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Motivation

The quantum Fisher information (QFI) plays a central role in
metrology.

In linear interferometers, the QFI is directly related to multipartite
entanglement.

Thus, one can detect entanglement with precision measurements.
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Entanglement

A state is (fully) separable if it can be written as∑
k

pk%
(1)
k ⊗ %

(2)
k ⊗ ...⊗ %

(N)
k .

If a state is not separable then it is entangled (Werner, 1989).



k -producibility/k -entanglement

A pure state is k -producible if it can be written as

|Φ〉 = |Φ1〉 ⊗ |Φ2〉 ⊗ |Φ3〉 ⊗ |Φ4〉....

where |Φl〉 are states of at most k qubits.

A mixed state is k -producible, if it is a mixture of k -producible pure
states.
e.g., Gühne, GT, NJP 2005.

If a state is not k -producible, then it is at least (k + 1)-particle
entangled.

two-producible three-producible
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Quantum metrology

Fundamental task in metrology

ϱθϱ U (θ )=exp (−iAθ )

We have to estimate θ in the dynamics

U = exp(−iAθ).



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

(∆θ)2 ≥ 1
FQ[%,A]

, (∆θ)−2 ≤ FQ[%,A].

where FQ[%,A] is the quantum Fisher information.

The quantum Fisher information is

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2 := FQ(%; i[%,A]),

where % =
∑

k λk |k〉〈k |.



Special case A = Jl

The operator A is defined as

A = Jl =
N∑

n=1

j(n)
l , l ∈ {x , y , z}.

Magnetometry with a linear interferometer
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The quantum Fisher information vs. entanglement

For pure product states of N spin-1
2 particles

|Ψ〉 = |ψ(1)〉 ⊗ |ψ(2)〉 ⊗ |ψ(3)〉 ⊗ ...⊗ |ψ(N)〉,

we have

FQ[%, Jz ] = 4(∆Jz)2 = 4
N∑

n=1

(∆j(n)
z )2 ≤ N.

For separable states (mixtures of pure product states) we have

FQ[%, Jl ] ≤ N, l = x , y , z,

since FQ[%,A] is convex in %.

Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009);
Hyllus, Gühne, Smerzi, Phys. Rev. A 82, 012337 (2010).



The quantum Fisher information vs. multipartite
entanglement

For N-qubit k -producible states states, the quantum Fisher
information is bounded from above by

FQ[%, Jl ] ≤ nk2 + (N − nk)2.

where n is the integer part of N
k .

If k is divisor of N then

FQ[%, Jl ] ≤ kN.

P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322 (2012).



The quantum Fisher information vs. macroscopic
superpositions

Macroscopic superpositions (e.g, GHZ states, Dicke states)

FQ[%, Jl ] ∝ N2,

F. Fröwis and W. Dür, New J. Phys. 14 093039 (2012).



Summary of various types of limits

Bounds for the QFI

Shot-noise limit: FQ[%, Jl ] ≤ N,

Heisenberg limit: FQ[%, Jl ] ≤ N2.

Bounds for the precision

Shot-noise limit: (∆θ)2 ≥ 1
N ,

Heisenberg limit: (∆θ)2 ≥ 1
N2 .



Scaling of the precision in a noisy environment

Is the scaling FQ[%, Jl ] ∝ N2 possible? Too good to be true?

One feels that this is probably not possible.

Due to uncorrelated local noise the scaling returns to the
shot-noise scaling

FQ[%, Jl ] ≤ const.× N

R. Demkowicz-Dobrzański J. Kołodyński, M. Guţǎ, Nat. Commun. 3, 1063
(2012); B. Escher, R. de Matos Filho, L. Davidovich, Nat. Phys. 7, 406 (2011).



Entanglement detection with precision
measurement

Entanglement detection in cold gases.

B. Lücke et al., Science, Science 334, 773 (2011).



Entanglement detection with precision
measurement II

Entanglement in a photonic experiment.

Krischek et al., Phys. Rev. Lett. 107, 080504 (2011)
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Families of the Quantum Fisher information

Definition
The quantum Fisher information is defined as

F̂ f (%; A) = Tr(AJ−1
f (%)A),

where

Jf
%(A) = f (L%R%−1)R%,

and

L%(A) = %A, R%(A) = A%.

f : R+ → R+ is a standard operator monotone function, which has
the properties xf (x−1) = f (x) and f (1) = 1.
Mean based on f

mf (a,b) = af
(

b
a

)
.



Families of the Quantum Fisher information II

Form with density matrix eigenvalues and eigenvectors

F̂ f
Q(%; A) =

∑
i,j

1
mf (λi , λj)

|〈i |A|j〉|2.



The ususal QFI, F̂Q(%;A) 6= FQ[%,A]

For the arithmetic mean mf (a,b) = a+b
2 ,

F̂Q(%; A) =
∑
i,j

2
λi + λj

|Aij |2.

F̂ (%; A) is the smallest among the various types of the generalzied
quantum Fisher information. [Normalization f(1)=1.]

The quantum Fisher information is defined for the linear dynamics

%output(t) = %+ At

Cramer Rao bound: (∆t)2 ≥ 1/F̂ (%; A).

D. Petz, J. Phys. A: Math. Gen. 35, 929 (2002);
P. Gibilisco, F. Hiai, and D. Petz, IEEE Trans. Inform. Theory 55, 439 (2009).
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Families of the variances

Definition
Generalized variance

v̂arf
%(A) = 〈A, Jf

%(A)〉 − (Tr%A)2,

where f is the matrix monotone function mentioned before.

For the arithmetic mean mf (a,b) = a+b
2 , we get the usual variance

v̂arf
%(A) = 〈A2〉% − 〈A〉2%.

It is the largest among the generalized variances.



Families of the variances II

Form given with the density matrix eigenvalues and eigenvectors

varf
%(A) =

∑
i,j

mf (λi , λj)|Aij |2 −
∣∣∣∑λiAii

∣∣∣2 .
The usual variance is the largest. (The arithmetic mean is the
largest mean.)

For pure states, they give

2mf (1,0)× (∆A)2.
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Family of the Quantum Fisher information for
unitary dynamics

1 In physics, we are typically interested in a unitary dynamics

%output(t) = exp(−iAθ)% exp(+iAθ),

2 Then,
F̂ f

Q[%,A] = F̂ f (%; i[%,A]).

3 We propose the normalization

F f
Q[%,A] = 2mf (1,0)F̂ f

Q[%,A]

4 For a pure state |Ψ〉 we have

F f
Q[%,A] = 4(∆A)2

Ψ.



Family of the Quantum Fisher information for
unitary dynamics II

The generalized QFIs given with the density matrix eigenvalues

F f
Q[%,A] = 2

∑
i,j

mf (1,0)

mf (λi , λj)
(λi − λj)

2|Aij |2.

For pure states, equals 4(∆A)2.

The usual QFI is the largest. (The arithmetic mean is the largest
mean.)

Exactly the opposite of what we had with the original
normalization!



The ususal QFI, unitary dynamics

For the arithmetic mean mf (a,b) = a+b
2 ,

FQ[%,A] =
∑
i,j

2
λi + λj

(λi − λj)
2|Aij |2.

"THE" quantum Fisher Information.

The quantum Fisher information is defined for the linear dynamics

%output(t) = e−iAθ%e+iAθ.

Cramer Rao bound: (∆θ)2 ≥ 1/F [%,A].



Family of the Quantum Fisher information for
unitary dynamics IV

Definition
Generalized quantum Fisher information FQ[%,A]

1 For pure states, we have

FQ[|Ψ〉〈Ψ|,A] = 4(∆AΨ)2.

The factor 4 appears to keep the consistency with the existing
literature.

2 For mixed states, FQ[%,A] is convex in the state.



Family of variances

1 We propose the normalization

varf
%(A) =

v̂arf
%(A)

2mf (1,0)
.

2 For a pure state |Ψ〉 we have

varf
Ψ(A) = (∆A)2

Ψ.



Family of variances II

Form with density matrix eigenvalues

varf
%(A) =

1
2

∑
i,j

mf (λi , λj)

mf (1,0)
|Aij |2 −

∣∣∣∑λiAii

∣∣∣2 .
For pure states, equals (∆A)2.

The usual variance is the smallest.

Exactly the opposite of what we had with the original
normalization!



Family of variances III

Definition
The generalized variance var%(A) is defined by the following two
requirements.

1 For pure states, the generalized variance equals the usual
variance

varΨ(A) = (∆A)2
Ψ.

2 For mixed states, var%(A) is concave in the state.



Families II
QFI:

original,
linear dynamics,
by D. Petz

unitary dynamics
unitary dynamics,
our normalization

F̂ f (%; A) F̂ f [%,A] = F̂ f (%; i[%,A])
F f

Q[%,A]

= 2mf (1,0)F̂ f
Q[%,A]

usual QFI
is smallest

-
usual QFI FQ[%,A]
is largest

variance:

original,
by D. Petz

our normalization

v̂arf
%(A) varf

%(A) =
v̂arf

%(A)

2mf (1,0)

usual variance
is largest

usual variance
is smallest
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The QFI as a convex roof

We have a family of generealized QFI’s, which are convex in the
state and all equal to four times the variance for pure states.

There is a smallest of such functions defined by the convex roof.

The usual QFI equals

FQ[%,A] = 4 inf
{pk ,Ψk}

∑
k

pk (∆A)2
Ψk
,

where
% =

∑
k

pk |Ψk 〉〈Ψk |.

GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013).



The variance as a concave roof

We have a family of generealized variances, which are concave in
the state and all equal to the variance for pure states.

There is a largest of such functions defined by the concave roof.

The usual variance is

(∆A)2
% = sup

{pk ,Ψk}

∑
k

pk (∆A)2
Ψk
,

where
% =

∑
k

pk |Ψk 〉〈Ψk |.

GT, D. Petz, Phys. Rev. A 87, 032324 (2013).



Summary of statements

Decompose % as
% =

∑
k

pk |Ψk 〉〈Ψk |.

Then,
1
4

FQ[%,A] ≤
∑

k

pk (∆A)2
Ψk
≤ (∆A)2

%

holds.

Both inequalities can be saturated by some decompostion..



Variance

For 2× 2 covariance matrices there is always {pk .Ψk} such that

C% = sup
{pk ,Ψk}

∑
k

pkCΨk ,

[Z. Léka and D. Petz, Prob. and Math. Stat. 33, 191 (2013)]

For 3× 3 covariance matrices, this is not always possible.
Necessary and sufficient conditions for an arbitrary dimension. [D.
Petz and D. Virosztek, Acta Sci. Math. (Szeged) 80, 681 (2014)]



Why convex and concave roofs are interesting?

Convex and concave roofs appear in entanglement theory (E.g.,
Entanglement of Formation).

They do not often appear in other fields.

Expression with convex and concave roofs typically cannot be
computed with a single formula.

The variance and the QFI are defined via roofs, but they can
easily be calculated.



Outline
1 Motivation

Motivation
2 Basics of Entanglement

Entanglement
3 Entanglement condition with the Quantum Fisher information

Which quantum Fisher information is it?
Entanglement condition based on QFI

4 Families of the Quantum Fisher information and variance
Families of the Quantum Fisher information
Families of the variances
Families for unitary dynamics and another normalization
Convex roofs and concave roofs

5 Results related to the QFI being a convex roof
Estimating the QFI using the Legendre transform
Estimating the QFI with semidefinite programming
Bounding the quantum Fisher information based on the variance

42 / 70



Witnessing the quantum Fisher information based
on few measurements

The bound based on w = Tr(%W ) is given as

FQ[%, Jz ] ≥ sup
r

[
rw − F̂Q (rW )

]
.

The Legendre transform is

F̂Q(W ) = sup
%

(〈W 〉% − FQ[%, Jz ]).

Optimization over %: complicated.
Due to the properties of FQ mentioned before, it can be simplified

F̂Q(W ) = sup
µ

{
λmax

[
W − 4(Jz − µ)2

]}
.

Optimziation over a single parameter!

I. Apellaniz, M. Kleinmann, O. Gühne, and G. Tóth, Phys. Rev. A 95, 032330 (2017),
Editors’ Suggestion.



Example: bound based on fidelity

Let us bound the quantum Fisher information based on some
measurements.
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Quantum Fisher information vs. Fidelity with respect to
(a) GHZ states and (b) Dicke states for N = 4,6,12.

Apellaniz et al., Phys. Rev. A 2017

FQ ≥ N2(1 − 2FGHZ)
2

if FGHZ > 1
2
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QFI as a convex roof used for numerics
The optimization over convex decompostions for FQ[%,A] can be
rerwrittem as

FQ[%,A] = 4
(
〈A2〉% − sup

{pk ,|Ψk 〉}

∑
k

pk 〈A〉2Ψk

)
,

where {pk , |Ψk 〉} refers to a decomposition of %.
Can be rewritten as an optimization over symmetric separable
states

FQ[%,A] = 2 inf
%ss∈Ss,

Tr1(%ss)=%

〈(A⊗ 1− 1⊗ A)2〉%ss ,

where Ss is the set of symmetric separable states.
States in Ss are mixtures of symmetric product states, i.e., they
are of the form ∑

k

pk |Ψk 〉〈Ψk |⊗2.

Every symmetric separable state can be written in this form.



QFI as a convex roof used for numerics II

Set of symmetric states with a positive definite partial transpose
SSPPT ⊃ Ss.

Lower bound on the quantum Fisher information

FQ[%,A] ≥ inf
%SPPT∈SSPPT,

Tr1(%SPPT)=%

〈(A⊗ 1− 1⊗ A)2〉%SPPT .

The bound can be calculated with semidefinite programming.

It is a lower bound, not an upper bound!

Similar ideas can be used to look for a lower bound on the QFI for
given operator expectation values, or compute other convex-roof
quantities (e.g., linear entropy of entanglement).

GT, T. Moroder, O. Gühne, PRL 2015;
see also M. Christandl, N. Schuch, A. Winter, PRL 2010.
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Bound based on the variance

Let us define the quantity

V (%,A) := (∆A)2 − 1
4

FQ[%,A].

It is well known that V (%,A) = 0 for pure states.

For states sufficiently pure V (%,A) is small.

For states that are far from pure, the difference can be larger.



Generalized variance

Generalized variances (with "old" normalization) are defined as

v̂arf
%(A) =

∑
ij

mf (λi , λj)|Aij |2 −
(∑

λiAii

)2
,

where f : R+ → R+ is a standard matrix monotone function, and
mf (a,b) = bf (b/a) is a corresponding mean. Petz, J. Phys. A 35, 929
(2002);
Gibilisco, Hiai, and Petz, IEEE Trans. Inf. Theory 55, 439 (2009).

The f (x) are bounded as

fmin(x) ≤ f (x) ≤ fmax(x),

where
fmin(x) =

2x
1 + x

, fmax(x) =
1 + x

2
.



Generalized variance II

The generalized variance with f (x) = fmax(x) is the usual variance

v̂armax
% (A) = 〈A2〉 − 〈A〉2.

(mf is the arithmetic mean.)

Let us now consider the generalized variance with fmin(x)
mmin(a,b) = 2ab/(a + b). Then,

v̂armin
% (A) ≡ V (%,A).

(mf is the harmonic mean.)

V is the smallest among the generalized varinces

V (%,A) = (∆A)2 − 1
4

FQ[%,A] ≤ v̂arf
%(A) ≤ (∆A)2.



Bound based on the variance, rank-2

Observation
For rank-2 states %,

(∆A)2 − 1
4FQ[%,A] = 1

2 [1− Tr(%2)](σ̃1 − σ̃2)2

holds, where σ̃k are the nonzero eigenvalues of the matrix

Akl = 〈k |A|l〉.

Here |k〉 are the two eigenvectors of % with nonzero eigenvalues. Thus,
σ̃k are the eigenvalues of A on the range of %.

Note
Slin(%) = 1− Tr(%2) = 1−

∑
k

λ2
k =

∑
k 6=l

λkλl .

G. Tóth, arxiv:1701.07461.



Bound based on the variance, arbitrary rank

Observation
For states % with an arbitrary rank we have

(∆A)2 − 1
4FQ[%,A] ≤ 1

2Slin(%) [σmax(A)− σmin(A)]2 ,

where σmax(X ) is the largest eigenvalue of X .

Estimate FQ:

1 Measure the variance.

2 Estimate the purity.

3 Find a lower bound on FQ.

G. Tóth, arxiv:1701.07461.



Bound based on the variance, arbitrary rank II

Proof. V can also be defined as a concave roof

V (%,A) = (∆A)2 − 1
4FQ[%,A] = sup

{pk ,Ψk}

∑
k

pk (〈A〉Ψk − 〈A〉)
2.

We want to show that

sup
{pk ,Ψk}

∑
k

pk (〈A〉Ψk − 〈A〉)
2 ≤ 1

2Slin(%) [σmax(A)− σmin(A)]2 .

Our relation is true, if and only if

X := 1
2Slin

(∑
k

pk |Ψk 〉〈Ψk |

)
[σmax(A)− σmin(A)]2

−
∑

k

pk (〈A〉Ψk − 〈A〉)
2

is non-negative for all possible choices for pk and |Ψk 〉.



Bound based on the variance, arbitrary rank III

Minimize X over ~p = (p1,p2,p3, ...) under the constraints pk ≥ 0,∑
k pk = 1, while keeping the |Ψk 〉 fixed. Further constraint:

〈A〉 =
∑

k pk 〈A〉Ψk = A0, where A0 is a constant.

X is a concave function of pk ’s. Hence, it takes its minimum on the
extreme points of the convex set of the allowed values for ~p. For
the extreme points, at most two of the pk ’s are non-zero.

Thus, we need to consider rank-2 states only, for which the
statement is true due to previous observation

(∆A)2 − 1
4FQ[%,A] = 1

2 [1− Tr(%2)](σ̃1 − σ̃2)2.



Bound based on the variance, numerical test

(∆A)2 − 1
4FQ[%,A] ≤ 1

2Slin(%)[σmax(A)− σmin(A)]2. (7)



Summary

We discussed that the quantum Fisher information can be defined
as a convex roof of the variance.

We also discussed, hoe the quantum Fisher information is
connected to quantum entanglement.

THANK YOU FOR YOUR ATTENTION!



Appendix

The variance as a convex roof



The variance as a convex roof

The usual variance equals four times this concave roof

(∆A)2
% = sup

{pk ,Ψk}

∑
k

pk (∆A)2
Ψk
,

where
% =

∑
k

pk |Ψk 〉〈Ψk |.

GT, D. Petz, Phys. Rev. A 87, 032324 (2013).



The variance as a convex roof II
Decomposition of the density matrix % =

∑
k pk |Ψk 〉〈Ψk |.

For all decompositions {p̃k , |Ψ̃k 〉}

(∆A)2
% ≥ max

{pk ,|Ψk 〉}

∑
k

pk (∆A)2
Ψk
≥
∑

k

p̃k (∆A)2
Ψ̃k
.

Important property of the variance:

(∆A)2
% =

∑
k

p̃k

[
(∆A)2

Ψ̃k
+ (〈A〉Ψ̃k

− 〈A〉%)2
]
.

If for % there is a decomposition {p̃k , |Ψ̃k 〉} such that the
subensemble expectation values equal the expectation value for
the entire ensemble (i.e., 〈A〉Ψ̃k

= 〈A〉% for all k ) then

(∆A)2
% = max

{pk ,|Ψk 〉}

∑
k

pk (∆A)2
Ψk

=
∑

k

p̃k (∆A)2
Ψ̃k
.

In this case, for %, the usual variance (∆A)2
% is the concave roof of

the variance.



The variance as a convex roof III

Lemma 1

For any rank-2 % there is such a decompositions {p̃k , |Ψ̃k 〉}.

Eigendecomposition of the state %

% = p|Ψ1〉〈Ψ1|+ (1− p)|Ψ2〉〈Ψ2|.
We define now the family of states

|Ψφ〉 =
√

p|Ψ1〉+
√

1− p|Ψ2〉eiφ.

Expectation value of the operator A

〈Ψφ|A|Ψφ〉 =〈A〉% + 2
√

p(1− p)Re
(
〈Ψ1|A|Ψ2〉eiφ

)
.

Clearly, there is an angle φ1 such that

Re
(
〈Ψ1|A|Ψ2〉eiφ1

)
= 0.

For this angle

〈Ψφ|A|Ψφ〉 = 〈Ψφ+π|A|Ψφ+π〉 = 〈A〉%.



The variance as a convex roof IV

In the basis of the states |Ψ1〉 and |Ψ2〉, we can write the
projection operators onto |Ψφ1〉 as

|Ψφ1〉〈Ψφ1 |

=

[
p

√
p(1− p)e−iφ1√

p(1− p)e+iφ1 1− p

]
.

|Ψφ1+π〉〈Ψφ1+π|

=

[
p −

√
p(1− p)e−iφ1

−
√

p(1− p)e+iφ1 1− p

]
.

% can be decomposed as

% =
1
2

(|Ψφ1〉〈Ψφ1 |+ |Ψφ1+π〉〈Ψφ1+π|) .

We proved Lemma 1.



The variance as a convex roof V

Lemma 2
Eigendecomposition of a density matrix

%0 =

r0∑
k=1

λk |Ψk 〉〈Ψk |

with all λk > 0. Rank of the density matrix as r(%0) = r0, r0 ≥ 3. Define
A0 as

A0 = Tr(A%0).

We claim that for any A, %0 can always be decomposed as

%0 = p%− + (1− p)%+,

such that r(%−) < r0, r(%+) < r0, and Tr(A%+) = Tr(A%−) = A0.

For the proof, see GT, D. Petz, Phys. Rev. A 87, 032324 (2013).



The variance as a convex roof VI

λ
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λ
2
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3
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ρ
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1

1

1

Figure: The rank-3 mixed state %0 is decomposed into the mixture of
two rank-2 states, %− and %+.

From Lemma 1 and Lemma 2, the main statement follows

(∆A)2
% = inf

{pk ,Ψk}

∑
k

pk (∆A)2
Ψk
.



Appendix

Quantities Averaged over SU(d) generators



Quantities Averaged over SU(d) generators

Any trcaeless Hermitian operator with Tr(A2) = 2 can be obtained
as

A~n := ~AT~n,

where ~A = [A(1),A(2),A(3), ...]T , ~n is a unitvector with real
elements, (.)T is matrix transpose.

We define the average over unit vectors as

f =

∫
f (~n)M(d~n)∫

M(d~n)
,

We would like to compute average of V for operators.

It is zero only for pure states. → Similar to entropies.



Bound on the average V

Observation
The average of V over traceless Hermitian matrices with a fixed norm
is given as

V (%) =
2

d2 − 1

[
Slin(%) + H(%)− 1

]
,

where d is the dimension of the system, and

H(%) = 2
∑
k ,l

λkλl

λk + λl
= 1 + 2

∑
k 6=l

λkλl

λk + λl
.



Average quantum Fisher information

The average of the quantum Fisher information can be obtained
as

F Q[%] =
8

Ng
[d − H(ρ)].

It is maximal for pure states.



Bound based on the variance II

exp[S(̺)]
1 2 3
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(̺
)

1

1.5
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Figure: The relation between the von-Neumann entropy and H(%) for d = 3
and 10.
(filled area) Physical quantum states.
(dot) Pure states.
(square) Completely mixed state.

We see that
H(%) ∼ exp[S(%)].



Other type of quantum Fisher information

The alternative form of the usual quantum Fisher information is
defined as

d2

d2θ
S(%||e−iAθ%e+iAθ)|θ=0 = F log

Q [%,A].

With that

F
log
Q [%] = − 2

Ng

(
2dS + 2

∑
k

log λk

)
.
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