Quantum states with a positive partial transpose are useful for metrology

Géza Tóth^{1,2,3} and Tamás Vértesi⁴

¹Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ³Wigner Research Centre for Physics, Budapest, Hungary ⁴Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary

CEWQO, Palma de Mallorca 20 May 2018

Outline

- Motivation
 - What are entangled states useful for?
- Bacground
 - Quantum Fisher information
- Maximizing the QFI for PPT states
 - Results so far
 - Our results

What are entangled states useful for?

 Entangled states are useful, but not all of them are useful for some task.

 Entanglement is needed for beating the shot-noise (=classical) limit in quantum metrology.

 Intriguing question: Are states with a positive partial transpose useful for metrology? Can they also beat the shot-noise limit?

What are entangled states useful for?

Outline

- Motivation
 - What are entangled states useful for?
- Bacground
 - Quantum Fisher information
- Maximizing the QFI for PPT states
 - Results so far
 - Our results

Quantum metrology

Fundamental task in metrology

• We have to estimate θ in the dynamics

$$U = \exp(-iA\theta)$$
.

Precision of parameter estimation

• Measure an operator M to get the estimate θ . The precision is

The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

$$(\Delta \theta)^2 \geq \frac{1}{F_O[\varrho, A]}, \qquad \frac{1}{(\Delta \theta)^2} \leq F_O[\varrho, A].$$

where $F_O[\rho, A]$ is the quantum Fisher information.

• The quantum Fisher information is

$$F_{Q}[\varrho,A] = 2\sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{k} + \lambda_{l}} |\langle k|A|I\rangle|^{2},$$

where $\varrho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

• Linear interferometer: collective operators $A \in \{J_x, J_y, J_z\}$.

The quantum Fisher information vs. entanglement

Shot-noise limit: For N-qubit separable states

$$F_Q[\varrho, J_l] \leq N, \qquad l = x, y, z.$$

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, GÃŒhne, Smerzi, Phys. Rev. A 82, 012337 (2010)]

- A quantum state is "useful" if it violates the above inequality.
- Heisenberg limit: For entangled states

$$F_Q[\varrho, J_I] \leq N^2, \qquad I = x, y, z.$$

where the bound can be saturated (GHZ states).

Outline

- Motivation
 - What are entangled states useful for?
- 2 Bacground
 - Quantum Fisher information
- Maximizing the QFI for PPT states
 - Results so far
 - Our results

States with a Positive-semidefinite Partial Transpose (PPT)

A density matrix of a separable state fulfils

$$\varrho^{\text{T1}} \geq 0$$
,

where T1 denotes partial transpose.

- Any state violating the inequality is entangled.
- Bound entangled: entangled, but still PPT.

```
[ A. Peres,PRL 77, 1413 (1996);
```

M. Horodecki, P. Horodecki, and R. Horodecki, PLA 223, 1 (1996).]

Results so far concerning metrologically useful PPT states

- Bound entangled states with PPT and some non-PPT partitions.
- Violates an entanglement criterion with three QFI terms.
 [P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezze, and A. Smerzi, PRA 85, 022321 (2012).]
- Non-unlockable bound entangled states with PPT and some non-PPT partitions.
- Violates the criterion with a single QFI term, better than shot-noise limit.

[Ł. Czekaj, A. Przysiężna, M. Horodecki, P. Horodecki, Phys. Rev. A 92, 062303 (2015).]

on nonlocality [43]) to answer would be, Is there any family of quantum states that allows for a general Local Hidden Variables (LHV) model but can be used to obtain sub-shot-noise (i.e., better than classical) quantum metrology? This question is related to another question (especially in the context of both general requirements in quantum metrology [26] and recent results on nonlocality [43]) regarding whether there is any chance for sub-shot-noise metrology for states obeying the PPT condition with respect to any cut. While the present result

Outline

- Motivation
 - What are entangled states useful for?
- 2 Bacground
 - Quantum Fisher information
- Maximizing the QFI for PPT states
 - Results so far
 - Our results

Our results

We look for

- bipartite PPT entangled states
- multipartite states that are PPT with respect to all partitions.

Maximizing the QFI for PPT states: brute force

Maximize the QFI for PPT states. Remember

$$F_Q[\varrho, A] = 2\sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|A|I\rangle|^2,$$

where $\varrho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

- Difficult to maximize a convex function over a convex set. The maximum is taken on the boundary of the set.
- Not guaranteed to find the global maximum.
- Note: Finding the *minimum* is possible!

Maximizing the QFI for PPT state: our method

 We mentioned that the QFI gives a bound on the precision of the parameter estimation

parameter estimation
$$F_Q[\varrho,A] \geq rac{1}{(\Delta heta)_A^2} = rac{|\partial_ heta \langle M
angle|^2}{(\Delta M)^2} = rac{\langle i[M,A]
angle^2}{(\Delta M)^2} \quad ext{(dynamics is } U = e^{-iA heta})$$

The bound is sharp

$$F_Q[arrho,A] = \max_M rac{1}{(\Delta heta)_M^2}.$$

[M. G. Paris, Int. J. Quantum Inform. 2009. Used, e.g., in F. Fröwis, R. Schmied, and N. Gisin, 2015; I. Appelaniz *et al.*, NJP 2015.]

The maximum for PPT states can be obtained as

$$\max_{\varrho \text{ is PPT}} F_{\mathcal{Q}}[\varrho,A] = \max_{\varrho \text{ is PPT}} \max_{M} rac{\langle i[M,A] \rangle_{\varrho}^2}{(\Delta M)^2}.$$

Sew-saw algorithm for maximizing the precision

See also K. Macieszczak, arXiv:1312.1356v1 for an iterative algorithm for optimizing over noisy states.

Maximize over PPT states ρ for a given M

Best precision for PPT states for a given operator M, semidefinite program:

Proof.—Let us define first

$$f_M(X, Y) = \min_{\varrho} \quad \operatorname{Tr}(M^2 \varrho),$$

s.t. $\varrho \geq 0, \varrho^{Tk} \geq 0 \text{ for all } k, \operatorname{Tr}(\varrho) = 1,$
 $\langle i[M, A] \rangle = X \text{ and } \langle M \rangle = Y.$

The best precsion for a given *M* and for PPT states is

$$(\Delta\theta)^2 = \min_{X,Y} \frac{f_M(X,Y) - Y^2}{X^2}.$$

The state giving the best precision is ϱ_{PPTopt} .

Maximize over M for a given PPT state ϱ

For a state ϱ , the best precision is obtained with the operator given by the symmetric logarithmic derivative

$$M = 2i \sum_{k,l} \frac{\lambda_k - \lambda_l}{\lambda_k + \lambda_l} |k\rangle \langle l| \langle k|A|l\rangle,$$

where $\varrho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

Convergence of the method

The precision cannot get worse with the iteration!

Convergence of the method II

Generation of the 4×4 bound entangled state.

(blue) 10 attempts. After 15 steps, the algorithm converged.

(red) Maximal quantum Fisher information for separable states.

Robustness of the states

$$\varrho(p) = (1-p)\varrho + p\varrho_{\text{noise}}$$

• Robustness of entanglement: the maximal p for which $\varrho(p)$ is entangled for any separable ϱ_{noise} .

[Vidal and Tarrach, PRA 59, 141 (1999).]

• Robustness of metrological usefulness: the maximal p for which $\varrho(p)$ outperforms separable state for any separable ϱ_{noise} .

Robustness of the states II

System	Α	$\mathcal{F}_Q[arrho, extcolor{A}]$	$\mathcal{F}_{ ext{Q}}^{(ext{sep})}$	$p_{\mathrm{whitenoise}}$
four qubits	J_{z}	4.0088	4	0.0011
three qubits	$j_z^{(1)} + j_z^{(2)}$	2.0021	2	0.0005
2×4 (three qubits, only 1 : 23 is PPT)	$j_z^{(1)} + j_z^{(2)}$	2.0033	2	0.0008

Multiqubit states

Robustness of the states III

d	$\mathcal{F}_{Q}[arrho, extcolor{A}]$	$p_{\mathrm{whitenoise}}$	$ ho_{ m noise}^{ m LB}$
3	8.0085	0.0006	0.0003
4	9.3726	0.0817	0.0382
5	9.3764	0.0960	0.0361
6	10.1436	0.1236	0.0560
7	10.1455	0.1377	0.0086
8	10.6667	0.1504	0.0670
9	10.6675	0.1631	0.0367
10	11.0557	0.1695	0.0747
11	11.0563	0.1807	0.0065
12	11.3616	0.1840	0.0808

- $d \times d$ systems.
- Maximum of the quantum Fisher information for separable states is 8.
- The operator A is not the usual J_z .

4×4 bound entangled PPT state

Let us define the following six states

$$\begin{split} |\Psi_1\rangle &= (|0,1\rangle + |2,3\rangle)/\sqrt{2}, \, |\Psi_2\rangle = (|1,0\rangle + |3,2\rangle)/\sqrt{2}, \\ |\Psi_3\rangle &= (|1,1\rangle + |2,2\rangle)/\sqrt{2}, \, |\Psi_4\rangle = (|0,0\rangle - |3,3\rangle)/\sqrt{2}, \\ |\Psi_5\rangle &= (1/2)(|0,3\rangle + |1,2\rangle) + |2,1\rangle/\sqrt{2}, \\ |\Psi_6\rangle &= (1/2)(-|0,3\rangle + |1,2\rangle) + |3,0\rangle/\sqrt{2}. \end{split}$$

Our state is a mixture

$$\varrho_{4\times4} = p \sum_{n=1}^{4} |\Psi_n\rangle\langle\Psi_n| + q \sum_{n=5}^{6} |\Psi_n\rangle\langle\Psi_n|,$$

where $q = (\sqrt{2} - 1)/2$ and p = (1 - 2q)/4. We consider the operator

$$A = H \otimes 1 + 1 \otimes H,$$

where H = diag(1, 1, -1, -1).

Negativity

Apart from making calculations for PPT bound entangled states, we can also make calculations for states with a given negativity.

[G. Vidal and R. F. Werner, PRA 65, 032314 (2002).]

Entanglement

Bipartite state	Entanglement
3 × 3	0.0003
4 × 4	0.0147
5 × 5	0.0239
6 × 6	0.0359
7 × 7	0.0785
UPB 3 × 3	0.0652
Breuer 4 × 4	0.1150

Convex roof of the linear entanglement entropy. The entanglement is also shown for the 3 \times 3 state based on unextendible product bases (UPB) and for the Breuer state with a parameter $\lambda=1/6$.

[G. Tóth, T. Moroder, and O. Gühne, PRL 114, 160501 (2015).]

PPT, metrologically useful, not violating any Bell inequality

We construct an LHV model for the 2×4 state listed before.

[F. Hirsch, M. T. Quintino, T. Vértesi, M. F. Pusey, and N. Brunner, PRL 2016; D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk, PRL 2016.]

Non-PPT, metrologically useful, not violating any Bell inequality

- Two-qubit Werner state $p|\Psi^-\rangle\langle\Psi^-|+(1-p)\mathbb{1}/4$, with $|\Psi^-\rangle=(|01\rangle-|10\rangle)/\sqrt{2}$.
- Better for metrology than separable states ($\mathcal{F}_Q > 2$) for p > 1 0.3596 = 0.6404.
- They do not violate a Bell inequality for p < 0.6829.

[F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, N. Brunner, Quantum 2017;

A. Acín, N. Gisin, B. Toner, PRA 2006.]

Cluster states: non-PPT, not useful, violates a Bell inequality

Cluster states: resource in measurement-based quantum computing [R. Raussendorf and H. J. Briegel, PRL 2001.]

- Fully entangled pure states.
- Violate a Bell inequality

```
[ V. Scarani, A. Acín, E. Schenck, M. Aspelmeyer, PRA 2005; O. Gühne, GT, P. Hyllus, H. J. Briegel, PRL 2005; GT, O. Gühne, and H. J. Briegel, PRA 2006. ]
```

Certain cluster states are metrologically not useful
 [P. Hyllus, O. Gühne, and A. Smerzi, PRA 2010.]

PPT, violates a Bell inequality

Counterexample for the Peres conjecture

[T. Vértesi and N. Brunner, Nature Communications 2015.]

Summary

 We presented quantum states with a positive partial transpose with respect to all bipartitions that are useful for metrology.

See:

Géza Tóth and Tamás Vértesi,

Quantum states with a positive partial transpose are useful for metrology,

Phys. Rev. Lett. 120, 020506 (2018).

http://gtoth.eu

THANK YOU FOR YOUR ATTENTION!

