Criteria for detecting entanglement close to Dicke states with many-body correlations

Géza Tóth

¹University of the Basque Country UPV/EHU, Bilbao, Spain
 ²EHU Quantum Center, University of the Basque Country UPV/EHU
 ³IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ⁴Donostia International Physics Center DIPC, San Sebastian, Spain
 ⁵Wigner Research Centre for Physics, Budapest, Hungary

ICE-10, Valencia, October 20, 2025.

- Introduction
- EntanglementBasic definitions
- Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- 6 Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

Entanglement - Pure states

- Q: What is entanglement for pure states?
- A: bipartite state can be a product state $|\Psi_A\rangle\otimes|\Psi_B\rangle$, or an entangled state.
- For instance, |00\) and |11\) are product states.
- $(|00\rangle + |11\rangle)/\sqrt{2}$ is an entangled state.
- We can always decide whether a pure state is entangled.

Entanglement - Mixed states

Definition

A quantum state is called separable if it can be written as a convex sum of product states as [Werner, 1989]

$$\varrho = \sum_{k} p_{k} \varrho_{1}^{(k)} \otimes \varrho_{2}^{(k)},$$

where p_k form a probability distribution ($p_k > 0$, $\sum_k p_k = 1$), and $\varrho_n^{(k)}$ are single-qudit density matrices.

A state that is not separable is called entangled.

We cannot always decide whether the state is entangled.

k-producibility/k-entanglement

A pure state is k-producible if it can be written as

$$|\Phi\rangle = |\Phi_1\rangle \otimes |\Phi_2\rangle \otimes |\Phi_3\rangle \otimes |\Phi_4\rangle....$$

where $|\Phi_I\rangle$ are states of at most k qubits.

A mixed state is k-producible, if it is a mixture of k-producible pure states.

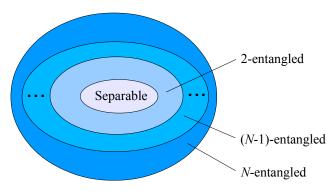
e.g., Gühne, GT, NJP 2005.

• If a state is not k-producible, then it is at least (k + 1)-particle entangled.

2-entangled

3-entangled

k-particle entanglement



$$(|00\rangle + |11\rangle) \otimes (|00\rangle + |11\rangle) \otimes (|00\rangle + |11\rangle)$$
 2-entangled
$$(|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle)$$
 3-entangled
$$(|0000\rangle + |1111\rangle) \otimes (|0\rangle + |1\rangle)$$
 4-entangled

- Introduction
- Entanglement
 - Basic definitions
- Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- 6 Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

- Introduction
- Entanglement
 - Basic definitions
- Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- **5** Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

Many-particle systems

 For spin-¹/₂ particles, we can measure the expectation value of the collective angular momentum operators

$$J_I := \frac{1}{2} \sum_{k=1}^N \sigma_I^{(k)},$$

where I = x, y, z and $\sigma_I^{(k)}$ a Pauli spin matrices.

We can also measure the variance

$$(\Delta J_I)^2 := \langle J_I^2 \rangle - \langle J_I \rangle^2$$

variances.

Spin squeezing

Definition

Spin squeezing criterion for the detection of quantum entanglement

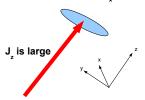
$$\frac{(\Delta J_{\chi})^2}{\langle J_{\gamma}\rangle^2 + \langle J_{z}\rangle^2} \geq \frac{1}{N}.$$

If a quantum state violates this criterion then it is entangled.

 Application: Quantum metrology, magnetometry. Used many times in experiments.

A. Sørensen et al., Nature 409, 63 (2001)

Variance of J_j is small



Multipartite entanglement in spin squeezing

• We consider pure *k*-producible states of the form

$$|\Psi\rangle = \otimes_{I=1}^{M} |\psi_I\rangle,$$

where $|\psi_I\rangle$ is the state of at most k qubits.

Extreme spin squeezing

The spin-squeezing criterion for *k*-producible states is

$$(\Delta J_{x})^{2}\geqslant J_{\mathsf{max}}F_{rac{k}{2}}\Biggl(rac{\sqrt{\langle J_{y}
angle^{2}+\langle J_{z}
angle^{2}}}{J_{\mathsf{max}}}\Biggr),$$

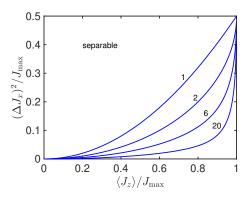
where $J_{\text{max}} = \frac{N}{2}$ and we use the definition

$$F_j(Z) := \frac{1}{j} \min_{\frac{\langle j_z \rangle}{-} = Z} (\Delta j_x)^2.$$

Sørensen and Mølmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test: Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).

Multipartite entanglement in spin squeezing

 Larger and larger multipartite entanglement is needed to larger and larger squeezing ("extreme spin squeezing").



• N = 100 spin-1/2 particles, $J_{\text{max}} = N/2$.

Sørensen and Mølmer, Phys. Rev. Lett. 86, 4431 (2001); experimental test: Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 464, 1165 (2010).

- Introduction
- Entanglement
 - Basic definitions
- Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- 6 Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

Complete set of the generalized spin squeezing criteria

Let us assume that for a system we know only

$$\vec{J} := (\langle J_x \rangle, \langle J_y \rangle, \langle J_z \rangle),$$
 $\vec{K} := (\langle J_x^2 \rangle, \langle J_y^2 \rangle, \langle J_z^2 \rangle).$

• Then any state violating the following inequalities is entangled

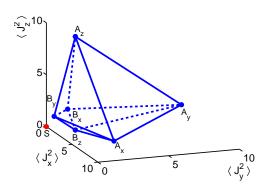
$$\langle J_x^2 \rangle + \langle J_y^2 \rangle + \langle J_z^2 \rangle \leq N(N+2)/4,$$
 (always true)
$$(\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 \geq N/2,$$
 (singlet)
$$\langle J_k^2 \rangle + \langle J_l^2 \rangle - N/2 \leq (N-1)(\Delta J_m)^2,$$
 (Dicke state)
$$(N-1) \left[(\Delta J_k)^2 + (\Delta J_l)^2 \right] \geq \langle J_m^2 \rangle + N(N-2)/4,$$
 (planar sq. state)

where k, l, m takes all the possible permutations of x, y, z. GT, C. Knapp, O. Gühne, and H.J. Briegel, Phys. Rev. Lett. 2007.

Recent general results for spin-*j* particles: Vitagliano *et al.*, Quantum 2025.

The polytope

- The previous inequalities, for fixed $\langle J_{x/y/z} \rangle$, describe a polytope in the $\langle J_{x/y/z}^2 \rangle$ space.
- Separable states correspond to points inside the polytope. Note: Convexity comes up again!



Spin squeezing criteria – Two-particle correlations

All quantities needed can be obtained with two-particle correlations

$$\langle J_I \rangle = N \langle j_I \otimes \mathbb{1} \rangle_{\varrho_{2p}}; \quad \langle J_I^2 \rangle = \frac{N}{4} + N(N-1) \langle j_I \otimes j_I \rangle_{\varrho_{2p}}.$$

Here, the average 2-particle density matrix is defined as

$$\varrho_{2p} = \frac{1}{N(N-1)} \sum_{n \neq m} \varrho_{mn}.$$

- Still, we can detect states with a separable ϱ_{2p} .
- Still, as we will see, we can even detect multipartite entanglement!

Singlet state

- Singlet states are ground states of antiferromagnetic Hamiltonians with $\langle J_l^2 \rangle = 0$ for l = x, y, z.
- The permutationally invariant singlet is

$$\varrho_{\text{singlet}} \propto \lim_{T \to 0} e^{-\frac{J_X^2 + J_Y^2 + J_Z^2}{T}}.$$

• For such a state, for large N we have

$$\varrho_{2p} \approx \frac{1}{4},$$

still it is detected as entangled by our criterion!

• Such a state has been created in cold atoms.

Dicke states

• Dicke states: simultaneous eigenstates of $\vec{J}^2 = J_x^2 + J_y^2 + J_z^2$ and J_z [Dicke, 1954]

$$J^{2}|j,j_{z},\alpha\rangle = j(j+1)|j,j_{z},\alpha\rangle,$$

$$J_{z}|j,j_{z},\alpha\rangle = j_{z}|j,j_{z},\alpha\rangle.$$

Symmetric Dicke states of spin-1/2 particles have

$$j = N/2$$
.

For such states

$$\langle J_x^2 + J_y^2 + J_z^2 \rangle = \frac{N}{2} \left(\frac{N}{2} + 1 \right).$$

We are interested in the state for which

$$j_z = 0$$
.

For such states $\langle J_z \rangle = 0$. $(\Delta J_z)^2 = 0$, it is an eigenstate of J_z .

Dicke states II

The state is given as

$$|D_N\rangle = {N \choose \frac{N}{2}}^{-\frac{1}{2}} \sum_k \mathcal{P}_k \left(|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}} \right),$$

where are summing over all permutations.

• E.g., for four qubits they look like

$$|D_4\rangle = \frac{1}{\sqrt{6}} (|0011\rangle + |0101\rangle + |1001\rangle + |0110\rangle + |1010\rangle + |1100\rangle).$$

photons: N. Kiesel, C. Schmid, GT, E. Solano, H. Weinfurter, PRL 2007; Prevedel. *et al.*, PRL 2009; W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, GT, H. Weinfurter, PRL 2009.

cold atoms: Lücke, Science 2011; Hamley et al, Nat. Phys. 2012.

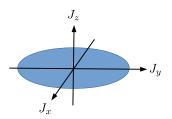
Spin Squeezing Inequality for Dicke states

It detects entangled states close to Dicke states since

$$\langle J_x^2 + J_y^2 \rangle = \frac{N}{2} \left(\frac{N}{2} + 1 \right) = \text{maximal},$$

 $\langle J_z^2 \rangle = 0.$

"Pancake" like uncertainty ellipse.



For separable states

$$\langle J_x^2 \rangle + \langle J_y^2 \rangle - \frac{N}{2} \le (N-1)(\Delta J_z)^2$$

holds.

Multipartite entanglement - Dicke states

Condition for entanglement detection around Dicke states. For states with at most *k*-particle entanglement

$$(\Delta J_z)^2 \geqslant J_{\text{max}} F_{\frac{k}{2}} \left(\frac{\sqrt{\langle J_x^2 + J_y^2 \rangle - J_{\text{max}}(\frac{k}{2} + 1)}}{J_{\text{max}}} \right)$$

holds.

G. Vitagliano *et al.*, New J. Phys. 19, 013027 (2017).

- Introduction
- Entanglement
 - Basic definitions
- Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- 6 Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

PRL 112, 155304 (2014)

PHYSICAL REVIEW LETTERS

week ending 18 APRIL 2014

ç

Detecting Multiparticle Entanglement of Dicke States

Bernd Lücke, Jan Peise, Giuseppe Vitagliano, Jan Arlt, Luis Santos, Géza Tóth, 256 and Carsten Klempt

Institut für Quantenoptik, Leibniz, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

Denarment of Theoretical Physics, University of the Basue County UPVEHU, P.O, 80x 644, E-40800 Bilbao, Snain

³QUANTOP, Institut for Fysik og Astronomi, Aarhus Universitet, 8000 Århus C, Denmark ⁴Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany

⁵IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
⁶Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
(Received 27 February 2014; published 17 April 2014)

Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled states, including Dicks tates. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized suqueezing parameter of 1–14 (45) IB.

DOI: 10.1103/PhysRevLett.112.155304

PACS numbers: 67.85.-d, 03.67.Bg, 03.67.Mn, 03.75.Mn

Entanglement, one of the most intriguing features of quantum mechanics, is nowadays a key ingredient for many applications in quantum information science [1,2], quantum simulation [3,4], and quantum-enhanced metrology [5]. Entangled states with a large number of particles cannot be characterized via full state tomography [6]. which is routinely used in the case of photons [7,8], trapped ions [9], or superconducting circuits [10,11]. A reconstruction of the full density matrix is hindered and finally prevented by the exponential increase of the required number of measurements. Furthermore, it is technically impossible to address all individual particles or even fundamentally forbidden if the particles occupy the same quantum state. Therefore, the entanglement of manyparticle states is best characterized by measuring the expectation values and variances of the components of the collective spin $\mathbf{J} = (J_x, J_y, J_z)^T = \sum_i \mathbf{s}_i$, the sum of all individual spins s_i in the ensemble.

In particular, the spin-squeezing parameter $\xi^2 = N(\Delta J_z^2)^2 (J_z^2)^2$ defines the class of spin-squeezed states for $\xi^2 < 1$. This inequality can be used to verify the presence of entanglement, since all spin-squeezed states are entangled [12]. Large clouds of entangled neutral atoms are typically prepared in such spin-squeezed states, as shown in thermal gas cells [13], and probability of the control of the control

quantified by means of the so-called entanglement depth, defined as the number of particles in the largest nonseparable subset [see Fig. 1(a)]. There have been numerous experiments detecting multiparticle entanglement involving up to 14 qubits in systems, where the particles can be addressed individually [9.20–24]. Large ensembles of neutral atoms.

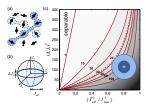
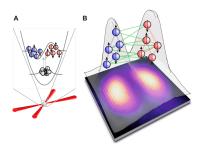


FIG. 1 (color online). Measurement of the entanglement depth for a total number of 8000 atoms. (a) The entanglement depth is given by the number of atoms in the largest nonseparable subset

- Introduction
- Entanglement
 - Basic definitions
- 3 Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- **5** Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

Experiment in cold gases

- Important: first excited spatial mode of the trap was used, not the ground state mode.
- It has two "bumps" rather than one, hence they had a split Dicke state.



K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes, Science 360, 416 (2018).

Correlations for Dicke states

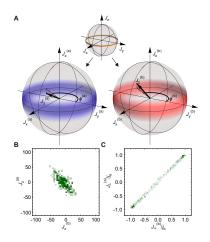
For the Dicke state

$$\begin{split} (\Delta(J_x^a - J_x^b))^2 &\approx 0, \\ (\Delta(J_y^a - J_y^b))^2 &\approx 0, \\ (\Delta J_z)^2 &= (\Delta(J_z^a + J_z^b))^2 &= 0. \end{split}$$

 Measurement results on well "b" can be predicted from measurements on "a"

$$J_{x}^{b} \approx J_{x}^{a}$$
, (correlation)
 $J_{y}^{b} \approx J_{y}^{a}$, (correlation)
 $J_{z}^{b} = -J_{z}^{a}$. (anti-correlation)

Correlations for Dicke states - experimental results



Here,
$$J_{\perp}^{(n)} = \cos \alpha J_{\chi}^{(n)} + \sin \alpha J_{\chi}^{(n)}$$
.

Experiment in K. Lange et al., Science 334, 773–776 (2011).

- Introduction
- Entanglement
 - Basic definitions
- 3 Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- **5** Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

The two-well entanglement criterion

For separable states,

$$\left[(\Delta J_z)^2 + \frac{1}{4} \right] \left[(\Delta (J_x^a - J_x^b))^2 + (\Delta (J_y^a - J_y^b))^2 \right] \ge \frac{\left\langle J_x^2 + J_y^2 \right\rangle^2}{N(N+2)}$$

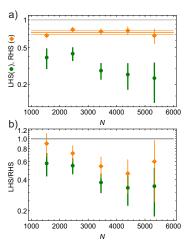
holds. $|D_N\rangle$: $\frac{1}{4}$

N

 $\frac{N(N+2)}{16}$

Similar criterion for EPR steering.

Violation of the criterion: entanglement is detected II



LHS/RHS for similar, but somewhat more complicated inequalities. (top) Vitagliano *et al.*, Quantum 2024, (bottom) Lange et *et al.*, Science 2018.

- Introduction
- Entanglement
 - Basic definitions
- 3 Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- 5 Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

Particle number resolving detection

- The resolution of the particle number detection is not 1 particle.
 Typically, ~ 10.
- So far we did not need single particle resolution.
- Particle-number resolving detection could improve the detected quality of the state dramatically.
- We could also have new entanglement criteria relying on single particle resolution.
- It is possible to reach a single-particle resolution:

M. Quensen, M. Hetzel, L. Santos, A. Smerzi, G. Tóth, L. Pezzé, C. Klempt, Hong-Ou-Mandel interference of more than 10 indistinguishable atoms, arXiv:2504.02691.

Parity measurement

We can measure the paritity as

$$\langle \sigma_{z} \otimes \sigma_{z} \otimes \otimes \sigma_{z} \rangle = \langle f(J_{z}) \rangle,$$

where

$$f(z)=e^{i2\pi(z+N/2)}.$$

• E. g, for N = 4, we have

$${f(z)}_{z=-2,-1,0,1,2} = {+1,-1,+1,-1,+1}.$$

 Thus, we do not need individual access to the particles, but we need a particle number resolving detection.

Entanglement conditions with many-body correlations

For separable states

$$\left|\left\langle \sigma_{X}\otimes\sigma_{X}\otimes...\otimes\sigma_{X}\right\rangle\right|+\left|\left\langle \sigma_{y}\otimes\sigma_{y}\otimes...\otimes\sigma_{y}\right\rangle\right|+\left|\left\langle \sigma_{z}\otimes\sigma_{z}\otimes...\otimes\sigma_{z}\right\rangle\right|\leq1$$

holds.

For the ideal Dicke state the value is 3.

N	$\langle \sigma_x^{\otimes N} \rangle$	$ \langle \sigma_z^{\otimes N} \rangle $	$\langle J_x^2 + J_y^2 \rangle$	${\cal J}$	$(\Delta J_z)^2$
2	0.892(22)	0.965(13)	1.892(22)	0.946(11)	0.0176(66)
4	0.821(44)	0.951(25)	5.08(29)	0.85(5)	0.025(12)
6	0.833(61)	0.942(33)	11.26(85)	0.94(7)	0.029(17)
8	0.821(70)	0.806(70)	19.0(16)	0.95(8)	0.098(36)
10	0.872(72)	0.822(86)	25.7(26)	0.86(9)	0.091(45)
12	0.61(13)	0.862(96)	33.7(46)	0.80(11)	0.067(44)

Extended Data Table 1: Measurement results for various particle numbers. The uncertainties denote one standard deviation.

Proof

For separable states

$$\left| \langle \sigma_X \otimes \sigma_X \otimes ... \otimes \sigma_X \rangle \right| + \left| \langle \sigma_Y \otimes \sigma_Y \otimes ... \otimes \sigma_Y \rangle \right| + \left| \langle \sigma_Z \otimes \sigma_Z \otimes ... \otimes \sigma_Z \rangle \right| \le 1$$
 holds.

Proof. For a product state of the type

$$|\Psi^{(1)}\rangle\otimes|\Psi^{(2)}\rangle\otimes...\otimes|\Psi^{(N)}\rangle$$

the left-hand side can be bounded from above as

$$\sum_{I=x,y,z} \left| \prod_{n=1}^{N} \left\langle \sigma_{I}^{(n)} \right\rangle \right| \leq \left| \left\langle \sigma_{x}^{(1)} \right\rangle \left\langle \sigma_{x}^{(2)} \right\rangle \right| + \left| \left\langle \sigma_{y}^{(1)} \right\rangle \left\langle \sigma_{y}^{(2)} \right\rangle \right| + \left| \left\langle \sigma_{z}^{(1)} \right\rangle \left\langle \sigma_{z}^{(2)} \right\rangle \right| \leq 1$$

where in the first inequality we used that $\left|\left\langle\sigma_l^{(n)}\right\rangle\right| \leq 1$, and in the second inequality we used the Cauchy-Schwarz inequality and the fact that the length of the Bloch vector is at most one for a qubit.

 Separable states are mixtures of product states, hence the inequality is also valid for separable states.

States detected

- The witness also detects the GHZ states as entangled.
- It also detects the singlet state given as

$$\frac{1}{\sqrt{2}}\big(|01\rangle-|10\rangle\big)\otimes\frac{1}{\sqrt{2}}\big(|01\rangle-|10\rangle\big)\otimes...\otimes\frac{1}{\sqrt{2}}\big(|01\rangle-|10\rangle\big)$$

has

$$(\Delta J_z)^2=0,$$

and

$$\langle \sigma_x^{\otimes N} \rangle = 1, \quad \langle \sigma_y^{\otimes N} \rangle = 1,$$

if *N* is divisible by 4. This is a 2-entangled state.

 Thus, these operators cannot be used to detect genuine multipartite entanglement.

Inequality with multi-particle correlations

Observation 1. For *N*-qubit quantum states,

$$\langle J_x \rangle^2 / j^2 + \left\langle J_y \right\rangle^2 / j^2 + \left\langle \sigma_z^{\otimes N} \right\rangle^2 \le 1$$

holds, where j = N/2 and

$$J_l = \frac{1}{2} \sum_{n=1}^N \sigma_l^{(n)}$$

for I = x, y, z.

$$H=BJ_X+K\sigma_Z^{\otimes N},$$

where B and K are constants, is of the form

$$|\Psi\rangle = \alpha |0\rangle_{\otimes}^{\otimes N} + \beta |1\rangle_{\otimes}^{\otimes N}.$$

which is a generalized GHZ state in the *x*-basis.

Inequality with multi-particle correlations II

Then, the relevant expectation value of J_x is

$$\langle J_{x}\rangle = \frac{N}{2} \langle \sigma_{x}\rangle_{\phi}$$

and the expectation value of the products of σ_z matrices is

$$\langle \sigma_z^{\otimes N} \rangle = \langle \sigma_z \rangle_{\phi}$$
,

where we define the single-qubit state

$$|\phi\rangle = \alpha |0\rangle_X + \beta |1\rangle_X.$$

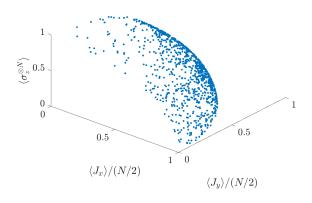
Since $\langle \sigma_x \rangle_{\phi}^2 + \langle \sigma_z \rangle_{\phi}^2 \le 1$, it follows that

$$\langle J_x \rangle^2 / j^2 + \left\langle \sigma_z^{\otimes N} \right\rangle^2 \le 1.$$

Then, assuming that the mean spin is not parallel with the x-axis, but it is in the xy-plane, we arrive at our inequality. \Box

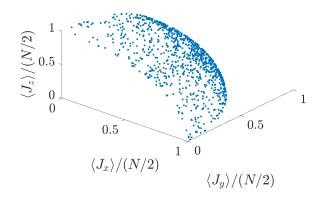
Inequality with multi-particle correlations III

Generalized GHZ states:



Inequality with multi-particle correlations IV

Comparison: spin coherent states



Bipartite conditions

Observation 2. For bipartite separable states,

$$\langle J_X \otimes J_X \rangle / (j_1 j_2) + \langle J_Y \otimes J_Y \rangle / (j_1 j_2) + \left| \left\langle \sigma_Z^{\otimes N_1} \otimes \sigma_Z^{\otimes N_2} \right\rangle \right| \leq 1$$

holds, where for the left half we have

$$j_1 = N_1/2,$$
 $j_2 = N_2/2.$
 N_1 particles N_2 particles

Proof. We start from Observation 1

$$\left\langle J_{x}\right
angle ^{2}/j^{2}+\left\langle J_{y}\right
angle ^{2}/j^{2}+\left\langle \sigma_{z}^{\otimes N}
ight
angle ^{2}\leq1$$

and use the Cauchy-Schwarz inequality.

Bipartite conditions

- Problem: we need to measure observables in the two halves of the system.
- In many experiments, we measure only collective observables.
- We need to modify the inequality such that it works for that case.
- Note that we need to measure the particle number with a single particle resolution.

Bipartite conditions

Observation 3. The following expression is true for bipartite separable states

$$\langle J_x^2 + J_y^2 \rangle / (2j_1j_2) + \left| \langle \sigma_z^{\otimes N} \rangle \right| \leq j(j+1)/(2j_1j_2),$$

where

$$j_1 = N_1/2, \qquad j_2 = N_2/2, \qquad j = N/2.$$

Proof. We start from the previous Observation. We add to both sides

$$\left\langle (J_x^{(1)})^2 + (J_y^{(1)})^2 \right\rangle / (2j_1j_2) + \left\langle (J_x^{(2)})^2 + (J_y^{(2)})^2 \right\rangle / (2j_1j_2).$$

Then follows the relation

$$\begin{aligned} \left\langle J_{x}^{2} + J_{y}^{2} \right\rangle / (2j_{1}j_{2}) + \left| \left\langle \sigma_{z}^{\otimes N} \right\rangle \right| \\ &\leq 1 + \left\langle (J_{x}^{(1)})^{2} + (J_{y}^{(1)})^{2} \right\rangle / (2j_{1}j_{2}) + \left\langle (J_{x}^{(2)})^{2} + (J_{y}^{(2)})^{2} \right\rangle / (2j_{1}j_{2}). \end{aligned}$$

Bipartite conditions II

Then, starting from the relation

$$\begin{split} \left\langle J_{x}^{2} + J_{y}^{2} \right\rangle / (2j_{1}j_{2}) + \left| \left\langle \sigma_{z}^{\otimes N} \right\rangle \right| \\ & \leq 1 + \left\langle (J_{x}^{(1)})^{2} + (J_{y}^{(1)})^{2} \right\rangle / (2j_{1}j_{2}) + \left\langle (J_{x}^{(2)})^{2} + (J_{y}^{(2)})^{2} \right\rangle / (2j_{1}j_{2}), \end{split}$$

we use the inequality

$$\langle (J_x^{(n)})^2 + (J_y^{(n)})^2 \rangle \leq j_n(j_n+1).$$

We arrive at

$$\left\langle J_x^2 + J_y^2 \right\rangle / (2j_1j_2) + \left| \left\langle \sigma_z^{\otimes N} \right\rangle \right| \leq j(j+1)/(2j_1j_2).$$

We need to measure only collective quantities!

Outline

- Introduction
- Entanglement
 - Basic definitions
- 3 Multiparticle entanglement with collective observables
 - Entanglement theory
 - Spin squeezing
 - Generalized spin squeezing
 - Dicke state experiment in cold gases
- Detecting bipartite entanglement of Dicke states
 - Creating Dicke states in BEC
 - Entanglement detection in Dicke states
- 6 Criteria with many-body correlations
 - Bipartite criterion
 - Multiparticle entanglement

Conditions for multi-particle entanglement

Observation 4. States violating the inequality

$$\left\langle J_{x}^{2}+J_{y}^{2}\right\rangle /(2j_{1}j_{2})+\left|\left\langle \sigma_{z}^{\otimes N}\right\rangle \right|\leq j(j+1)/(2j_{1}j_{2}),$$

for

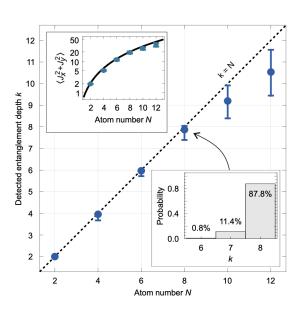
$$j_1 = k/2,$$
 $j_2 = (N-k)/2$

$$k$$
 particles $N-k$ particles

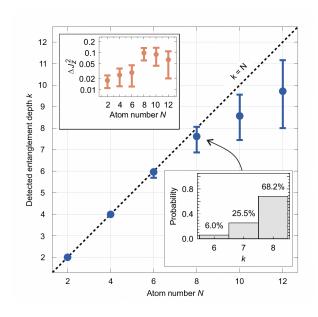
possess at least (k + 1)-particle entanglement, where we assume that $k \ge N/2$.

Violation for k = N - 1 means genuine multipartite entanglement.

Results



Comparison to the alternative method



Conclusions

- We discussed how to detect bipartite and multipartite entanglement with many-body correlation measurements.
- The method has been successfully used in experiments with Dicke states up to 12 particles.
- It demonstrates the good quality of the created Dicke state.
- For the transparencies, see

www.gtoth.eu

See also

M. Quensen, M. Hetzel, L. Santos, A. Smerzi, G. Tóth, L. Pezzé, C. Klempt.

Hong-Ou-Mandel interference of more than 10 indistinguishable atoms, arXiv:2504.02691.

THANK YOU FOR YOUR ATTENTION!