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No-cloning theorem

©          Nature Publishing Group1982



No-cloning theorem II
We are looking for a mechanism that clones quantum states

U |Ψ〉 ⊗ |0〉 = |Ψ〉 ⊗ |Ψ〉,

where U is a unitary dynamics.
Let us see why this is not possible. For the two basis states we have

U |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉,

U |1〉 ⊗ |0〉 = |1〉 ⊗ |1〉.

Then, due to the linearity of quantum mechanics

U(
|0〉+ |1〉
√

2
) ⊗ |0〉 =

1
√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉).

However, we wanted

1
√

2
(|0〉+ |1〉) ⊗

1
√

2
(|0〉+ |1〉).

Thus, a quantum state cannot be cloned.
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Measurement problem

Von Neumann postulated two types of quntum dynamics: unitary
dynamics for closed systems and the dynamics under
measurement, if the system is connected to a measuement
device.

We would expect that the dynamical description for closed
systems can be used even for the case of a quantum
measuement, if the measured particle and the measuring device
are in one closed system.

However, this is not the case. A unitary dynamics cannot describe
the dynamics of the measured particle, the device (D) and the
envoronment (E).



Measurement problem II

We have the spin, the measurement device and the environment.
The measurement dynamics should be

U |s = +
1
2
〉 ⊗ |D0〉 ⊗ |E0〉 = |s = +

1
2
〉 ⊗ |D+1/2〉 ⊗ |E ′〉,

and

U |s = −
1
2
〉 ⊗ |D0〉 ⊗ |E0〉 = |s = −

1
2
〉 ⊗ |D−1/2〉 ⊗ |E ′′〉.



Measurement problem III

If the spin is in a superposition of s = +1/2 and s = −1/2, then we
get

U
1
√

2

(
|s = +

1
2
〉+ |s = + −

1
2
〉

)
⊗ |D0〉 ⊗ |E0〉

=
1
√

2

(
|s = +

1
2
〉 ⊗ |D+1/2〉 ⊗ |E ′〉+ |s = −

1
2
〉 ⊗ |D−1/2〉 ⊗ |E ′′〉

)

We get a superposition of two states, rather than one or the other.

This is a fundamental problem in quantum mechanics. A possible
solution is the many-world interpretation.



Measurement problem IV
A possible solution is the many-world interpretation.

The idea of MWI originated in the Ph. D. thesis of Everett at
Princeton in 1957, with the title "The Theory of the Universal
Wavefunction", developed under his thesis advisor John Archibald
Wheeler.

(figure from Wikipedia)



Measurement problem V

U
1
√

2

(
|s = +

1
2
〉+ |s = + −

1
2
〉

)
⊗ |D0〉 ⊗ |E0〉 ⊗ |MIND0〉.

=
1
√

2

(
|s = +

1
2
〉 ⊗ |D+1/2〉 ⊗ |E ′〉 ⊗ |MIND+1/2〉

+ |s = −
1
2
〉 ⊗ |D−1/2〉 ⊗ |E ′′〉 ⊗ |MIND−1/2〉

)
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Quantum teleportation

A quantum state cannot be copied/cloned.

But, it can be transferred from one particle to another one such
that the state of the original particle is destroyed.



Quantum teleportation II

C      A B

Alice Bob

A,B,C are spin-1/2 particles ≡ qubits.

Alice wants to send the state of particle C to Bob.

AB is in a singlet state (|00〉+ |11〉)/
√

2.



Quantum teleportation II

C      A B

Alice Bob

Bell
measurement

2 bit classical
communication

Restore the 
quantum state 

1. Measurement of AC in the Bell basis

2. Alice sends the two-bit result to Bob

3. Depending on the result, Bob carries out %→ σl%σl , where
l ∈ {0, x , y , z}.

4. The state of B is the same as the state of C was at the
beginning.



Quantum teleportation III

Initial state:

|Ψ〉AB ⊗ |Ψ〉C =
1
√

2
(|00〉AB + |11〉AB) ⊗ (α|0〉C + β|1〉C).

Alice and Bob want to teleport. Alice has two particles: A and C. She
wants to teleport the C particle to the B particle of Bob. Particle A is
helping the teleportation.

Alice makes a measurement on particles A and C in the Bell
basis. The Bell basis consists of the states:

|Φ±〉AC =
1
√

2
(|00〉AC ± |11〉AC)

and

|Ψ±〉AC =
1
√

2
(|01〉AC ± |10〉AC).



Quantum teleportation IV
To see how this works, one can rewrite

|Ψ〉AB ⊗ |Ψ〉C

= 1
2 [|Φ+〉AC ⊗ (α|0〉B + β|1〉B) + |Φ−〉AC ⊗ (α|0〉B − β|1〉B)

+|Ψ+〉AC ⊗ (β|0〉B + α|1〉B) + |Ψ−〉AC ⊗ (β|0〉B − α|1〉B)].

Hence, measurement of AC in the Bell basis results in one of the
four possibilities above for particle B. Knowing the result of the
measurement, we can obtain

(α|0〉B + β|1〉B).

Thus, we successfully teleported the state of particle C to particle
B.

Note that this does not make possible faster than light
communication, since the result of the Bell measurement has to
be sent classically.



Quantum teleportation V

Experiment: Experimental quantum teleportation Dik
Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald
Weinfurter & Anton Zeilinger, Nature 390, 575-579 (11 December
1997).



Quantum teleportation VI
143 km, employing an optical free-space link between the two
Canary Islands of La Palma and Tenerife, Zeilinger’s group, 2012.

(figure from www.iqoqi-vienna.at)
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Classical cryptography

One-time Pad: The safest cryptography. However, one needs to
send the code book to the other person.

Problem: What if someone else finds the codebook?

Private key, public key: Encryption with the private key, decryption
with the public key.

Public key is known to everybody, private key is not known to
everybody.

Problem: what if the private key becomes known to outsiders?



Quantum cryptography:
Coding in the |0〉/|1〉 or on the (|0〉+ |1〉)/(|0〉 − |1〉)
basis

Let us code a classical bit b ∈ 0,1 in a qubit. We can use the 0/1
basis as before:

|q〉 = (1 − b)|0〉+ b|1〉.

We can also use another basis, the 0 + 1/0 − 1 basis:

|q′〉 = (1 − b)
|0〉+ |1〉
√

2
+ b
|0〉 − |1〉
√

2
.

If we do not know the basis, we cannot recover the bit b.



Quantum cryptography:
Coding in the |0〉/|1〉 or on the (|0〉+ |1〉)/(|0〉 − |1〉)
basis II

Let us assume we used the 0/1 to code the bit

|q〉 = (1 − b)|0〉+ b|1〉.

Then, a single measurement of

M = 0 · |0〉〈0|+ 1 · |1〉〈1|

will give the bit exactly.

If the bit was encoded in the 0 + 1/0 − 1 basis, then we get with
50% probability 0, 50% probability 1, independently from b.



Quantum cryptography:
Coding in the |0〉/|1〉 or on the (|0〉+ |1〉)/(|0〉 − |1〉)
basis III

Note: if the quantum state could be copied, we could just copy the
state many times. From many copies, we could guess, which
basis was used.

Thus, it is very important that the quantum states cannot be
copied.



Quantum money
S. Wiesner 1970, a graduate student at Columbia University,
published in 1983.

Every banknote has a code, a series of bits.
The bits are encoded either in the 0/1 basis or in the 0+1/0-1
basis.
The bank has the list of bases.
The banknote cannot be copied.
Its validity can be verified by the bank.



Quantum cryptography (BB84)
Alice sends the secret message in qubits, randomly choosing the
bases: 0/1 or (0+1)/(0-1).

Bob receives the qubits and measures them in randomly chosen
bases.

Alice and Bob decides, using a public classical channel, for which
qubits they used the same bases.

(figure from Wikipedia)



Quantum cryptography (BB84) II

Why is it safe?
Without knowing in which basis the bit was encrypted, it is not
possible to know the bit.

The evesdropping (Eve) causes discrepancies between the qubits
announced over the public channel. Errors of the channel also
cause such discrepacies.

New notions
Information reconciliation: Removing the errors by parity checks.

Privacy amplification: Using the keys of Alice and Bob, creates a
new shorter key about which Eve has very few information.



Ekert protocol (E91)

Protocol based on entangled particles: Two-particle singlets

1
√

2
(|01〉 − |10〉).

are distributed between Alice and Bob.

Remember that 〈σl ⊗ σl〉 = −1 for l = x , y , z.

Both Alice and Bob measure in some basis, then they announce
what they measured.

Note: It can be proven that If the particles violate a Bell inequality,
then there was really a singlet, not just shared random numbers.



Experiments

In 2004, the world’s first bank transfer using QKD was carried in
Vienna, Austria. (Zeilinger group, Vienna)

Quantum encryption technology provided by the Swiss company
ID Quantique was used in the Swiss canton (state) of Geneva to
transmit ballot results to the capital in the national election
occurring on 21 October 2007. (Gisin group, Geneva)

In 2013, Battelle Memorial Institute installed a QKD system built
by ID Quantique between their main campus in Columbus, Ohio
and their manufacturing facility in nearby Dublin.
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Quantum error correction

Classical error correction: we store 1 bit with odd number of bits
(e.g., 3).

If they are not the same, then majority vote matters. (This is the
reason for the odd number. Even number of voters cannot always
decide.)

Quantum error correction: we store 1 qubit on several qubits.

However, we must be careful. We cannot jut read out and correct.
Reading out would destroy the quantum state.



Bit-flip code

The bit flip code can correct a bit flip, as the name suggests. Thus,
it helps to fight the error of the type

ε(%) = (1 − p)% + pσx%σx .

It is based on using using redundancy:

α|0〉+ β|1〉 → α|000〉+ β|111〉.

Thus, one qubit is now stored on three qubits.



Bit-flip code II

The bit flip code can handle the case of 0 or 1 bit flip. Let us see in
detail.
First we need to detect which bit is flipped. This can be done by
measuring 〈σ(1)

z σ
(2)
z 〉 and 〈σ(2)

z σ
(3)
z 〉.

〈σ
(1)
z σ

(2)
z 〉 = +1, 〈σ(2)

z σ
(3)
z 〉 = +1→ No error,

〈σ
(1)
z σ

(2)
z 〉 = −1, 〈σ(2)

z σ
(3)
z 〉 = +1→ Error on qubit 1,

〈σ
(1)
z σ

(2)
z 〉 = +1, 〈σ(2)

z σ
(3)
z 〉 = −1→ Error on qubit 3,

〈σ
(1)
z σ

(2)
z 〉 = −1, 〈σ(2)

z σ
(3)
z 〉 = −1→ Error on qubit 2.

After detecting the error, we can correct it. We can just flip the
qubit on which we found an error.

We keep repeating these two steps to protect the qubit stored on
three qubits.



Bit-flip code III

Concrete example: let us assume a bit-flip error on the first qubit.
Then, our state is

α|100〉+ β|011〉.

For this state, we have

〈σ
(1)
z σ

(2)
z 〉 = −1, 〈σ

(2)
z σ

(3)
z 〉 = +1.

We can correct it by flipping the first qubit, i.e.,

%→ σ
(1)
x %σ

(1)
x .

Then, at the end we will have

α|000〉+ β|111〉.



Phase-flip code

The phase flip code can correct a phase flip, as the name
suggests. Thus, it helps to fight the error of the type

ε(%) = (1 − p)% + pσz%σz .

The ideas are similar, no we have σz rather than σx .



Shore code

It needs 9 qubits to store 1 qubit. It uses the econding

α|0〉+ β|1〉 → α|0〉S + β|1〉S,

where

|0〉S =
1

2
√

2
(|000〉+ |111〉) ⊗ (|000〉+ |111〉) ⊗ (|000〉+ |111〉),

|1〉S =
1

2
√

2
(|000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉 − |111〉).

The Shore code can correct any 1 bit error: 1 bit flip error, 1 phase
flip error or both.

Saying it differently: it can correct any unitary transformation
happening on a single qubit.
P. W. Shor, Phys. Rev. A 52, R2493(R) (1995).
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Imperfect cloning
While perfect clonig is not possible, we can create imperfect
clones.

1→ N cloning means that from a single state we create N
imperfect copies

The larger the N , the worse is the quality of the copies.

For instance, 1→ ∞ cloning means that we can make infinite
number of copies. The procedure is simple.

We measure in the {|0〉, |1〉} basis.

If the result is |0〉, then the output is |0〉⊗N .

If the result is |1〉, then the output is |1〉⊗N .

Here, N can be arbitrarily large. Of course, the clones are not
perfect. It works well for states close to |0〉 and |1〉, but works very
bad for the state (|0〉+ |1〉)/

√
2.



Imperfect cloning II

Let us deduce the average Fidelity of 1→ ∞ cloning for qubits.

Let us clone the state

%~a =
1
2

(1 + ~a~σ), (1)

where
~σ = (σx , σy , σz). (2)

~a is a unit vector corresponding to a point on the Bloch sphere. %~a
is a pure state.

Fidelity of % with respect to a pure state |Ψ~a〉 is

F (%, |Ψ~a〉) = Tr(%|Ψ~a〉〈Ψ~a|) (3)



Imperfect cloning III

The projector to the state given by ±~b is given by

Projector
±~b =

1
2

(1 ± ~b~σ). (4)

The probability of measuring the two outcomes is

P
±~b = Tr(Projector

±~b · %~a) =
1
2

(1 ± ~a~b). (5)

The corresponding fidelities are

F
±~b = Tr(%

±~b · %~a) = P
±~b, (6)

where
%
±~b = Projector

±~b. (7)



Imperfect cloning IV

Average fidelity

Fav =

∫
Bloch sphere

d~b(F+P+ + F−P−)

=
1
2

+
1
2

∫
Bloch sphere

d~b(~a~b)2

=
2
3
. (8)

If we produce fewer copies then the fidelity of cloning can be
larger.

V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Rev. Mod. Phys. 77, 1225 (2005).
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