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Entanglement - Pure states

Q: What is entanglement for pure states?

A: bipartite state can be a product state |ΨA⟩ ⊗ |ΨB⟩, or an
entangled state.

For instance, |00⟩ and |11⟩ are product states.

(|00⟩+ |11⟩)/
√

2 is an entangled state.

We can always decide whether a pure state is entangled.



Entanglement - Mixed states

Definition
A quantum state is called separable if it can be written as a convex
sum of product states as [Werner, 1989]

ϱ =
∑

k

pkϱ
(k)
1 ⊗ ϱ

(k)
2 ,

where pk form a probability distribution (pk > 0,
∑

k pk = 1), and ϱ(k)n
are single-qudit density matrices.

A state that is not separable is called entangled.

We cannot always decide whether the state is entangled.



k -producibility/k -entanglement

A pure state is k -producible if it can be written as

|Φ⟩ = |Φ1⟩ ⊗ |Φ2⟩ ⊗ |Φ3⟩ ⊗ |Φ4⟩....

where |Φl⟩ are states of at most k qubits.

A mixed state is k -producible, if it is a mixture of k -producible pure
states.
e.g., Gühne, GT, NJP 2005.

If a state is not k -producible, then it is at least (k + 1)-particle
entangled.

2-entangled 3-entangled



k -producibility/k -entanglement II

Separable 

2-entangled 

(N-1)-entangled 

N-entangled 

... ...

(|00⟩+ |11⟩) ⊗ (|00⟩+ |11⟩) ⊗ (|00⟩+ |11⟩) 2-entangled

(|000⟩+ |111⟩) ⊗ (|000⟩+ |111⟩) 3-entangled

(|0000⟩+ |1111⟩) ⊗ (|0⟩+ |1⟩) 4-entangled
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Dicke states
Dicke states: eigenstates of J⃗2 = J2

x + J2
y + J2

z and Jz .

Symmetric Dicke states of spin-1/2 particles, with ⟨Jz⟩ = ⟨J2
z ⟩ = 0

|DN⟩ =

(
N
N
2

)− 1
2 ∑

k

Pk

(
|0⟩⊗

N
2 ⊗ |1⟩⊗

N
2

)
.

Summing over all permutations.
Due to symmetry,

〈
J⃗2

〉
is maximal.

E.g., for four qubits they look like

|D4⟩ =
1
√

6
(|0011⟩+ |0101⟩+ |1001⟩+ |0110⟩+ |1010⟩+ |1100⟩) .

photons: N. Kiesel, C. Schmid, GT, E. Solano, H. Weinfurter, PRL 2007; Prevedel. et
al., PRL 2009; W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, GT, H.
Weinfurter, PRL 2009.

cold atoms: Lücke, Science 2011; Hamley et al, Nat. Phys. 2012.



Spin Squeezing Inequality for Dicke states
For separable states

⟨J2
x ⟩+ ⟨J

2
y ⟩ −

N
2 ≤ (N − 1)(∆Jz)

2

holds. GT, C. Knapp, O. Gühne, and H.J. Briegel, Phys. Rev. Lett. 2007

It detects entangled states close to Dicke states since

⟨J2
x + J2

y ⟩ =
N
2

(
N
2

+ 1
)
= max.,

⟨J2
z ⟩ = 0.

"Pancake" like uncertainty ellipse.



Multipartite entanglement - Dicke states
Sørensen-Mølmer condition for k -producible states

(∆Jz)
2 ⩾ JmaxF k

2


√
⟨Jx ⟩2 + ⟨Jy ⟩2

Jmax

 .
Combine it with

⟨J2
x + J2

y ⟩ ⩽ Jmax(
k
2 + 1) + ⟨Jx ⟩

2 + ⟨Jy ⟩
2,

which is true for pure k -producible states. (Remember, Jmax =
N
2 .)

Condition for entanglement detection around Dicke states

(∆Jz)
2 ⩾ JmaxF k

2


√
⟨J2

x + J2
y ⟩ − Jmax(

k
2 + 1)

Jmax

 .
Due to convexity properties of the expression, this is also valid to
mixed separable states.
G. Vitagliano et al., NJP 2017.
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Dicke state of cold atoms

Detecting Multiparticle Entanglement of Dicke States
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Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their
spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a
measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled
states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a
Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement.
We infer a generalized squeezing parameter of −11:4ð5Þ dB.
DOI: 10.1103/PhysRevLett.112.155304 PACS numbers: 67.85.−d, 03.67.Bg, 03.67.Mn, 03.75.Mn

Entanglement, one of the most intriguing features of
quantummechanics, is nowadays a key ingredient for many
applications in quantum information science [1,2], quan-
tum simulation [3,4], and quantum-enhanced metrology
[5]. Entangled states with a large number of particles
cannot be characterized via full state tomography [6],
which is routinely used in the case of photons [7,8],
trapped ions [9], or superconducting circuits [10,11].
A reconstruction of the full density matrix is hindered
and finally prevented by the exponential increase of the
required number of measurements. Furthermore, it is
technically impossible to address all individual particles
or even fundamentally forbidden if the particles occupy the
same quantum state. Therefore, the entanglement of many-
particle states is best characterized by measuring the
expectation values and variances of the components of
the collective spin J ¼ ðJx; Jy; JzÞT ¼ P

isi, the sum of all
individual spins si in the ensemble.
In particular, the spin-squeezing parameter ξ2 ¼

NðΔJzÞ2=ðhJxi2 þ hJyi2Þ defines the class of spin-
squeezed states for ξ2 < 1. This inequality can be used
to verify the presence of entanglement, since all spin-
squeezed states are entangled [12]. Large clouds of
entangled neutral atoms are typically prepared in such
spin-squeezed states, as shown in thermal gas cells [13],
at ultracold temperatures [14–16], and in Bose-Einstein
condensates [17–19].
Systems with multiple particles may exhibit more than

pairwise entanglement. Multiparticle entanglement is best

quantified by means of the so-called entanglement depth,
defined as the number of particles in the largest nonseparable
subset [see Fig. 1(a)]. There have been numerous experi-
ments detecting multiparticle entanglement involving up to
14 qubits in systems, where the particles can be addressed
individually [9,20–24]. Large ensembles of neutral atoms

(∆
J z

)2
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FIG. 1 (color online). Measurement of the entanglement depth
for a total number of 8000 atoms. (a) The entanglement depth is
given by the number of atoms in the largest nonseparable subset
(shaded areas). (b) The spins of the individual atoms add up to the
total spin J whose possible orientations can be depicted on
the Bloch sphere. Dicke states are represented by a ring around
the equator with an ultralow width ΔJz and a large radius Jeff .
(c) The entanglement depth in the vicinity of a Dicke state can be
inferred from a measurement of these values. The red lines
indicate the boundaries for various entanglement depths. The
experimental result is shown as blue uncertainty ellipses with 1
and 2 standard deviations, proving an entanglement depth larger
than 28 (dashed line).

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 112, 155304 (2014) P HY S I CA L R EV I EW LE T T ER S
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Experiment in cold gases

Important: first excited spatial mode of the trap was used, not the
ground state mode.
It has two "bumps" rather than one, hence they had a split Dicke
state.

A B

K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann,
G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes,
Science 360, 416 (2018).



Symmetric Dicke state

For our symmetric Dicke state

⟨Jx ⟩ = ⟨Jy ⟩ = ⟨Jz⟩ = 0,
⟨J2

x ⟩ = ⟨J
2
y ⟩ = large,

⟨J2
z ⟩ = 0.

Pancake-like uncertainty ellipse, we can even rotate it with an
external field

y

z

x

Uncertainty
ellipse



Correlations for Dicke states

For the Dicke state

(∆(Ja
x − Jb

x ))
2 ≈ 0,

(∆(Ja
y − Jb

y ))
2 ≈ 0,

(∆Jz)
2 = (∆(Ja

z + Jb
z ))

2 = 0.

Measurement results on well "b" can be predicted from
measurements on "a"

Jb
x ≈ Ja

x , (correlation)
Jb

y ≈ Ja
y , (correlation)

Jb
z = −Ja

z . (anti-correlation)



Correlations for Dicke states - experimental results
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Here, J(n)
⊥ = cosαJ(n)

x + sinαJ(n)
y .

Experiment in K. Lange et al., Science 334, 773–776 (2011).
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The two-well entanglement criterion

Main result

For separable states,

[
(∆Jz)

2 +
1
4

] [
(∆(Ja

x − Jb
x ))

2 + (∆(Ja
y − Jb

y ))
2
]
≥

〈
J2

x + J2
y

〉2

N(N + 2)

holds. |DN⟩ :
1
4

N
4

N(N+2)
16

Similar criterion for EPR steering.



Violation of the criterion: entanglement is
detected II
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b)

LHS/RHS for similar, but somewhat more complicated inequalities.
(top) Quantum 2024, and (bottom) for Science 2018.



Bipartite entanglement detection

Other experiments creating bipartite entanglement in BEC, published
back-to-back in 2018:

Spatially separated parts of a spin-squeezed Bose-Einstein
condensate, two-component condensate:

M. Fadel, T. Zibold, B. Décamps, and P. Treutlein,
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein
condensates,
Science 360, 409 (2018).

Spatially separated parts of a spin-squeezed Bose-Einstein
condensate, spin-1 particles.

P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner,
and M. K. Oberthaler,
Spatially distributed multipartite entanglement enables EPR steering of atomic clouds,
Science 360, 413 (2018).
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Particle number resolving detection

The resolution of the particle number detection is not 1 particle.
Typically, ∼ 10.

So far we did not need single particle resolution.

Particle-number resolving detection could improve the detected
quality of the state dramatically.

We could also have new entanglement criteria relying on single
particle resolution.

It is possible to reach a single-particle resolution:

M. Quensen, M. Hetzel, L. Santos, A. Smerzi, G. Tóth, L. Pezzé, C. Klempt,
Hong-Ou-Mandel interference of more than 10 indistinguishable atoms,
arXiv:2504.02691.



Parity measurement

We can measure the paritity as

⟨σz ⊗ σz ⊗ .... ⊗ σz⟩ =
〈
f (Jz)

〉
,

where
f (z) = ei2π(z+N/2).

E. g, for N = 4, we have

{f (z)}z=−2,−1,0,1,2 = {+1,−1,+1,−1,+1}.

Thus, we do not need individual access to the particles, but we
need a particle number resolving detection.



Entanglement conditions with many-body
correlations

For separable states∣∣∣⟨σx ⊗ σx ⊗ ... ⊗ σx ⟩
∣∣∣ + ∣∣∣⟨σy ⊗ σy ⊗ ... ⊗ σy ⟩

∣∣∣ + ∣∣∣⟨σz ⊗ σz ⊗ ... ⊗ σz⟩
∣∣∣ ≤ 1

holds.

For the ideal Dicke state the value is 3.



Proof
For separable states∣∣∣⟨σx ⊗ σx ⊗ ... ⊗ σx ⟩

∣∣∣ + ∣∣∣⟨σy ⊗ σy ⊗ ... ⊗ σy ⟩
∣∣∣ + ∣∣∣⟨σz ⊗ σz ⊗ ... ⊗ σz⟩

∣∣∣ ≤ 1

holds.
Proof. For a product state of the type

|Ψ(1)⟩ ⊗ |Ψ(2)⟩ ⊗ ... ⊗ |Ψ(N)⟩

the left-hand side can be bounded from above as∑
l=x ,y ,z

∣∣∣∣∣∣∣
N∏

n=1

〈
σ
(n)
l

〉∣∣∣∣∣∣∣ ≤
∣∣∣∣∣〈σ(1)x

〉 〈
σ
(2)
x

〉∣∣∣∣∣+∣∣∣∣∣〈σ(1)y

〉 〈
σ
(2)
y

〉∣∣∣∣∣+∣∣∣∣∣〈σ(1)z

〉 〈
σ
(2)
z

〉∣∣∣∣∣ ≤ 1

where in the first inequality we used that
∣∣∣∣∣〈σ(n)l

〉∣∣∣∣∣ ≤ 1, and in the

second inequality we used the Cauchy-Schwarz inequality and the
fact that the length of the Bloch vector is at most one for a qubit.
Separable states are mixtures of product states, hence the
inequality is also valid for separable states. □



States detected

The witness also detects the GHZ states as entangled.

The singlet state given as

1
√

2
(|01⟩ − |10⟩) ⊗

1
√

2
(|01⟩ − |10⟩) ⊗ ... ⊗

1
√

2
(|01⟩ − |10⟩)

has
(∆Jz)

2 = 0,

and 〈
σ⊗N

x

〉
= 1,

〈
σ⊗N

y

〉
= 1,

if N is divisible by 4.

Thus, these operators cannot be used to detect genuine
multipartite entanglement.



Inequality with multi-particle correlations
Observation 1. For N-qubit quantum states,

⟨Jx ⟩
2 /j2 +

〈
Jy

〉2
/j2 +

〈
σ⊗N

z

〉2
≤ 1

holds, where j = N/2 and

Jl =
1
2

N∑
n=1

σ
(n)
l

for l = x , y , z.
Proof. The ground state of the Hamiltonian

H = BJx + Kσ⊗N
z ,

where B and K are constants, is of the form

|Ψ⟩ = α|0⟩⊗N
x + β|1⟩⊗N

x ,

which is a generalized Greenberger-Horne-Zeilinger (GHZ) state in the
x-basis.



Inequality with multi-particle correlations II
Then, the relevant expectation value of Jx is

⟨Jx ⟩ =
N
2
⟨σx ⟩ϕ

and the expectation value of the products of σz matrices is〈
σ⊗N

z

〉
= ⟨σz⟩ϕ ,

where we define the single-qubit state

|ϕ⟩ = α|0⟩x + β|1⟩x .

Since ⟨σx ⟩
2
ϕ + ⟨σz⟩

2
ϕ ≤ 1, it follows that

⟨Jx ⟩
2 /j2 +

〈
σ⊗N

z

〉2
≤ 1.

Then, assuming that the mean spin is not in the x-direction, but is in
the xy -plane, we arrive at our inequality. □



Inequality with multi-particle correlations III

Generalized GHZ states:



Inequality with multi-particle correlations IV

Comparison: spin coherent states



Bipartite conditions

Observation 2. For bipartite separable states,

⟨Jx ⊗ Jx ⟩ /(j1j2) +
〈
Jy ⊗ Jy

〉
/(j1j2) +

∣∣∣∣〈σ⊗N1
z ⊗ σ⊗N2

z

〉∣∣∣∣ ≤ 1

holds, where for the left half we have

j1 = N1/2, j2 = N2/2.

N1 particles N2 particles

Proof. We start from Observation 1

⟨Jx ⟩
2 /j2 +

〈
Jy

〉2
/j2 +

〈
σ⊗N

z

〉2
≤ 1

and use the Cauchy-Schwarz inequality. □



Bipartite conditions

Problem: we need to measure observables in the two halves of
the system.

In many experiments, we measure only collective observables.

We need to modify the inequality such that it works for that case.

Note that we need to measure the particle number with a single
particle resolution.



Bipartite conditions
Observation 3. The following expression is true for bipartite separable
states ∑

l=x ,y

〈
(J(1)

l + J(2)
l )2

〉
/(2j1j2) +

∣∣∣∣〈σ⊗N
z

〉∣∣∣∣ ≤ j(j + 1)/(2j1j2),

where
j1 = N1/2, j2 = N2/2, j = N/2.

Proof. We start from the previous Observation. We add to both sides∑
l=x ,y

〈
(J(1)

l )2
〉
/(2j1j2) +

〈
(J(2)

l )2
〉
/(2j1j2).

Then follows the relation∑
l=x ,y

〈
(J(1)

l + J(2)
l )2

〉
/(2j1j2) +

∣∣∣∣〈σ⊗N
z

〉∣∣∣∣
≤ 1 +

∑
l=x ,y

〈
(J(1)

l )2
〉
/(2j1j2) +

〈
(J(2)

l )2
〉
/(2j1j2)



Bipartite conditions II

Then, starting from the relation∑
l=x ,y

〈
(J(1)

l + J(2)
l )2

〉
/(2j1j2) +

∣∣∣∣〈σ⊗N
z

〉∣∣∣∣
≤ 1 +

∑
l=x ,y

〈
(J(1)

l )2
〉
/(2j1j2) +

〈
(J(2)

l )2
〉
/(2j1j2),

we use the inequality〈
(J(n)

x )2 + (J(n)
y )2

〉
≤ jn(jn + 1).

We arrive at∑
l=x ,y

〈
(J(1)

l + J(2)
l )2

〉
/(2j1j2) +

∣∣∣∣〈σ⊗N
z

〉∣∣∣∣ ≤ j(j + 1)/(2j1j2).

We need to measure only collective quantities! □
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Conditions for multi-particle entanglement

Observation 4. States violating the inequality∑
l=x ,y

〈
(J(1)

l + J(2)
l )2

〉
/(2j1j2) + |

〈
σ⊗N

z

〉
| ≤ j(j + 1)/(2j1j2),

for
j1 = k/2, j2 = (N − k)/2

k particles N − k particles

possess at least (k + 1)-particle entanglement, where we assume that
k ≥ N/2.

Violation for k = N − 1 means genuine multipartite entanglement.



Results



Comparison



Conclusions
We discussed how to detect bipartite and multipartite
entanglement with many-body correlation measurements.

The method has been successfully used in experiments with
Dicke states up to 12 particles.

It demonstrates the good quality of the created Dicke state.

For the transparencies, see

www.gtoth.eu

See also

M. Quensen, M. Hetzel, L. Santos,A. Smerzi,
G. Tóth, L. Pezzé, C. Klempt.

Hong-Ou-Mandel interference of more than 10 indistinguishable atoms,

arXiv:2504.02691.

THANK YOU FOR YOUR ATTENTION!

http://www.gtoth.eu
https://arxiv.org/abs/2504.02691
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