Witnessing metrologically useful multiparticle entanglement

G. Tóth^{1,2,3} in collaboration with:

I. Apellaniz¹, M. Kleinmann¹, O. Gühne⁴

¹University of the Basque Country UPV/EHU, Bilbao, Spain
 ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ³Wigner Research Centre for Physics, Budapest, Hungary
 ⁴University of Siegen, Germany

MTA Atomki, Debrecen 23 November 2017.

Why multipartite entanglement and metrology are important?

- Full tomography is not possible, we still have to say something meaningful.
- Claiming "entanglement" is not sufficient for many particles.
- We should tell
 - How entangled the state is
 - What the state is good for, etc.

Outline

- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

Entanglement

A state is (fully) separable if it can be written as

$$\sum_{k} p_{k} \varrho_{k}^{(1)} \otimes \varrho_{k}^{(2)} \otimes ... \otimes \varrho_{k}^{(N)}.$$

If a state is not separable then it is entangled (Werner, 1989).

k-producibility/k-entanglement

A pure state is k-producible if it can be written as

$$|\Phi\rangle = |\Phi_1\rangle \otimes |\Phi_2\rangle \otimes |\Phi_3\rangle \otimes |\Phi_4\rangle....$$

where $|\Phi_l\rangle$ are states of at most k qubits.

A mixed state is k-producible, if it is a mixture of k-producible pure states.

[e.g., Gühne, GT, NJP 2005.]

• If a state is not k-producible, then it is at least (k + 1)-particle entangled.

three-producible

two-producible

Outline

- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

Many-particle systems for j=1/2

 For spin-¹/₂ particles, we can measure the collective angular momentum operators:

$$J_I := \frac{1}{2} \sum_{k=1}^N \sigma_I^{(k)},$$

where I = x, y, z and $\sigma_I^{(k)}$ are Pauli spin matrices.

We can also measure the variances

$$(\Delta J_l)^2 := \langle J_l^2 \rangle - \langle J_l \rangle^2.$$

Outline

- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

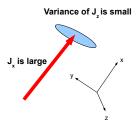
The standard spin-squeezing criterion

Spin squeezing criteria for entanglement detection

$$\xi_{\rm s}^2 = N \frac{(\Delta J_z)^2}{\langle J_x \rangle^2 + \langle J_y \rangle^2}.$$

If $\xi_{\rm s}^2 <$ 1 then the state is entangled. [Sørensen, Duan, Cirac, Zoller, Nature (2001).]

States detected are like this:



Generalized spin squeezing criteria for $j=rac{1}{2}$

Let us assume that for a system we know only

$$\vec{J} := (\langle J_X \rangle, \langle J_Y \rangle, \langle J_Z \rangle),$$

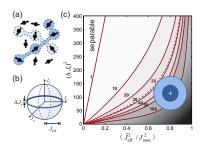
 $\vec{K} := (\langle J_X^2 \rangle, \langle J_Y^2 \rangle, \langle J_Z^2 \rangle).$

 A full set of generalized spin squeezing criteria is known for the case above.

```
[GT, C. Knapp, O. Gühne, and H.J. Briegel, PRL 99, 250405 (2007)]
[ Higher spins: G. Vitagliano, P. Hyllus, I. Egusquiza, GT, Phys. Rev. Lett. 2011]
[Experiments with singlets: Behbood et al., Phys. Rev. Lett. 2014;
GT, Mitchell, New. J. Phys. 2010.]
```

Multipartite entanglement detection with spin squeezing (only two criteria!)

- Original spin-squeezing method
 [Sørensen and Mølmer, Phys. Rev. Lett. 86, 4431 (2001);
 experimental test: C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler, Nature 464, 1165 (2010).]
- Generalized method. BEC, 8000 particles.
 28-particle entanglement is detected.



Outline

- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

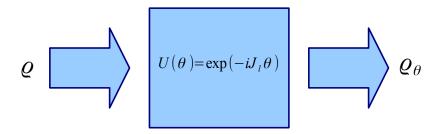
Our main goals

 Detect metrologically useful multipartite entanglement, not just entanglement in general.

Detect multipartite entanglement in the vicinity of various states.

Quantum metrology

Fundamental task in metrology with a linear interferometer



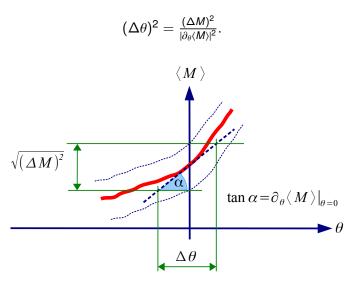
• We have to estimate θ in the dynamics

$$U = \exp(-iJ_l\theta)$$

where $l \in \{x, y, z\}$.

Precision of parameter estimation

• Measure an operator M to get the estimate θ . The precision is



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

$$(\Delta \theta)^2 \ge \frac{1}{F_Q[\varrho, A]}, \qquad \frac{1}{(\Delta \theta)^2} \le F_Q[\varrho, A].$$

where $F_Q[\varrho, A]$ is the quantum Fisher information. (*A* is now the Hamiltonian of the unitary dynamics.)

 The quantum Fisher information is given by an explicit formula for *Q* and *A*.

$$F_Q[\varrho,A] = 2\sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|A|I\rangle|^2,$$

where $\varrho = \sum_{k} \lambda_{k} |k\rangle\langle k|$.

The quantum Fisher information vs. entanglement

For separable states

$$F_Q[\varrho, J_I] \leq N$$
.

[Pezze, Smerzi, PRL 2009; Hyllus, Gühne, Smerzi, PRA 2010]

• For states with at most *k*-particle entanglement (*k* is divisor of *N*)

$$F_Q[\varrho, J_l] \leq kN$$
.

[Hyllus et al., PRA 2012; GT, PRA 2012].

 If a state violates the above inequality then it has (k + 1)-particle metrologically useful entanglement.

Connection to GHZ states

If a state has (k+1)-particle metrologically useful entanglement then it performs better than k-particle GHZ states, i. e., $|GHZ_k\rangle^{\otimes \frac{N}{k}}$.

k-particle Greenberger-Horne-Zeilinger state ("Scrödinger cat" state)

$$|\mathrm{GHZ}_k\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes k} + |1\rangle^{\otimes k}).$$

Outline

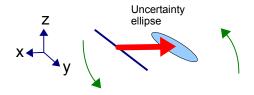
- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

Metrology with spin-squeezed states

Pezze-Smerzi bound

$$(\Delta \theta)^2 = \frac{(\Delta J_z)^2}{|\partial_{\theta} \langle J_z \rangle|^2} = \frac{(\Delta J_z)^2}{\langle J_x \rangle^2} = \frac{\xi_s^2}{N}.$$

• We measure $\langle J_z \rangle$.



[Pezze, Smerzi, PRL 2009.]

Outline

- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

Dicke states

• Symmetric Dicke states with $\langle J_z \rangle = 0$ (simply "Dicke states" in the following) are defined as

$$|D_N\rangle = {N \choose \frac{N}{2}}^{-\frac{1}{2}} \sum_k \mathcal{P}_k \left(|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}} \right).$$

• E.g., for four qubits they look like

[photons: Kiesel, Schmid, GT, Solano, Weinfurter, PRL 2007;

$$|D_4\rangle = \frac{1}{\sqrt{6}} (|0011\rangle + |0101\rangle + |1001\rangle + |0110\rangle + |1010\rangle + |1100\rangle).$$

Prevedel, Cronenberg, Tame, Paternostro, Walther, Kim, Zeilinger, PRL 2007; Wieczorek, Krischek, Kiesel, Michelberger, GT, and Weinfurter, PRL 2009] [cold atoms: Lücke *et al.*, Science 2011; Hamley *et al.*, Science 2011; C. Gross *et al.*, Nature 2011]

Metrology with Dicke states

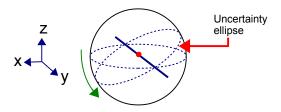
For our symmetric Dicke state

$$\langle J_l \rangle = 0, l = x, y, z, \quad \langle J_z^2 \rangle = 0, \quad \langle J_x^2 \rangle = \langle J_y^2 \rangle = \text{large}.$$

Linear metrology

$$U=\exp(-iJ_y\theta).$$

• Measure $\langle J_z^2 \rangle$ to estimate θ . (We cannot measure first moments, since they are zero.)



Outline

- Introduction and motivation
- Spin squeezing and entanglement
 - Entanglement
 - Collective measurements
 - The original spin-squeezing criterion
- 3 Detecting metrologically useful entanglement
 - Basics of quantum metrology
 - Metrology with spin-squeezed states
 - Metrology with Dicke states
 - Witnessing metrological usefulness

Witnessing metrological usefulness

- Direct measurement of the sensitivity
 - Measure $(\Delta \theta)^2$.
 - Obtain bound on F_Q and multipartite entanglement, $F_Q[\varrho,A] \geq \frac{1}{(\Delta\theta)^2}$.
 - Experimentally challenging, since we need quantum dynamics.
 - The precision is affected by the noise during the dynamics.

[Experiments in cold atoms by the groups of M. Oberthaler, C. Klempt; photonic experiments of the Weinfurter group.]

- Witnessing (our choice)
 - Estimate how good the precision were, if we did the metrological process.
 - Assume a perfect metrological process. Characterizes the state only.

Most important characteristics used for estimation

The quantum Fisher information is the convex roof of the variance

$$F_Q[\varrho,A] = 4 \min_{p_k,\Psi_k} \sum_k p_k (\Delta A)^2_k,$$

where

$$\varrho = \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}|.$$

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013); GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

 Thus, it is similar to entanglement measures that are also defined by convex roofs.

Legendre transform

• Optimal linear lower bound on a convex function $g(\varrho)$ based on an operator expectation value $w = \langle W \rangle_{\varrho} = \text{Tr}(W\varrho)$

$$g(\varrho) \ge rw - const.,$$

where $w = \text{Tr}(\varrho W)$.

- For every slope *r* there is a "const."
- Textbooks say

$$g(\varrho) \geq \mathcal{B}(w) := rw - \hat{g}(rW),$$

where \hat{g} is the Legendre transform

$$\hat{g}(W) = \sup_{\varrho} [\langle W \rangle_{\varrho} - g(\varrho)].$$

[Gühne, Reimpell, Werner, PRL 2007; Eisert, Brandao, Audenaert, NJP 2007.]

Legendre transform II

Bound is best if we optimize over r as

$$g(\varrho) \ge \mathcal{B}(w) := \sup_{r} [rw - \hat{g}(rW)],$$

where again $w = \text{Tr}(\varrho W)$.

 F_Q is the convex roof of the variance. Hence, it is sufficient to carry out an optimization over pure states

$$\hat{g}(W) = \sup_{\Psi} [\langle W \rangle_{\Psi} - g(\Psi)].$$

Similar simplification has been used for entanglement measures.

[Gühne, Reimpell, Werner, PRL 2007; Eisert, Brandao, Audenaert, NJP 2007.]

Legendre transform III

• For our case, the Legendre transform is

$$\hat{\mathcal{F}}_{\mathrm{Q}}(W) = \sup_{\Psi} [\langle W - 4J_{l}^{2} \rangle_{\Psi} + 4 \langle J_{l} \rangle_{\Psi}^{2}].$$

 With further simplifications, an optimization over a single real variable is needed

$$\hat{\mathcal{F}}_{Q}(W) = \sup_{\mu} \left\{ \lambda_{\max} \left[W - 4(J_{I} - \mu)^{2} \right] \right\}.$$

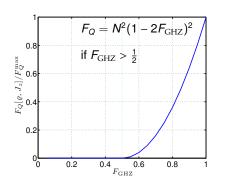
Legendre transform IV

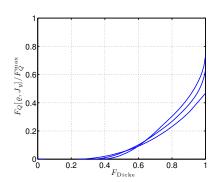
Big surprise

The quantum Fisher information is the ideal quantity for using the Legendre transform technique.

Witnessing the quantum Fisher information based on the fidelity

 Let us bound the quantum Fisher information based on some measurements. First, consider small systems.
 [See also Augusiak et al., 1506.08837.]





Quantum Fisher information vs. Fidelity with respect to (a) GHZ states and (b) Dicke states for N = 4, 6, 12.

[Apellaniz et al., PRA 95, 032330 (2017).]

Bounding the qFi based on collective measurements

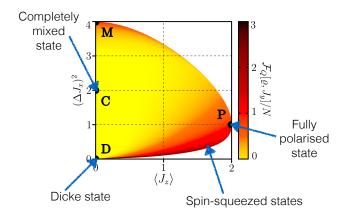
Bound for the quantum Fisher information for spin squeezed states (Pezze-Smerzi bound)

$$F_Q[\varrho, J_y] \geq \frac{\langle J_z \rangle^2}{(\Delta J_x)^2}.$$

[Pezze, Smerzi, PRL 2009.]

Bounding the qFi based on collective measurements II

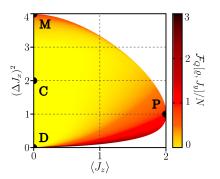
• Optimal bound for the quantum Fisher information $F_Q[\varrho, J_y]$ for spin squeezing for N=4 particles



[Apellaniz, Kleinmann, Gühne, GT, PRA 95, 032330 (2017).]

Bounding the qFi based on collective measurements III

• Optimal bound for the quantum Fisher information $F_Q[\varrho, J_y]$ for spin squeezing for N=4 particles

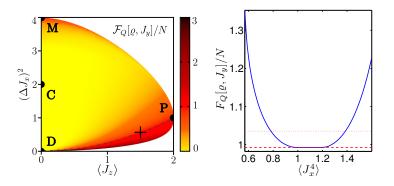


On the bottom part of the figure $[(\Delta J_x)^2 < 1]$ the bound is very close to the Pezze-Smerzi bound!

[Apellaniz, Kleinman, Gühne, GT, PRA 95, 032330 (2017).]

Bounding the qFi based on collective measurements IV

• The bound can be obtained if additional expectation value, i.e., $\langle J_x^2 \rangle$ is measured, or we assume symmetry:



[Apellaniz, Kleinman, Gühne, GT, PRA 95, 032330 (2017).]

Spin squeezing experiment

Experiment with N = 2300 atoms,

$$\xi_s^2 = -8.2$$
dB = $10^{-8.2/10} = 0.1514$.

[Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 2010.]

• The Pezze-Smerzi bound is:

$$\frac{\mathcal{F}_Q[\varrho_N,J_y]}{N} \ge \frac{1}{\xi_s^2} = 6.605.$$

• We get the same value for our method!

[Pezze, Smerzi, PRL 2009]

Similar calculations for Dicke state experiments!

[Lücke, Peise, Vitagliano, Arlt, Santos, GT, Klempt, PRL 2014.]

Ongoing work

 Lower bound on the quantum Fisher information with the variance and the purity

$$(\Delta J_I)^2 - \frac{1}{4}F_Q[\varrho, J_I] \le \frac{N^2}{2}[1 - \text{Tr}(\varrho^2)].$$

[G. Tóth, arXiv:1701.07461.]

Summary

- We discussed a very flexible method to detect multipartite entanglement and metrological usefulness.
- We can choose a set of operators and the method gives an optimal lower bound on F_Q .

Apellaniz, Lücke, Peise, Klempt, GT, New J. Phys. 17, 083027 (2015); Apellaniz, Kleinmann, Gühne, GT, Phys. Rev. A 95, 032330 (2017), Editors' Suggestion.

THANK YOU FOR YOUR ATTENTION!

FOR TRANSPARENCIES, PLEASE SEE www.gtoth.eu.

