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0 Motivation
@ Motivation



@ The quantum Fisher information (QFI) plays a central role in
metrology.

@ In linear interferometers, the QFI is directly related to multipartite
entanglement.

@ Thus, one can detect entanglement with precision measurements.



e Basics of Entanglement
@ Entanglement



Entanglement

A state is if it can be written as

S eV ®o? ®... 00"
k

If a state is not separable then it is entangled (Werner, 1989).




k-producibility/k-entanglement

A pure state is if it can be written as
[®) = |®1) ® |92) ® |03) @ |D4)....
where |®)) are states of at most k qubits.

A mixed state is k-producible, if it is a mixture of k-producible pure
states.
e.g., Guhne, GT, NJP 2005.

@ If a state is not k-producible, then it is at least (k + 1)-particle
entangled.

two-producible three-producible



e Entanglement condition with the Quantum Fisher information
@ Which quantum Fisher information is it?



Quantum metrology

@ Fundamental task in metrology

0 U (6)=exp(—id0) op

@ We have to estimate 6 in the dynamics

U = exp(—IiA¥b).



The quantum Fisher information

@ Cramér-Rao bound on the precision of parameter estimation

(AG)? >

1 -
> e (807 <Folo Al

where Fg[o, A] is the quantum Fisher information.
@ The quantum Fisher information is
(A — )2 s .
Falo,Al=2» ———[(k|A|l)|* := Fq(o; i[o, A]),
ale: Al ; oy KIAIDI ale: e, Al)

where o = 37, AlK) (K].



Special case A = J,

@ The operator A is defined as

N
A=J = Zjl(”), le{x,y,z}.
n=1

@ Magnetometry with a linear interferometer




e Entanglement condition with the Quantum Fisher information

@ Entanglement condition based on QFI



The quantum Fisher information vs. entanglement

@ For pure product states of N spln-f particles

W) = o) @ [v®) @ [p®) @ ... @ [pV),

we have

Folo, Jz] = 4(AJ;)? 42 (OS2

@ For separable states (mixtures of pure product states) we have
Folo,J]1 <N, I=x,y,z,
since Fglo, A] is convex in o.

Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009);
Hyllus, GUhne, Smerzi, Phys. Rev. A 82, 012337 (2010).



The quantum Fisher information vs. multipartite

entanglement

@ For N-qubit k-producible states states, the quantum Fisher
information is bounded from above by

Folo, Ji] < nk® 4 (N — nk)?.

where nis the integer part of .

o If k is divisor of N then

Falo, Ji] < kN.

P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322 (2012).



The quantum Fisher information vs. macroscopic

superpositions

@ Macroscopic superpositions (e.g, GHZ states, Dicke states)
FQ[&Qa J/] X N27

F. Frowis and W. Dir, New J. Phys. 14 093039 (2012).



Summary of various types of limits

Bounds for the QFI
@ Shot-noise limit: Fglo, J)] < N,

@ Heisenberg limit: Fg[o, Jj] < N2.

Bounds for the precision

@ Shot-noise limit: (A#)? > l,\,,

@ Heisenberg limit: (A0)? > 1.



Scaling of the precision in a noisy environment

@ Is the scaling Fglo, Jj] o< N? possible? Too good to be true?
@ One feels that this is probably not possible.

@ Due to uncorrelated local noise the scaling returns to the
shot-noise scaling

Folo, Jj] < const. x N

R. Demkowicz-Dobrzanski J. Kotodynski, M. Guta, Nat. Commun. 3, 1063
(2012); B. Escher, R. de Matos Filho, L. Davidovich, Nat. Phys. 7, 406 (2011).



Entanglement detection with precision

measurement

@ Entanglement detection in cold gases.

C 16T
i

Phase estimation uncertainty, A8/A8,,
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B. Liicke et al., Science, Science 334, 773 (2011).



Entanglement detection with precision

measurement Il

@ Entanglement in a photonic experiment.
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Krischek et al., Phys. Rev. Lett. 107, 080504 (2011)



o Families of the Quantum Fisher information and variance
@ Families of the Quantum Fisher information



Families of the Quantum Fisher information

Definition
The quantum Fisher information is defined as
Fl(0: A) = Tr(AL; ' (0)A),

where

Jf

g(A) = f(LgRg_1 )R@v

and

Ly(A) = oA, R, (A) = Ap.

V.

e f:RT — R is a standard operator monotone function, which has
the properties xf(x~') = f(x) and f(1) = 1.

@ Mean based on f b
my(a, b) = af <a> .



Families of the Quantum Fisher information Il

@ Form with density matrix eigenvalues and eigenvectors

A 1
fr.. _ i i\ |2
Fala ) = A



The ususal QFI, Fy(o; A) # Folo, Al

@ For the arithmetic mean my(a, b) = &%,

) 2
Foloi A) =Y —— Al
IRy

@ F(o; A) is the smallest among the various types of the generalzied
quantum Fisher information. [Normalization f(1)=1.]

@ The quantum Fisher information is defined for the linear dynamics

Qoutput(t) =0+ At

@ Cramer Rao bound: (At)2 > 1/F(o; A).

D. Petz, J. Phys. A: Math. Gen. 35, 929 (2002);
P. Gibilisco, F. Hiai, and D. Petz, IEEE Trans. Inform. Theory 55, 439 (2009).



o Families of the Quantum Fisher information and variance

@ Families of the variances



Families of the variances

Definition
Generalized variance

vary(A) = (A, J5(A)) — (TroAY,

e

where f is the matrix monotone function mentioned before.

@ For the arithmetic mean m¢(a, b) = %b, we get the usual variance

varl(A) = (A%), — (A)2

4 ‘.

@ ltis the largest among the generalized variances.



Families of the variances i

Form given with the density matrix eigenvalues and eigenvectors

2

varf(A) = > min )IAR - 3O NA
ij
@ The usual variance is the largest. (The arithmetic mean is the
largest mean.)

@ For pure states, they give

2m;(1,0) x (AA)?.



o Families of the Quantum Fisher information and variance

@ Families for unitary dynamics and another normalization



Family of the Quantum Fisher information for

unitary dynamics

@ In physics, we are typically interested in a unitary dynamics

Qoutput(t) = EXP(—iAG)Q eXp(+iA9),

@ Then, A A
Fllo. Al = F'(0; ilo, A)).

© We propose the normalization

Filo, Al = 2m;(1,0)F5lo, Al

© For a pure state |V) we have

Fhlo, Al = 4(AA),.



Family of the Quantum Fisher information for

unitary dynamics Il

The generalized QFls given with the density matrix eigenvalues

f _ my(1, 0) N2 A2
Fole, Al = 2me g~ A
@ For pure states, equals 4(AA)?.

@ The usual QFl is the largest. (The arithmetic mean is the largest
mean.)

@ Exactly the opposite of what we had with the original
normalization!



The ususal QFI, unitary dynamics

@ For the arithmetic mean my(a, b) = &%,
Folo, A=) i()\i — N2 |A .
’ 77 Ai + A / /

"THE" quantum Fisher Information.
@ The quantum Fisher information is defined for the linear dynamics

Qout—put(t) — efiA()QeJriAG.

@ Cramer Rao bound: (A#)? > 1/F[p, Al.



Family of the Quantum Fisher information for
unitary dynamics IV

Definition
Generalized quantum Fisher information Fg[e, A]
@ For pure states, we have

FallW)(V], A = 4(AAy)°.

The factor 4 appears to keep the consistency with the existing
literature.

© For mixed states, Fg[o, A] is convex in the state.




Family of variances

@ We propose the normalization

A f
f,ay varg(A)
var,(A) = 2m(1,0)

@ For a pure state |V) we have

varl,(A) = (AA)2,.



Family of variances Il

Form with density matrix eigenvalues

(Ais )
Var (A) = zzn;;f 110 |AU‘2_)Z>\AH

@ For pure states, equals (AA)?.
@ The usual variance is the smallest.

@ Exactly the opposite of what we had with the original
normalization!



Family of variances lll

The generalized variance var,(A) is defined by the following two
requirements.

@ For pure states, the generalized variance equals the usual
variance

vary(A) = (AA)?,.

@ For mixed states, var,(A) is concave in the state.




QFI:
original, , .
: . . . unitary dynamics,
linear dynamics, | unitary dynamics o
our normalization
by D. Petz
. ; Bro Filo, Al
Fi(o;A F'lo,Al = Ff(0;i[0, A Qs A
(0: A) [o; Al = F'(e:i[e; Al) | 2my(1,0)EL [0, Al
usual QFlI i usual QFI Fq[e, A]
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N var! (A
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o Families of the Quantum Fisher information and variance

@ Convex roofs and concave roofs



The QFI as a convex roof

@ We have a family of generealized QFI’s, which are convex in the
state and all equal to four times the variance for pure states.

@ There is a smallest of such functions defined by the convex roof.

The usual QFI equals

Folo, Al =4 inf AA)?,
olo, Al {pk,wk};pk( ) w,

where
0= PklVi)(Wl.
K

GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013).




The variance as a concave roof

@ We have a family of generealized variances, which are concave in
the state and all equal to the variance for pure states.

@ There is a largest of such functions defined by the concave roof.

The usual variance is

(AR, = sup 3 pu(AAR,,
{pkvwk} k

where
0= PlVi) (V|-
k

GT, D. Petz, Phys. Rev. A 87, 032324 (2013).




Summary of statements

@ Decompose o as
0= PrlWi)(Wkl.
k

@ Then,
1
2 Fale, Al < 7 pAA), < (BA)
k
holds.

@ Both inequalities can be saturated by some decompostion..



Variance

@ For 2 x 2 covariance matrices there is always {px.V«} such that

C,= sup P« Cu,,
{Pk,‘l’k}; ‘

[Z. Léka and D. Petz, Prob. and Math. Stat. 33, 191 (2013)]

@ For 3 x 3 covariance matrices, this is not always possible.
Necessary and sufficient conditions for an arbitrary dimension. [D.
Petz and D. Virosztek, Acta Sci. Math. (Szeged) 80, 681 (2014)]



Why convex and concave roofs are interesting?

@ Convex and concave roofs appear in entanglement theory (E.g.,
Entanglement of Formation).

@ They do not often appear in other fields.

@ Expression with convex and concave roofs typically cannot be
computed with a single formula.

@ The variance and the QFI are defined via roofs, but they can
easily be calculated.



e Results related to the QFI being a convex roof
@ Estimating the QFI using the Legendre transform



Witnessing the quantum Fisher information based

on few measurements

@ The bound based on w = Tr(pW) is given as
Falo, Jz] > sup [rw — Fq (rW)]| .
r

@ The Legendre transform is
Fo(W) = sup((W), — Fale, Jz).
©

Optimization over p: complicated.
@ Due to the properties of Fq mentioned before, it can be simplified

~

Fo(W) = sup {)\max [W —4(J; — p,)z} } .

Optimziation over a single parameter!

I. Apellaniz, M. Kleinmann, O. Giihne, and G. Téth, Phys. Rev. A 95, 032330 (2017),
Editors’ Suggestion.



Example: bound based on fidelity

@ Let us bound the quantum Fisher information based on some

measurements.
1 1
Fo > N?(1 — 2Fguz)?
0.8 08
if Forz > 3 :
Eo
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Quantum Fisher information vs. Fidelity with respect to
(a) GHZ states and (b) Dicke states for N = 4,6,12.

Apellaniz et al., Phys. Rev. A 2017



e Results related to the QFI being a convex roof

@ Estimating the QFI with semidefinite programming



QFI as a convex roof used for numerics

@ The optimization over convex decompostions for Fq[e, A] can be
rerwrittem as

Folo Al =4( ().~ sup 3" pulA%, )
{Ps Vi) T T

where {px, |Vk)} refers to a decomposition of p.
@ Can be rewritten as an optimization over symmetric separable
states

Folo, Al =2 inf (A1 -1 A2,
stessa
Trl(@ss):.g

where S; is the set of symmetric separable states.
@ States in Ss are mixtures of symmetric product states, i.e., they

are of the form
> k| Wi) (Wi |22,
k

Every symmetric separable state can be written in this form.



QFI as a convex roof used for numerics Il

@ Set of symmetric states with a positive definite partial transpose
Ssppr O S

@ Lower bound on the quantum Fisher information

FQ[QaA] > inf ((A® 1-1 ®A)2>QSPPT‘
0sppT € SsppT,
Tr1 (osprr)=0

The bound can be calculated with semidefinite programming.
@ ltis a lower bound, not an upper bound!

@ Similar ideas can be used to look for a lower bound on the QFI for
given operator expectation values, or compute other convex-roof
quantities (e.g., linear entropy of entanglement).

GT, T. Moroder, O. Glihne, PRL 2015;
see also M. Christandl, N. Schuch, A. Winter, PRL 2010.



e Results related to the QFI being a convex roof

@ Bounding the quantum Fisher information based on the variance



Bound based on the variance

@ Let us define the quantity

V(o,A) = (BAY - § Folo, Al

@ Itis well known that V(p, A) = 0 for pure states.
@ For states sufficiently pure V(p, A) is small.

@ For states that are far from pure, the difference can be larger.



Generalized variance

@ Generalized variances (with "old" normalization) are defined as
var(A) Z 1A~ ()

where f: RT — R is a standard matrix monotone function, and

me(a, b) = bf(b/a) is a corresponding mean. Petz, J. Phys. A 35, 929
(2002);

Gibilisco, Hiai, and Petz, IEEE Trans. Inf. Theory 55, 439 (2009).
@ The f(x) are bounded as

fmin(X) S f(X) S fmax(X)7

where

2x 1+ x
fmin(X) = 1 —i—X’ fmax(X) = >



Generalized variance i

@ The generalized variance with f(x) = f,.x(X) is the usual variance
varl ™ (A) = (A%) — (A)%.
(my is the arithmetic mean.)

@ Let us now consider the generalized variance with fyin(X)
Mmmin(a, b) = 2ab/(a+ b). Then,
varl""(A) = V(o, A).

(my is the harmonic mean.)

@ Vis the smallest among the generalized varinces

V(o A) = (MY — 3 Folo. A < varl(A) < (AAY.



Bound based on the variance, rank-2

Observation
For rank-2 states p,

(AAY? - }Falo, Al = 3[1 — Te(e®))(61 — 52)?
holds, where & are the nonzero eigenvalues of the matrix
A = (k|A|l).

Here |k) are the two eigenvectors of g with nonzero eigenvalues. Thus,
ok are the eigenvalues of A on the range of o.

Note

Sl1n(@)_1_Tr _1_Z>‘2—Z)\k/\l

k£
G. Téth, arxiv:1701.07461.



Bound based on the variance, arbitrary rank

Observation
For states p with an arbitrary rank we have

(AA)? — §Falo, Al < $Sin(0) [omax(A) — omin(A)]?

where omax(X) is the largest eigenvalue of X.

Estimate Fq:

@ Measure the variance.
© Estimate the purity.

© Find a lower bound on Fq.

G. Téth, arxiv:1701.07461.



Bound based on the variance, arbitrary rank Il

@ Proof. V can also be defined as a concave roof

V(o,A) = (AA)? — 1Folo, Al = sup > pk((Ahw, — (A)>.
1P Vit T

@ We want to show that

St }Zpk«Am — (A))? < 3Sin(0) [omax(A) = omin(A)?.
ksWkr K

@ Our relation is true, if and only if

X = %Slin (Z pk‘wk><wk|) [max(A) — Umin(A)]z
k
=" Pk (A, — (A)?
Kk

is non-negative for all possible choices for px and |W).



Bound based on the variance, arbitrary rank Il

@ Minimize X over p = (py, p2, s, ...) under the constraints px > 0,
>« Px = 1, while keeping the |WV) fixed. Further constraint:
(A) =>4 P(A)w, = Ao, Where Ay is a constant.

@ X is a concave function of p’s. Hence, it takes its minimum on the
extreme points of the convex set of the allowed values for p. For
the extreme points, at most two of the p,’s are non-zero.

@ Thus, we need to consider rank-2 states only, for which the
statement is true due to previous observation

(BA)? — 3Falo, Al = 31 — Tr(o*)](51 — 52)%.



Bound based on the variance, nhumerical test

0 5 10 15. A 2I0
RHS of Eq. (7)

(AA)Z - %,FO[QvA] < %Slin(Q)[Umax(A) - Umin(A)]z' (7)



@ We discussed that the quantum Fisher information can be defined
as a convex roof of the variance.

@ We also discussed, hoe the quantum Fisher information is
connected to quantum entanglement.
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Appendix

The variance as a convex roof



The variance as a convex roof

The usual variance equals four times this concave roof

(AAP, = sup > pr(AAY,,
{Ps Vit

where
0= PrlVi)(Wl.
K

GT, D. Petz, Phys. Rev. A 87, 032324 (2013).




The variance as a convex roof Il

@ Decomposition of the density matrix o = >, px|Vk) (Wk|.
@ For all decompositions {py, |Vx)}

(AA?, > amax., Y o P(BAYy, =D Pr(AAG,
’ k k

@ Important property of the variance:
= "B |(BAPg, + (Alg, — (A7)
k

@ If for o there is a decomposition {Px, |Wx)} such that the
subensemble expectation values equal the expectation value for
the entire ensemble (i.e., (A)g, = (A), for all k) then

(AA)? Q:{pkm@x Zpk (AA)? v, —Zpk AA)?

@ In this case, for o, the usual variance (AA)? , Is the concave roof of
the variance.



The variance as a convex roof lli

For any rank-2 o there is such a decompositions {Bx, |Vx)}.

@ Eigendecomposition of the state o

0=pVi){Vi| + (1 = p)[W2)(Val.
@ We define now the family of states

W) = VPIW1) + /1 - p|Wz)e”.
@ Expectation value of the operator A

(W4 |AIW ) =(A), +21/p(1 — p)Re ( (v, \A|\I12>e’¢> .
@ Clearly, there is an angle ¢4 such that
Re (<w1 yAyw2>e"¢1) = 0.
For this angle
(Wo|AlVg) = (Vo in| AV 1n) = (A,



The variance as a convex roof IV

@ In the basis of the states |W¢) and |W,), we can write the
projection operators onto |V, ) as

|\|1¢1 > <\U¢1 ’

_ [ p_ Ve(1—pe }
memﬁ 1-p :

|W¢1 +ﬂ'> <\U¢1 +7T|
_ p —/p(1 — p)e~"*
L =vp(1 - p)et 1-p '

@ o can be decomposed as

1
0= > (|\U¢1><\V¢1 | + |w¢1+7r><w¢1+7f‘)'

@ We proved Lemma 1.



The variance as a convex roof V

Lemma 2
Eigendecomposition of a density matrix

o

00 = > AklWi) (Wl
k=1

with all Ax > 0. Rank of the density matrix as r(gg) = ry, ro > 3. Define
Ag as
Ao = Tr(Ago).

We claim that for any A, gg can always be decomposed as

00 = po— + (1 —p)os,

such that r(o_) < ry, r(e+) < ry, and Tr(Ao+) = Tr(Ao-) = Ao.

For the proof, see GT, D. Petz, Phys. Rev. A 87, 032324 (2013).



The variance as a convex roof VI

Figure: The rank-3 mixed state og is decomposed into the mixture of
two rank-2 states, o and o. .

@ From Lemma 1 and Lemma 2, the main statement follows

(AA)2Q = {plnf Zpk (AA)? ) v, -



Appendix

Quantities Averaged over SU(d) generators



Quantities Averaged over SU(d) generators

@ Any trcaeless Hermitian operator with Tr(A2) = 2 can be obtained
as B
Ay = ATh,

where A = [A), A® A®) T fis a unitvector with real
elements, (.)7 is matrix transpose

@ We define the average over unit vectors as
i J H(A)M(dn)
J M(dn)

@ We would like to compute average of V for operators.

@ ltis zero only for pure states. — Similar to entropies.



Bound on the average V

Observation

The average of V over traceless Hermitian matrices with a fixed norm
is given as

2
V(o) = o |Sinle) + H(e) - 1],
where d is the dimension of the system, and

AR Ak
9)222 KN 4.0 kAl

Y Ak + N oy Ak + A




Average quantum Fisher information

@ The average of the quantum Fisher information can be obtained
as

Folel = ,ffg[d ~ H(p)).

@ It is maximal for pure states.



Bound based on the variance Il

3 10
2.5 8
= S 6
= 2 =
4
15
2
]
1 2 3 2 4 6 8 10
exp[S(o)] exp[S(o)]

Figure: The relation between the von-Neumann entropy and H() for d = 3
and 10.

(filled area) Physical quantum states.

(dot) Pure states.

(square) Completely mixed state.

We see that
H(o) ~ exp[S(0)]-



Other type of quantum Fisher information

@ The alternative form of the usual quantum Fisher information is
defined as

d2

2 Stelle™™ 0e™™)|g_o = F3¥[o, Al.

@ With that

Foblo] = - (2dS+22Iog)\k)
g
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