dicke states
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Symmetric Dicke states of qubits

PHYSICAL REVIEW VOLUME 93, NUMBER 1 JANUARY 1, 1954

Coherence in Spontaneous Radiation Processes

R.H.
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received August 25, 1953)

By considering a radiating gas as a single quantum-mechanical system, energy levels corresponding to
certain between indi 1 molecules are describ emission of radiation in a
transition between two such levels leads to the emission of coherent radiation. The discussion is limited first
to a gas of dimension small compared with a wavelength. Spontancous radiation rates and natural line
breadths are calculated. For a gas of large extent the effect of photon recoil momentum on coherence is
calculated. The effect of a radiation pulse in exciting “super-radiant” states is discussed. The angular corre-
lation between successive photons spontaneously emitted by a gas initially in thermal equilibrium is calcu-

lated.

N the usual treatment of spontaneous radiation by
a gas, the radiation process is calculated as though
the separate molecules radiate independently of each
other. To justify this assumption it might be argued
that, as a result of the large distance between molecules
and subsequent weak interactions, the probability of a
given molecule emitting a photon should be independent
of the states of other molecules. It is clear that this
model is incapable of describing a coherent spontaneous
radiation process since the radiation rate is proportional
to the molecular concentration rather than to the square
of the concentration. This simplified picture overlooks
the fact that all the molecules are interacting with a
common radiation field and hence cannot be treated as
independent. The model is wrong in principle and many

of the results obtained from it are incorrect.
A simple example w111 be used to illustrate the madc-

N

L

triplet and singlet states of the particles. The triplet
state is capable of radiating to the ground state (triplet)
but the singlet state will not couple with the triplet
system. Consequently, only the triplet part is modified
by the coupling with the field. After a long time there
is still a probability of one-half that a photon has not
been emitted. If, after a long period of time, no photon
has been emitted, the neutrons are in a singlet state and
it is impossible to predict which neutron is the excited
one.

On the other hand, if the initial state of the two
neutrons were triplet with s=1, #,=0 namely a state
with one excited neutron, a photon would be certain to
be emitted and the transition probability would be just
double that for a lone excited neutron. Thus, the
presence of the unexcited neutron in this case doubles
the radiation rate.




Symmetric Dicke states of qubits Il

o Dicke states are simultaneous eigenstates of J2 = J2 + J2 + J2
and J;

Pljjzay = G+ Dz ),
JZ|j,jZ’ a’) — jZU’jZ’ a>’
where « is a label needed for degeneracies.

@ For qubits, for j = N/2 (maximal) all Dicke states are symmetric.
J? is also maximal. j, = -N/2,-N/2 +1,...,N/2.

@ In this case, the a label is not needed. There is only a single state
for a given j; and j = N/2

@ Symmetric Dicke states of qubits are the equal superpositions of
the permutations of a series of 0’s and 1’s

D7) o< 3" Pi(10y2 N @ 1)S(m)),
k

where the sum is over all distinct permutations of 0’s and 1’s.



Symmetric Dicke states of qubits lli

@ For |0)®N, we have (J,) = +N/2.
@ For |[1)®N, we have (J,) = —-N/2.

@ If half of the particles are 1, half of them are 0, we have m = N/2.
In this case, (J,) = 0.
@ For example, for N = 4 the symmetric Dicke state is
1

|D§f)>:\/6(|oo11>+|o1o1>+|1oo1>+|o11o>+|1o1o>+|11oo>).

@ Relation to W states: |D,(J)> = |Wn).

@ Realized with trapped ions, photons, cold gases, up to thousands
of particles.
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