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0 Motivation
@ Why entanglement quantification is important?
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Why entanglement quantification is important?

@ Many experiments are aiming to create entangled states.
@ We need to calculate entanglement measures for these states.

@ Apart from trivial system sizes, we cannot do it.



9 Calculating entanglement measures
@ Convex roof of the entropy

5/21



Entanglement
The entanglement of a bipartite quantum state

For pure states, it is defined as

E(IW)) = S[Tr1(IW))],

for pure states, where S is an entropy.

For mixed states, it is defined with a convex roof as

PV i)}

E(o) = min (Z pkE(llIlk>)),
K
where {px, |V)} is a decomposition to pure states

0= D PklVi(Vil.
k




Linear entropy for pure states

@ Linear entropy
Siin(0) = 1 - Tr(?).

@ Known: linear entropy of entanglement for pure states can be
defined as an expectation value on two copies (AB and A’B’) as

Ein(IV)) = Tr[Aaar ® 1 (IVKV]) a8 @ (IW)XV))a 5]

where
Aan = (1= F)an

and ¥ is the flip operator.



Linear entropy for mixed states: convex roof

@ For mixed states
Ein(0) = ming, ZPkEhn(l‘Uk>) =
K
= minp, ) ) PkTr(AaaVRWAIP2)
K

= min Tr(ﬂAA'aMg B

w12

where w1z are symmetric separable states, i.e.,

Wiz = ) PRIV (WK @ (WUl
k

@ This is the key step in our approach.




@ Mapping of the problem

Optimization over Optimization over
decompositions symmetric separable states

@ We connected the separability theory to a general mathematical
problem.



How to calculate it

@ The convex roof of the linear entropy can be written as

Eiin(0) = “{;'1'2 Tr(Aapwi2),
s.t. w12 IS symmetric, separable,

w1 =0,

where wy = Trp(w12).

@ A lower bound can be obtained as with the PPT condition

Eiin(o) = Tj? Tr(Apa w12),
s.t.  wip is symmetric PPT,

w1 =0,

where w1 = Tra(w12). This is a semidefinite program.



@ The lower bound

@ is nonzero for all states with a non-positive semidefinite partial
transpose (NPPT).

@ is nonzero for some states with a positive semidefinite partial
transpose (PPT).

@ For all non-PPT states and for all states that do not have a2 : 2
symmetric extension we have a nonzero bound.

@ Moreover, for all states having a 2:2 PPT symmetric extension the

bound is zero.
[Extensions: Doherty, Parrilo, Spedalieri, PRA 69, 022308 (2004)]



Example: Entanglement of a PPT state

@ 3 x 3 Horodecki state mixed with white noise.

@ a =parameter of the state, 1 — p =noise fraction

Efppt x 107

In
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@ Tangle
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Wootters’ Tangle

@ The well-known tangle for three-qubits can be defined as a
fourth-order polynomial in expectation values.
[A. Osterloh and J. Siewert, Phys. Rev. A 86, 042302 (2012).]

@ Hence, it can be obtained as an optimization over four-partite
symmetric separable states

7(0) = min  Tr(Twi23a),
w1234

s.t. w1234 Symmetric, fully separable,

w1 =0,

where T is an operator (4 parties with 3 qubits each).

@ Similar idea works: replace separable states by PPT states.
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9 Calculating entanglement measures

@ Other quantities

16/21



Other quantities

@ Schmidt number. l.e., the convex roof of R3(|W)) = ¥ i<k Aidjdk
tells us whether the Schmidt number is larger than 2.

@ Entanglement vs. CHSH violation

@ Lower bound on entanglement based on some measurement
results

@ Concave roof instead of convex roofs: E. of assistance

@ Lower bound on quantum Fisher information based some
measurement results.
[Téth, Petz, PRA 2013.]

@ One can get even a witness!!

[For references, please see our work on the arxive.]



Schmidt number > 2 certifier

Minimal entanglement

Schmidt number detection: R vs. Negativity
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A series of tighter and tighter lower bounds

@ To strengthen the bound, a criterion stronger than PPT must be
employed.

@ For example, the method of PPT symmetric extensions can be
used.
[Doherty, Parrilo, Spedalieri, Phys. Rev. A 69, 022308 (2004)]

@ Sequence of lower bounds El(ig) with increasing accuracies.

@ Calculation: semidefinite program.



@ We showed how to obtain a good lower bound on quantities
defined with convex roofs.

@ We used it for calculating entanglement measures and the tangle,
and several other quantities.

See:
GT, T. Moroder, and O. Gihne,
Evaluation of convex roof entanglement measures,
Phys. Rev. Lett, in press; arxiv:1409.3806.

www.gtoth.eu
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