Activation of metrologically useful genuine multipartite entanglement, arXiv:2203.05538

Róbert Trényi ${ }^{1,2,3,4}$, Árpád Lukács ${ }^{5,1}$, Paweł Horodecki6,7, Ryszard Horodecki ${ }^{6}$, Tamás Vértesi ${ }^{8}$, Géza Tóth ${ }^{1,2,3,4,9, ~}$
${ }^{1}$ Theoretical Physics and ${ }^{2}$ EHU Quantum Center,
University of the Basque Country (UPV/EHU), Bilbao, Spain
${ }^{3}$ Donostia International Physics Center (DIPC), San Sebastián, Spain
${ }^{4}$ Wigner Research Centre for Physics, Budapest, Hungary
${ }^{5}$ Department of Mathematical Sciences, Durham University
${ }^{6}$ International Centre for Theory of Quantum Technologies, University of Gdansk, Poland
${ }^{7}$ Faculty of Applied Physics and Mathematics, National Quantum Information Centre, Gdansk University of Technology, Gdansk, Poland
${ }^{8}$ Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary
${ }^{9}$ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

14th Symposium KCIK-ICTQT on Quantum Information, Gdansk, 19 May 2023

Simple example

- Let us consider $M=2$ copies of the 3 -qubit state

$$
\varrho_{p}=p|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|+(1-\mathrm{p}) \frac{1}{2}(|000\rangle\langle 000|+|111\rangle\langle 111|)
$$

with $p=0.8$.

- Then, we have

$$
\mathcal{F}_{Q}\left[\varrho, H_{2}\right]=28.0976
$$

(2 copies)
while for $M=1$ we have

$$
\mathcal{F}_{Q}\left[\varrho, H_{1}\right]=23.0400
$$

(1 copy)

- In both cases,

$$
\mathcal{F}_{Q}^{(\mathrm{sep})}\left(H_{k}\right)=12
$$

hence for the metrological gain

$$
g_{1}=1.92<g_{2}=2.34
$$

Simple example II

- Considering the state

$$
\varrho_{p}=p|\mathrm{GHZ}\rangle\langle\mathrm{GHZ}|+(1-\mathrm{p}) \frac{1}{2}(|000\rangle\langle 000|+|111\rangle\langle 111|)
$$

we took care of phase flip errors.

- We can also correct bitflip errors in the usual way, if the state is outside of the $\{|000\rangle,|111\rangle\}$ subspace.

Simple example III

- Directly relevant to experiments with GHZ states!
- One can obtain maximal visibility.

$N=2$ and $N=4$ particles, Sackett et al., Experimental entanglement of four particles, Nature (2000).

Comparison to error correction

3 logical qubits,
$M=3$ copies, $N=3$ qubits

1 logical qubit=3 physical qubits

W. Dür, M. Skotiniotis, F. Fröwis, B. Kraus, Phys. Rev. Lett. (2014).

Comparison to error correction II

- How do we store a three-qubit GHZ state?
- Multicopy metrology:

$$
\begin{aligned}
|\mathrm{GHZ}\rangle & =\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \otimes \frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \otimes \frac{1}{\sqrt{2}}(|000\rangle+|111\rangle), \\
H & =\sigma_{z}^{(1)} \sigma_{z}^{(4)} \sigma_{z}^{(7)}+\sigma_{z}^{(2)} \sigma_{z}^{(5)} \sigma_{z}^{(8)}+\sigma_{z}^{(3)} \sigma_{z}^{(6)} \sigma_{z}^{(9)} .
\end{aligned}
$$

Improves performance without syndrome measurements.

- Error correction for bit-flip code (phase-flip code is similar):

$$
\begin{aligned}
|\mathrm{GHZ}\rangle & =\frac{1}{\sqrt{2}}(|000000000\rangle+|111111111\rangle) \\
H & =\sigma_{z}^{(1)} \sigma_{z}^{(2)} \sigma_{z}^{(3)}+\sigma_{z}^{(4)} \sigma_{z}^{(5)} \sigma_{z}^{(6)}+\sigma_{z}^{(7)} \sigma_{z}^{(8)} \sigma_{z}^{(9)}
\end{aligned}
$$

+ error syndrome measurements + error correction.

Comparison to error correction III

- Let us see our scheme for $M=3, N=3$.
- Let be ϱ some mixture of the states with at most 1 copy with a phase error

$$
\begin{aligned}
& \left|\Psi_{+++}\right\rangle=|\mathrm{GHZ}+\rangle \otimes|\mathrm{GHZ}+\rangle \otimes|\mathrm{GHZ}+\rangle \\
& \left|\Psi_{-++}\right\rangle=|\mathrm{GHZ}-\rangle \otimes|\mathrm{GHZ}+\rangle \otimes|\mathrm{GHZ}+\rangle \\
& \left|\Psi_{+-+}\right\rangle=|\mathrm{GHZ}+\rangle \otimes|\mathrm{GHZ}-\rangle \otimes|\mathrm{GHZ}+\rangle \\
& \left|\Psi_{++-}\right\rangle=|\mathrm{GHZ}+\rangle \otimes|\mathrm{GHZ}+\rangle \otimes|\mathrm{GHZ}-\rangle
\end{aligned}
$$

where

$$
|G H Z \pm\rangle=\frac{1}{\sqrt{2}}(|000\rangle \pm|111\rangle)
$$

We still obtain

$$
\mathcal{F}_{Q}[\varrho, H]=\max
$$

