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Basic ideas

A pure state of N qubits can be described by state vector |Ψ〉
(=column vector) of 2N complex elements fulfilling

〈Ψ|Ψ〉 = 1.

A mixed state is some mixture of pure states

% =
∑

k

pk |Ψk 〉〈Ψk |,

where pk are probabilities.

For N qubits, it is of size 2N × 2N .
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Basic ideas II

In quantum physics, the density matrix % is a positive semidefinite
matrix

% ≥ 0.

Its trace is one
Tr(%) = 1

and it is Hermitian
% = %†.

These conditions can easily be included in a semidefinite program.

When we measure an operator X , the expectation value is

〈X 〉 = Tr(%X ).



Basic ideas III

Let us see a simple example. We look for the minimum of

〈X 〉 = Tr(%X )

with the condition
〈Yn〉 = Tr(%Yn) = yn

for n = 1,2, ..,N , where X ,Yn are operators.

We optimize over % density matrices.

This is again doable with semidefinite programming, although,
there are better ways to do it.



N representability problem IV

Find % of N qudits such that for the reduced states we have

TrI\{m,n}(%) = %mn,

where I = {1,2, ...,N}.

A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963),

for a summary of the literature see in Doherty, Parillo, Spedalieri, PRA 2005.

Note that
TrI\{m,n}(%)

is a matrix with elements that depend linearly on the elements of %.



Basic ideas V

Let us see a simple example. We look for the minimum of

〈X1〉
2 + 〈X2〉

2 = Tr(%X1)2 + Tr(%X2)2

with the condition
〈Yn〉 = Tr(%Yn) = yn

for n = 1,2, ..,N .

We optimize over % density matrices.

This is again doable with semidefinite programming, minimising
t1 + t2 using the constraints(

tk Tr(%Xk )
Tr(%Xk ) 1

)
≥ 0

for k = 1,2.
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Solvable vs. not solvable by SDP

Thus, we can minimize a convex function over the convex set of
density matrices.

However, we cannot maximize a function over the convex set of
density matrices efficiently - the maximum is taken at the
boundaries.
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Local Operation and Classical Communications

Definition
Local Operation and Classical Communications (LOCC):

Single-party unitaries,

Single party von Neumann measurements,

Single party POVM measurements,

We are even allowed to carry out measurement on party A and
depending on the result, perform some other operation on party B
("Classical Communication").



Pure states: product states vs. entangled states

A pure two-qubit state is either a product state

|Ψ1〉A ⊗ |Ψ2〉B ,

or an entangled state.

From a single copy of any pure entangled two-qubit state, we can
get to any other entangled two-qubit state through Stochastic
Local Operations and Classical Communication (SLOCC).

That is, for any entangled |Ψ〉 and |Φ〉, there are invertible X and Y
such that

|Ψ〉 = X ⊗ Y |Φ〉.

Note that X and Y do not have to be Hermitian.

This is not true for higher dimensional systems.



Pure states: product states vs. entangled states

Examples for separable states

|0〉 ⊗ |0〉, |1〉 ⊗ |1〉.

An example for entangled states

1
√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉).



Mixed states:
separable states vs. entangled states

For the mixed case, the definition of a separable state is (Werner
1989)

ρsep =
∑

k

pk [ρ
(1)

k ]A ⊗ [ρ
(2)

k ]B .

A state that is not separable, is entangled.

It is not possible to create entangled states from separable states,
with LOCC.

From many copies of two-qubit mixed entangled states, we can
always distill a singlet using Local Operations and Classical
Communication (LOCC).

This is not true for higher dimensional systems. Not all quantum
states are distillable.



Distillation
From many entangled particle pairs we want to create fewer
strongly entangled pairs with LOCC.

Strongly entangled

Strongly entangled

Entangled

Entangled

Entangled

Entangled



Convex sets

Separable states

Entangled states



Bipartite systems I

Naive question: can we decide whether a state is separable with
SDP? No, because we would need a constraint of the type

% = (%1)A ⊗ (%2)B .

Alternatively, we would need a constraint for the reduced states of
the nth subsytem

Tr(%2
red,n) = 1.



Bipartite systems II

How can we check separability using a brute force method? We
can look for ρ(1)

k , ρ
(2)

k numerically.

Simpler problem, maximum for an operator expectation value for
separable states

max
ρsep

Tr(Xρsep) = max
Ψ1,Ψ2

〈Ψ1|〈Ψ2|X |Ψ2〉Ψ1〉.

Numerically, we can try to find the maximum. In practice, we will
find the maximum or something lower.
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The positivity of the partial transpose (PPT)
criterion

Definition
For a separable state % living in AB, the partial transpose is always
positive semidefinite

%TA ≥ 0.

If a state does not have a positive semidefinite partial transpose, then it
is entangled. A. Peres, PRL 1996; Horodecki et al., PLA 1997.

Partial transpose means transposing according to one of the two
subsystems.

For separable states

(T ⊗ 1)% = %TA =
∑

k

pk (%
(1)

k )T ⊗ %
(2)

k ≥ 0.



The positivity of the partial transpose (PPT)
criterion II

How to obtain the partial transpose of a general density matrix?
Example: 3 × 3 case.

Strongly entangled

Strongly entangled

Entangled
Entangled

Entangled

Entangled

ϱ=

00 01 02 10 11 12 20 21 22

00

01

02

10

11

12

20

21

22



The positivity of the partial transpose (PPT)
criterion III

If
%TA ≥ 0

is violated then the state is entangled!

For 2 × 2 and 2 × 3 systems it detects all entangled states.

For larger systems, there are entangled states for which

%TA ≥ 0.

hold. They are bound entangled, not distillable.



Convex sets

Separable states

NPT Entangled states

PPT Entangled states



The positivity of the partial transpose (PPT)
criterion IV

Semidefinite programming can be used to optimize over PPT
states.

Find the maximum of an operator expectation value for PPT
states:

Maximize
〈X 〉% ≡ Tr(X%)

such that

% = %†,

% ≥ 0,
%TA ≥ 0,

Tr(%) = 1.



The positivity of the partial transpose (PPT)
criterion V

This is like finding an upper bound on the maximum for separable
states.

In practice, we often find the maximum for separable states.

G. Tóth, W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, and H. Weinfurter, New J. Phys. 2009.



The positivity of the partial transpose (PPT)
criterion V

We can ask: is there a PPT fulfilling certain constraints?

Look for % such that

% = %†,

% ≥ 0,
%TA ≥ 0,

Tr(%) = 1,
Tr(Xk%) = xk for k = 1,2, ..,K .

If there is not such a % then the state fulfilling the constraints is not
PPT, and it is entangled (or it is not physical).

One can use this to detect entanglement in experiments.



Measuring entanglement, bipartite case

Entanglement of formation:

Pure states: Von Neumann entropy of the reduced state

EF (%) = S[TrA(%)],

where
S(%) = −Tr(% log %).

Mixed states: Defined by a convex roof construction

EF (%) = min
{|Ψk 〉,pk }:%=

∑
k pk |Ψk 〉〈Ψk |

∑
k

pkEF (|Ψk 〉).

Negativity: = (-1) times the sum of the negative eigenvalues of the
partial transpose. (Vidal, Werner)



Measuring entanglement, bipartite case II

Entanglement of formation measures the number of singlets
needed to create the state with LOCC.

For separable states it is zero.

For the singlet
(|01〉 − |01〉)

√
2,

or
(|00〉+ |11〉)

√
2,

it is 1.
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Three-qubit mixed states

Six classes:

Class #1: fully separable states
∑

k pk%
(k)

1 ⊗ %
(k)

2 ⊗ %
(k)

3

Class #2: (1)(23) biseparable states
∑

k pk%
(k)

1 ⊗ %
(k)

23 , not in Class #1

Class #3: (12)(3) biseparable states
∑

k pk%
(k)

12 ⊗ %
(k)

3 , not in Class #1

Class #4: (13)(2) biseparable states
∑

k pk%
(k)

13 ⊗ %
(k)

2 , not in Class #1

Class #5: W-class states:
mxtr of pure (W ∪ Bisep ∪ Sep)-class states, not in Classes #1-4

Class #6: GHZ-class states: mxtr of pure (GHZ ∪W ∪ Bisep ∪
Sep)-class states, not in Classes #1-5

Biseparable states: mixture of states of classes #2, #3 and #4.



Three-qubit mixed states II

The extension of the classification of pure states to mixed states
leads to convex sets:

A. Acín, D. Bruss, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001)

B B

S

B

W W

W

GHZ �
�
��	

Convex hull



Witnesses for GHZ and W-class states

Entanglement witnesses for detecting states of a given class:

GHZ-class states

W
(P)
GHZ := 3

41 − |GHZ〉〈GHZ|.

W-class states
W

(P)
W := 2

31 − |W〉〈W|.

W
(P)
GHZ := 1

21 − |GHZ〉〈GHZ|.

Tr(W%) < 0 signals entanglement of the given type.

A. Acín, D. Bruss, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001)
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Aims when designing a witness

Definition
An entanglement witnessW is an operator that is positive on all
separable (biseparable) states.

Thus, Tr(W%) < 0 signals entanglement (genuine multipartite
entanglement). Horodecki 1996; Terhal 2000; Lewenstein, Kraus, Cirac, Horodecki 2002

There are two main goals when searching for entanglement witnesses:

Optimization �
�
��
��*

H
HHH

HHj

Large robustness to noise

Few measurements



Simple idea for witnesses

A witness can be defined for a bipartite systems as

W = c1 −M ,

where
c = max

|Ψ1〉⊗|Ψ2〉
〈M〉 .



Find a lower bound on the maximum of the
expectation value for separable states

Maximize numerically

Tr(X |Ψ1〉〈Ψ1| ⊗ |Ψ2〉〈Ψ2|)

over
|Ψ1〉〈Ψ1|, |Ψ2〉〈Ψ2|.

We can get a lower bound on the maximum. (We might not find
the maximum.)



Find an upper bound on the maximum of the
expectation value for separable states

Maximize
Tr(X%AB)

over %AB fulfilling

%AB = %†AB ,

%AB ≥ 0,
%TA

AB ≥ 0,
Tr(%AB) = 1.

We can get an upper bound on the maximum. (We might not find
the maximum.)



Another simple idea for witnesses

IfW(P) is a witness thenW is also a witness if

W− αW(P) ≥ 0

for some α > 0.



Optimizing witnesses
Noisy state

%(pnoise) = (1 − pnoise)% + pnoise%noise.

The state is detected by a witnessW if Tr(W%) < 0, which is the
case if

pnoise <
Tr(W%)

Tr(W%) − Tr(W%noise)
=: plimit.

Let us assume that the witness is a linear combination of basis
operators

W =
∑

k

ckBk .

We look for the ck such that plimit is maximal and

W− αW(P) ≥ 0

for some α > 0.



Optimizing witnesses

G. Tóth, W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, and H. Weinfurter, Practical methods for witnessing genuine

multi-qubit entanglement in the vicinity of symmetric states, New J. Phys. 11, 083002 (2009).



Optimizing witnesses II

G. Tóth, W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, and H. Weinfurter, Practical methods for witnessing genuine
multi-qubit entanglement in the vicinity of symmetric states, New J. Phys. 11, 083002 (2009);

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Experimental entanglement of a six-photon
symmetric Dicke state, Phys. Rev. Lett. 103, 020504 (2009).



An experiment: Dicke state with photons



An experiment: Dicke state with photons II

A photo of a real experiment (six-photon Dicke state, Weinfurter group,
2009):



Outline
1 Introduction

Quantum systems
Basic ideas
Solvable vs. not solvable by SDP

2 The separability problem
Separable states
PPT criterion
Multipartite entanglement
Entanglement witnesses

3 The Doherty-Parillo-Spedalieri hierarchy
Locally symmetric extensions
Separability
Dual problem

4 Calculating entanglement measures
Convex roof of the entropy
Tangle
Other quantities
Even tighter lower bounds

45 / 70



Locally symmetric extensions

Definition (Locally symmetric extensions)
Let us assume that %AB is a bipartite quantum state. Then, %ABB′ is
a symmetric extension of %AB for the party B if

TrB′%ABB′ = %AB

and
PBB′%ABB′PBB′ = %ABB′ ,

PBB′ is the operator swapping B and B′.

We can talk about a locally symmetric extension %ABB′B′′ in an
analogous way.

A. Doherty, P. A. Parillo, F. M. Spedalieri, Phys. Rev. Lett. 2002; Phys. Rev. A 2004; Phys. Rev. A 2005.



PPT locally symmetric extensions

Definition (PPT locally symmetric extensions)
Let us assume that %AB is a bipartite quantum state. Then, %ABB′ is
a PPT symmetric extension of %AB for the party B if

TrB′%ABB′ = %AB ,

PBB′%ABB′PBB′ = %ABB′ ,

and
%ABB′

is PPT with respect to all bipartitions.

We can talk about a PPT locally symmetric extension %ABB′B′′ and
%ABB′B′′B′′′ in an analogous way.

We call them 1 : 2 and 1 : 3 locally symmetric extensions.
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Locally symmetric extensions for separable states

Separable states have a PPT symmetric extension to arbitrary
number of parties.

For instance an AB → ABB′ extension can be given as

ρsep =
∑

k

pk [ρ
(1)

k ]A ⊗ [ρ
(2)

k ]B .→

ρextension =
∑

k

pk [ρ
(1)

k ]A ⊗ [ρ
(2)

k ]B ⊗ [ρ
(2)

k ]B′

It can be shown that entangled states do not have extensions to
arbitrary many parties.



Algorithm for entanglement detection

Find the nA : nB PPT locally symmetric extension.

If it does not exist then the state is entangled.

If it exists then we have to try larger nA and/or larger nB . (In
principle, we can restrict our attention to nA = 1.)



Bosonic symmetry

As a bosonic state, the extension can be efficiently stored even for
many qubits.

An N-qubit symmetric state can be stored in a (N + 1) × (N + 1)
density matrix.

G. Tóth and O. Gühne, Entanglement and permutational symmetry, Phys. Rev. Lett. 102, 170503 (2009);

M. Navascues, M. Owari, M, B. Plenio, The power of symmetric extensions for entanglement detection, Phys. Rev. A. (2009).
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Entanglement witnesses

The dual problem gives an entanglement witness, if the state does
not have an extension.

With the witness the state is detected as entangled.
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Entanglement

The entanglement of a bipartite quantum state

For pure states living on AB, it is defined as

E(|Ψ〉) = S[TrA(|Ψ〉)],

for pure states, where S is an entropy.

For mixed states, it is defined with a convex roof as

E(%) = min
{pk ,|Ψk 〉}

(∑
k

pkE(|Ψk 〉)

)
,

where {pk , |Ψk 〉} is a decomposition to pure states

% =
∑

k

pk |Ψk 〉〈Ψk |.



Linear entropy for pure states

Linear entropy
Slin(%) = 1 − Tr(%2).

Known: linear entropy of entanglement for pure states can be
defined as an expectation value on two copies (AB and A′B′) as

Elin(|Ψ〉) = Tr[AAA′ ⊗ 1BB′(|Ψ〉〈Ψ|)AB ⊗ (|Ψ〉〈Ψ|)A′B′ ],

where
AAA′ := (1 − F )AA′

and F is the flip operator.



Linear entropy for mixed states: convex roof

For mixed states

Elin(%) = min{pk ,|Ψk 〉}

∑
k

pkElin(|Ψk 〉) =

= min{pk ,|Ψk 〉}

∑
k

pk Tr(AAA′ |Ψk 〉〈Ψk |
⊗2)

= min
ω12

Tr(AAA′ω12),

where ω12 are symmetric separable states, i.e.,

ω12 =
∑

k

pk |Ψk 〉〈Ψk | ⊗ |Ψk 〉〈Ψk |.

This is the key step in our approach.

�



Surprise 1

Mapping of the problem

Optimization over
decompositions −→ Optimization over

symmetric separable states

We connected the separability theory to a general mathematical
problem.



How to calculate it

The convex roof of the linear entropy can be written as

Elin(%) = min
ω12

Tr(AAA′ω12),

s.t. ω12 is symmetric, separable,
ω1 = %,

where ω1 ≡ Tr2(ω12).

A lower bound can be obtained as with the PPT condition

Elin(%) = min
ω12

Tr(AAA′ω12),

s.t. ω12 is symmetric PPT,
ω1 = %,

where ω1 ≡ Tr2(ω12). This is a semidefinite program.



Surprise 2

The lower bound

is nonzero for all states with a non-positive semidefinite partial
transpose (NPPT).

is nonzero for some states with a positive semidefinite partial
transpose (PPT).

For all non-PPT states and for all states that do not have a 2 : 2
symmetric extension we have a nonzero bound.

Moreover, for all states having a 2:2 PPT symmetric extension the
bound is zero.
[Extensions: Doherty, Parrilo, Spedalieri, PRA 69, 022308 (2004)]



Example: Entanglement of a PPT state
3 × 3 Horodecki state mixed with white noise.

a =parameter of the state, 1 − p =noise fraction

 0
 0.2

 0.4
 0.6

 0.8
 1

 0.94

 0.96

 0.98

 1
 0

 0.5

 1

 1.5

Elin
(ppt)

 x 10
-3

a

p

Elin
(ppt)

 x 10
-3
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Wootters’ Tangle

The well-known tangle for three-qubits can be defined as a
fourth-order polynomial in expectation values.
A. Osterloh and J. Siewert, Phys. Rev. A 86, 042302 (2012).

Hence, it can be obtained as an optimization over four-partite
symmetric separable states

τ(%) = min
ω1234

Tr(Tω1234),

s.t. ω1234 symmetric, fully separable,
ω1 = %,

where T is an operator (4 parties with 3 qubits each).

Similar idea works: replace separable states by PPT states.



Example: tangle of a two-parameter family of
states

%(x , y) = x |GHZ+〉〈GHZ+|+ y |GHZ−〉〈GHZ−|+ (1 − x − y)|W〉〈W|

 0
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Other quantities

Schmidt number. I.e., the convex roof of R3(|Ψ〉) =
∑

i<j<k λiλjλk
tells us whether the Schmidt number is larger than 2.

Entanglement vs. CHSH violation

Lower bound on entanglement based on some measurement
results

Concave roof instead of convex roofs: E. of assistance

Lower bound on quantum Fisher information based some
measurement results.
[Tóth and Petz, PRA 2013.]

One can get even a witness!!
[For references, please G. Tóth, T. Moroder, and O. Gühne, Phys. Rev. Lett. (2015).]



Examples
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A series of tighter and tighter lower bounds

To strengthen the bound, a criterion stronger than PPT must be
employed.

For example, the method of PPT locally symmetric extensions can
be used.
[Doherty, Parrilo, Spedalieri, Phys. Rev. A 69, 022308 (2004)]

Sequence of lower bounds E (n)

lin with increasing accuracies.

Calculation: semidefinite program.

See:
G. Tóth, T. Moroder, and O. Gühne, PRL 2015.



Summary

We considered using semidefinite programs to solve problems in
quantum information science.

We concentrated on problems connected to entanglement theory.
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