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@ Symmetry is a central concept in quantum mechanics. Typically, the
presence of some symmetry simplifies our calculations in physics.

@ A particular type of symmetry, permutational symmetry appears in
many systems studied in quantum optics.

@ The separability problem is proven to be a very hard one. Thus, it is
interesting to ask how permutational symmetry can simplify the
separability problem.
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Two types of symmetries

Consider two d-dimensional quantum systems. We will examine two types
of permutational symmetries, denoting the corresponding sets by 7 and
S:

@ We call a state permutationally invariant (or just invariant, o € 7) if o is
invariant under exchanging the particles. That is, FoF = o, where the
flip operator is F = 3’; |ij){jil. The reduced state of two randomly
chosen particles of a larger ensemble has this symmetry.




Two types of symmetries

Consider two d-dimensional quantum systems. We will examine two types
of permutational symmetries, denoting the corresponding sets by 7 and
S:

@ We call a state permutationally invariant (or just invariant, o € 7) if o is
invariant under exchanging the particles. That is, FoF = o, where the
flip operator is F = 3’; |ij){jil. The reduced state of two randomly
chosen particles of a larger ensemble has this symmetry.

© We call a state symmetric (o € S) if it acts on the symmetric subspace
only. This is the state space of two d-state bosons.

Clearly, we have S c 1.




Expectation value matrix

Expectation value matrix of a bipartite quantum state is

UkI(Q) = (M ® Ml>g,
where M ’s are local orthogonal observables for both parties, satisfying

Tr(Mk M/) = k.

@ We can decompose the density matrix as

o= Z Mk @ M.
K
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Equivalence of several entanglement conditions for

symmetric states

Observation 1. Let o € S be a symmetric state. Then the following
separability criteria are equivalent:

© o has a positive partial transpose (PPT), o™ > 0.

©Q o satisfies the Computable Cross Norm-Realignment (CCNR)
criterion, ||R(o)lly < 1, where R(p) is the realignment map and ||...||1 is
the trace norm.

© 1 >0, or, equivalently (A ® A) > 0 for all observables A.

@ The correlation matrix, defined via the matrix elements as
Cu = (M ® M) — (M ® 1)(1 ® M))

is positive semidefinite: C > 0. aR. usha Devi et al, Phys. Rev. Lett. 98, 060501 (2007).]

© The state satisfies several variants of the Covariance Matrix Criterion
(CMC). Latter are strictly stronger than the CCNR criterion for
non-symmetric states. 8/




Proof of Observation 1: Schmidt decomposition

Proof.

@ For invariant states, n is a real symmetric matrix. It can be
diagonalized by an orthogonal matrix O. The resulting diagonal matrix
{Ak} is the correlation matrix corresponding to the observables
M, = % OuM,.
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Proof of Observation 1: Schmidt decomposition

Proof.

@ For invariant states, n is a real symmetric matrix. It can be
diagonalized by an orthogonal matrix O. The resulting diagonal matrix
{Ak} is the correlation matrix corresponding to the observables
M, = % OuM,.

@ Hence, any invariant state can be written as
0= ) MM, &M,
K
where M, are pairwise orthogonal observables. This is almost the
Schmidt decomposition, however, Ak can also be negative.

@ It can be shown that -1 < >’ A < 1 for invariant states and
>k Nk = 1 for symmetric states.



Proof of Observation 1: Equivalence of CCNR and

n=>0

@ The Computable Cross Norm-Realignment (CCNR) can be
formulated as follows: If
DA > 1
K

in the Schmidt decomposition, then the quantum state is entangled.
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Proof of Observation 1: Equivalence of CCNR and

n=>0

@ The Computable Cross Norm-Realignment (CCNR) can be
formulated as follows: If
DA > 1
K

in the Schmidt decomposition, then the quantum state is entangled.

@ For symmetric states we have Y, Ak = 1, and X Ak > 1 is

equivalent to
/\k <0

for some k. Then (M, ® M, ) < 0 and n has a negative eigenvalue.

10/1



Proof of Observation 1: CCNR-PPT equivalence

Let us take an alternative definition of the CCNR criterion.

@ The CCNR criterion states that if o is separable, then [|[R(o)|l1 < 1
where the realigned density matrix is R(ojjk) = oik,ji- This just means
that if

lI(eF) ™1l > 1

then o is entangled.

[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]
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Proof of Observation 1: CCNR-PPT equivalence

Let us take an alternative definition of the CCNR criterion.

@ The CCNR criterion states that if o is separable, then [|[R(o)|l1 < 1
where the realigned density matrix is R(ojjk) = oik,ji- This just means

that if
I(eF) ™11 > 1
then o is entangled.
[M.M. Wolf, Ph.D. Thesis, TU Braunschweig, 2003.]
@ Since for symmetric states
oF = o,

this condition is equivalent to |o"||; > 1. This is just the PPT criterion,
since we have Tr(o™4) = 1.
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Proof of Observation 1: Equivalence of C > 0 and

n=>0

@ Now we showthat C >0 < n > 0.

@ The direction “=” is trivial, since for invariant states the matrix
(M ® 1)1 ® M)) is a projector and hence positive.

@ The direction “<": We make for a given state the special choice of
observables Qx = My — (Mk). Then, we just have C(Mx) = n(Qx).

@ We know that n(Mx) > 0 = n(Qx) > 0, even if Qx are not pairwise
orthogonal observables. Hence C(Mj) > 0 follows.
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Proof of Observation 1: Covariance Matrix Criterion

@ Variants of the Covariance Matrix Criterion:
ICIE < [1 - Tr(o})][1 - Tr(03)]
or

23 1Cil < [1 = Tr(Q3)] + [1 - Tr(eB)]-

[O. Giihne et al., PRL 99, 130504 (2007); O. Gittsovich et al., PRA 78, 052319 (2008).]

@ If o is symmetric, the fact that C is positive semidefinite gives
ICllt = Tr(C) = ¥ Ak — Tk Tr(0aM;)? = 1 - Tr(03 ) and similarly,
YilCil = Xi Ci = 1= Tr(d%).

@ Hence, a state fulfilling C > 0 fulfills also both criteria. On the other
hand, a state violating C > 0 must also violate these criteria, as they
are strictly stronger than the CCNR criterion
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Consequences

@ Interesting result: For symmetric o
01>0 &= VA:(A®A)>0.

This relates the positivity of partial transposition to the sign of certain
two-body correlations.

@ Any symmetric state of the following form is PPT
OPPT = ZPkMk@JMk, (1)
K

where py is a probability distribution, and M are pairwise orthogonal
observables, i.e., Tr(M2) = 1. Compare this to the definition of
separability
Osep = Z PkOk ® Ok (2)
K

where ok are observables, Tr(ox) = 1, ok > 0 and ok are pure, i.e,
Tr(gi) =1.
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Consequences Il

@ Any symmetric state that can be written as

Qo+ = ) CkAk ® Ak, 3)
k

where ¢k > 0, and A are some (not necessarily pairwise orthogonal)

observables, is PPT. If oc is permutationally invariant, then it does
not violate the CCNR criterion.

@ Multipartite case: A symmetric state of the form

OPPT22 = Z CkAk ® Ak ® Ak ® Ak (4)
K

is PPT with respect to the 2 : 2 partition. Example: Smolin state.
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Are there symmetric bound entangled states?

@ For symmetric states,
@ CCNR,

Q=0
© C>0and
O CcMC

are equivalent to the PPT criterion.

@ It is then quite hard to find symmetric PPT entangled states.

Do symmetric bound entangled states exist at
all?
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Symmetric bound entangled states

@ Breuer presented, for even d > 4, a single parameter family of bound
entangled states that are 7 symmetric

— d d d
OB = /1|W0><W0| + (1 - /1)”3
[H.-P. Breuer, PRL 97, 080501 (2006); see also K.G.H. Vollorecht and M.M. Wolf, PRL 88, 247901 (2002).]

@ The state is PPT entangled for 0 < 2 < 1/(d + 2). Here [Wy) is the
singlet state and s is the normalized projector to the symmetric
subspace.

@ Idea to construct bound entangled states with an S-symmetry: We
embed a low dimensional entangled state into a higher dimensional
Hilbert space, such that it becomes symmetric, while it remains
entangled.
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An 8 x 8 symmetric bound entangled states

@ We consider the symmetric state

[T -
|:. IT,/11,

o= ANE @ WIHNWI + (1 - )NZ @ N¢.

Here, ﬂgZ and FIZZ are normalized projectors to the two-qudit
symmetric/antisymmetric subspace with dimension d». Thus, g is
symmetric.
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An 8 x 8 symmetric bound entangled states

@ We consider the symmetric state

[T 18N -
|:. IT,/11,

6= AN ® WINWI + (1 - )N & NS.

Here, n§2 and FI‘S”2 are normalized projectors to the two-qudit
symmetric/antisymmetric subspace with dimension d». Thus, g is
symmetric.

@ If the original system is of dimension d x d then the system of g is of
dimension dd> x dds. Since og is the reduced state of g, if the first is
entangled, then the second is also entangled.

@ For d» =2 and d = 4, numerical calculation shows that ¢ is PPT for
A <0.062.

This provides an example of an S symmetric bound entangled state of size
8 x 8.
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Symmetric bound entangled state via numerics—

Basic idea

@ Let us consider an N-qubit symmetric state, that is, a state of the
symmetric subspace. We consider even N.
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Symmetric bound entangled state via numerics—

Basic idea

@ Let us consider an N-qubit symmetric state, that is, a state of the
symmetric subspace. We consider even N.

@ ltis known that such a state is either separable with respect to all
bipartitions or it is entangled with respect to all bipartitions.

[K. Eckert, J. Schliemann, D. BruB3, and M. Lewenstein, Ann. Phys. 299, 88 (2002).]

@ Thus any state that is PPT with respect to the & : ¥ partition while
NPT with respect to some other partition is bound entangled with

respect to the & : ¥ partition.
o -

@ Since the state is symmetric, it can straightforwardly be mapped to a
(%’ +1)x (g + 1) bipartite symmetric state.
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Symmetric bound entangled state via numerics Il

@ To obtain such a multiqubit state, one has to first generate an initial
random state o that is PPT with respect to the & : & partition.
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Symmetric bound entangled state via numerics Il

@ To obtain such a multiqubit state, one has to first generate an initial
random state o that is PPT with respect to the & : & partition.

@ Then, we compute the minimum nonzero eigenvalue of the partial
transpose of o with respect to all other partitions

Amin(0) = mkin mlin /l,(gT’k ).

If Amin(0) < 0 then the state is bound entangled with respect to the
N & partition. If it is non-negative then we start an optimization
process for decreasing this quantity.
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Symmetric bound entangled state via numerics Il

@ To obtain such a multiqubit state, one has to first generate an initial
random state o that is PPT with respect to the & : & partition.

@ Then, we compute the minimum nonzero eigenvalue of the partial
transpose of o with respect to all other partitions

Amin(0) = mkin mlin (o).

If Amin(0) < 0 then the state is bound entangled with respect to the
N & partition. If it is non-negative then we start an optimization
process for decreasing this quantity.

@ We generate another random density matrix Ag, and check the
properties of
o =(1-¢€)o+elo, (5)
where 0 < € < 1 is a small constant. If o’ is still PPT with respect to
the ¥ : & partition and Amin(0’) < Amin(0) then we use o’ as our new
random initial state o.
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3 x 3 symmetric bound entangled state

@ Repeating this procedure, we obtained a four-qubit symmetric state

this way
0.22 0 0 —-0.059 0
0 0.176 0 0 0
OBE4 = 0 0 0.167 0 0
—-0.059 0 0 0.254 0
0 0 0 0 0.183

The basis states are |0) := [0000), [1) := sym(|1000)),
[2) := sym(|1100)), ...

@ The state is bound entangled with respect to the 2 : 2 partition. This
corresponds to a 3 x 3 bipartite symmetric bound entangled state,
demonstrating the simplest possible symmetric bound entangled
state.
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Five- and six-qubit fully PPT entangled states

@ Our method can be straightforwardly generalized to create
multipartite bound entangled states of the symmetric subspace, such
that all bipartitions are PPT (“fully PPT states”).

@ We found such a state for five and six qubits.
@ Note that these states are both fully PPT and genuine multipartite
entangled. It is further interesting to relate this to the Peres

conjecture, stating that fully PPT states cannot violate a Bell
inequality.
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Conclusions

@ In summary, we have discussed entanglement in symmetric systems.

@ We showed that for states that are in the symmetric subspace several
relevant entanglement conditions, especially the PPT criterion, the
CCNR criterion, and the criterion based on covariance matrices
matrices, coincide.

@ We proved the existence of symmetric bound entangled states, in
particular, a 3 x 3, five-qubit and six-qubit symmetric PPT entangled
states.

@ See G. Téth and O. Guhne, PRL 102, 170503 (2009).

*** THANK YOU ***
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