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Why entanglement quantification is important?

Many experiments are aiming to create entangled states.

We need to calculate entanglement measures for these states.

Apart from trivial system sizes, we cannot do it.
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Entanglement

The entanglement of a bipartite quantum state

For pure states, it is defined as

E(|Ψ〉) = S[Tr1(|Ψ〉)],

for pure states, where S is an entropy.

For mixed states, it is defined with a convex roof as

E(%) = min
{pk ,|Ψk 〉}

(∑
k

pkE(|Ψk 〉)

)
,

where {pk , |Ψk 〉} is a decomposition to pure states

% =
∑

k

pk |Ψk 〉〈Ψk |.



Linear entropy for pure states

Linear entropy
Slin(%) = 1 − Tr(%2).

Known: linear entropy of entanglement for pure states can be
defined as an expectation value on two copies (AB and A′B′) as

Elin(|Ψ〉) = Tr[AAA′ ⊗ 1BB′(|Ψ〉〈Ψ|)AB ⊗ (|Ψ〉〈Ψ|)A′B′ ],

where
AAA′ := (1 − F )AA′

and F is the flip operator.



Linear entropy for mixed states: convex roof

For mixed states

Elin(%) = min{pk ,|Ψk 〉}

∑
k

pkElin(|Ψk 〉) =

= min{pk ,|Ψk 〉}

∑
k

pk Tr(AAA′ |Ψk 〉〈Ψk |
⊗2)

= min
ω12

Tr(AAA′ω12),

where ω12 are symmetric separable states, i.e.,

ω12 =
∑

k

pk |Ψk 〉〈Ψk | ⊗ |Ψk 〉〈Ψk |.

This is the key step in our approach.

�



Surprise 1

Mapping of the problem

Optimization over
decompositions −→ Optimization over

symmetric separable states

We connected the separability theory to a general mathematical
problem.



How to calculate it

The convex roof of the linear entropy can be written as

Elin(%) = min
ω12

Tr(AAA′ω12),

s.t. ω12 is symmetric, separable,
ω1 = %,

where ω1 ≡ Tr2(ω12).

A lower bound can be obtained as with the PPT condition

Elin(%) = min
ω12

Tr(AAA′ω12),

s.t. ω12 is symmetric PPT,
ω1 = %,

where ω1 ≡ Tr2(ω12). This is a semidefinite program.



Surprise 2

The lower bound

is nonzero for all states with a non-positive semidefinite partial
transpose (NPPT).

is nonzero for some states with a positive semidefinite partial
transpose (PPT).

For all non-PPT states and for all states that do not have a 2 : 2
symmetric extension we have a nonzero bound.

Moreover, for all states having a 2:2 PPT symmetric extension the
bound is zero.
[Extensions: Doherty, Parrilo, Spedalieri, PRA 69, 022308 (2004)]



Example: Entanglement of a PPT state
3 × 3 Horodecki state mixed with white noise.

a =parameter of the state, 1 − p =noise fraction
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Wootters’ Tangle

The well-known tangle for three-qubits can be defined as a
fourth-order polynomial in expectation values.
[A. Osterloh and J. Siewert, Phys. Rev. A 86, 042302 (2012).]

Hence, it can be obtained as an optimization over four-partite
symmetric separable states

τ(%) = min
ω1234

Tr(Tω1234),

s.t. ω1234 symmetric, fully separable,
ω1 = %,

where T is an operator (4 parties with 3 qubits each).

Similar idea works: replace separable states by PPT states.



Example: tangle of a two-parameter family of
states

%(x , y) = x |GHZ+〉〈GHZ+|+ y |GHZ−〉〈GHZ−|+ (1 − x − y)|W〉〈W|
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Other quantities

Schmidt number. I.e., the convex roof of R3(|Ψ〉) =
∑

i<j<k λiλjλk
tells us whether the Schmidt number is larger than 2.

Entanglement vs. CHSH violation

Lower bound on entanglement based on some measurement
results

Concave roof instead of convex roofs: E. of assistance

Lower bound on quantum Fisher information based some
measurement results.
[Tóth, Petz, PRA 2013.]

One can get even a witness!!

[For references, please see our work on the arxive.]



Examples
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A series of tighter and tighter lower bounds

To strengthen the bound, a criterion stronger than PPT must be
employed.

For example, the method of PPT symmetric extensions can be
used.
[Doherty, Parrilo, Spedalieri, Phys. Rev. A 69, 022308 (2004)]

Sequence of lower bounds E (n)

lin with increasing accuracies.

Calculation: semidefinite program.



Summary
We showed how to obtain a good lower bound on quantities
defined with convex roofs.

We used it for calculating entanglement measures and the tangle,
and several other quantities.

See:
GT, T. Moroder, and O. Gühne,

Evaluation of convex roof entanglement measures,
Phys. Rev. Lett, in press; arxiv:1409.3806.

www.gtoth.eu
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