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What are entangled states useful for?

Entangled states are useful, but not all of them are useful for
some task.

Entanglement is needed for beating the shot-noise limit in
quantum metrology.

Intriguing question: Are states with a positive partial transpose
useful for metrology? Can they also beat the shot-noise limit?
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Quantum metrology

Fundamental task in metrology

ϱθϱ U (θ )=exp (−iAθ )

We have to estimate θ in the dynamics

U = exp(−iAθ).



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

(∆θ)2 ≥ 1
mFQ[%,A]

,

where where m is the number of independent repetitions and
FQ[%,A] is the quantum Fisher information.

The quantum Fisher information is

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2,

where % =
∑

k λk |k〉〈k |.



Special case A = Jl

The operator A is defined as

A = Jl =
N∑

n=1

j(n)
l , l ∈ {x , y , z}.

Magnetometry with a linear interferometer
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The quantum Fisher information vs. entanglement

For separable states

FQ[%, Jl ] ≤ N, l = x , y , z.

Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi, Phys. Rev. A 82, 012337 (2010)

For states with at most k -particle entanglement (k is divisor of N)

FQ[%, Jl ] ≤ kN.

P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322 (2012).
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Results so far concerning metrologically useful
PPT states

Bound entangled states with PPT and some non-PPT partitions.
Violates an entanglement criterion with three QFI terms.
P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezze, and A. Smerzi,

PRA 85, 022321 (2012).

Bound entangled states with PPT and some non-PPT partitions.
Violates the criterion with a single QFI term, better than shot-noise
limit.
Ł. Czekaj, A. Przysiężna, M. Horodecki, P. Horodecki, Phys. Rev. A 92, 062303 (2015).
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Our results

We look for bipartite PPT entangled states and multipartite states
that are PPT with respect to all partitions.

G. Tóth and T, Vértesi, Phys. Rev. Lett. 120, 020506 (2018).



Maximizing the QFI for PPT states: brute force

Maximize the QFI for PPT states. Remember

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2,

where % =
∑

k λk |k〉〈k |.

Difficult to maximize a convex function over a convex set. The
maximum is taken on the boundary of the set.

Not guaranteed to find the global maximum.

Note: Finding the minimum is possible!



Maximizing the QFI for PPT state: our method

Let us consider the error propagation formula

(∆θ)2
M =

(∆M)2

〈i[M,H]〉2 ,

which provides a bound on the quantum Fisher information

FQ[%,H] ≥ 1/(∆θ)2
M .

[M. Hotta and M. Ozawa, Phys. Rev. A 2004; B. M. Escher, arXiv:1212.2533; F.
Fröwis, R. Schmied, and N. Gisin, Phys. Rev. A 2015. For a summary, see, e.g.,
the Supplemental Material of Tóth, Vértesi, Horodecki, Horodecki, PRL 2020.]



Maximizing the QFI for PPT state: our method

The bound is sharp

FQ[%,A] = max
M

〈i[M,A]〉2%
(∆M)2 .

M. G. Paris, Int. J. Quantum Inform. 2009. Used, e.g., in F. Fröwis, R. Schmied, and N. Gisin, 2015; I. Appelaniz et al., NJP 2015.

The maximum for PPT states can be obtained as

max
% is PPT

FQ[%,A] = max
% is PPT

max
M

〈i[M,A]〉2%
(∆M)2 .



Sew-saw algorithm for maximizing the precision

M

maximize over PPT states %
for a given M

%

maximize over M
for a given PPT state %

Random
operator

Similar iterative approach was used for maximzing over % for noisy
states: Macieszczak, arXiv:1312.1356v1; Macieszczak, Fraas, Demkowicz- Dobrzanski, NJP 2014.



Maximize over PPT states for a given M

Best precision for PPT states for a given operator M can be
obtained by a semidefinite program.

Proof.—Let us define first

fM(X ,Y ) = min
%

Tr(M2%),

s.t. % ≥ 0, %Tk ≥ 0 for all k ,Tr(%) = 1,
〈i[M,A]〉 = X and 〈M〉 = Y .

The best precsion for a given M and for PPT states is

(∆θ)2 = min
X ,Y

fM(X ,Y )− Y 2

X 2 .



Maximize over M for a given PPT state

For a state %, the best precision is obtained with the operator
given by the symmetric logarithmic derivative

M = 2i
∑
k ,l

λk − λl

λk + λl
|k〉〈l |〈k |A|l〉,

where % =
∑

k λk |k〉〈k |.



Convergence of the method

The precision cannot get worse with the iteration!



Convergence of the method II
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Generation of the 4× 4 bound entangled state.

(blue) 10 attempts. After 15 steps, the algorithm converged.

(red) Maximal quantum Fisher information for separable states.



Robustness of the states

%(p) = (1− p)%+ p%noise

Robustness of entanglement: the maximal p for which %(p) is
entangled for any separable %noise.
Vidal and Tarrach, PRA 59, 141 (1999).

Robustness of metrological usefulness: the maximal p for which
%(p) outperforms separable state for any separable %noise.



Robustness of the states II

System A FQ[%,A] F (sep)
Q pwhite noise

four qubits Jz 4.0088 4 0.0011
three qubits j(1)

z + j(2)
z 2.0021 2 0.0005

2× 4
(three qubits,

only 1 : 23 is PPT)
j(1)
z + j(2)

z 2.0033 2 0.0008

Multiqubit states



Robustness of the states III

d FQ[%,A] pwhite noise pLB
noise

3 8.0085 0.0006 0.0003
4 9.3726 0.0817 0.0382
5 9.3764 0.0960 0.0361
6 10.1436 0.1236 0.0560
7 10.1455 0.1377 0.0086
8 10.6667 0.1504 0.0670
9 10.6675 0.1631 0.0367
10 11.0557 0.1695 0.0747
11 11.0563 0.1807 0.0065
12 11.3616 0.1840 0.0808

d × d systems.
Maximum of the quantum Fisher information
for separable states is 8.
The operator A is not the usual Jz .



Robustness of the states IV

The QFI is 11.3616 for a 12× 12 system.

Thus, it seems to approach the maximum value, 16, but via
numerical calculation we cannot say more.



Robustness of the states V: 4× 4 bound entangled
PPT state

Let us define the following six states
|Ψ1〉 = (|0,1〉+ |2,3〉)/

√
2, |Ψ2〉 = (|1,0〉+ |3,2〉)/

√
2,

|Ψ3〉 = (|1,1〉+ |2,2〉)/
√

2, |Ψ4〉 = (|0,0〉 − |3,3〉)/
√

2,
|Ψ5〉 = (1/2)(|0,3〉+ |1,2〉) + |2,1〉/

√
2,

|Ψ6〉 = (1/2)(−|0,3〉+ |1,2〉) + |3,0〉/
√

2.

Our state is a mixture

%4×4 = p
4∑

n=1

|Ψn〉〈Ψn|+ q
6∑

n=5

|Ψn〉〈Ψn|,

where q = (
√

2− 1)/2 and p = (1− 2q)/4.

We consider the operator

A = H ⊗ 1 + 1⊗ H,

where H = diag(1,1,−1,−1).



Metrologically useful quantum states with LHV
models (PPT)

Consider the 2× 4 state listed before. Possible to construct
numerically a LHV model for the state.

LM

S

P

F. Hirsch, M. T. Quintino, T. Vértesi, M. F. Pusey, and N. Brunner, PRL 2016;

D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk, PRL 2016.



Metrologically useful quantum states with LHV
models (non-PPT)

Two-qubit Werner state (1− p)|Ψ−〉〈Ψ−|+ p1/4, with
|Ψ−〉 = (|01〉 − |10〉)/

√
2.

Better for metrology than separable states (FQ > 2) for
p > 1− 0.3596 = 0.6404.
They do not violate a Bell inequality for p < 0.6829.

LM

S

P

F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, N. Brunner, Quantum 2017; A. Acín, N. Gisin, B. Toner, PRA 2006.



Cluster states
Cluster states: resource in measurement-based quantum
computing
R. Raussendorf and H. J. Briegel, PRL 2001.

Fully entangled pure states.
Violate a Bell inequality
V. Scarani, A. Acín, E. Schenck, M. Aspelmeyer, PRA 2005; O. Gühne, GT, P. Hyllus, H. J. Briegel, PRL 2005;

GT, O. Gühne, and H. J. Briegel, PRA 2006.

Ring cluster states for N ≥ 5 are metrologically not useful
P. Hyllus, O. Gühne, and A. Smerzi, PRA 2010.

LM

S

P



Non-local PPT states

Counterexample for the Peres conjecture

LM

S

P

T. Vértesi and N. Brunner, Nature Communications 2015.
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Metrological performance
Observation 1.—We present two families of PPT states. For both
families of states,

FQ[%Fn,H] =
16
√

d
1 +
√

d
,

holds. The Hamiltonian corresponding to the (AA′)(BB′) partition
is

H = σz
A ⊗ 1B ⊗ 1A′B′ + 1A ⊗ σz

B ⊗ 1A′B′ ,

where the dimension of A′ and B′ is d .

The quantum Fisher information approaches 16 for large d , which
is the maximum achievable value by entangled states.

Thus, PPT states turn out to be almost as useful as non-PPT
entangled states in this metrological task.

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi, Bound entangled singlet-like states for quantum metrology,
Phys. Rev. Res. 3, 023101 (2021).



Metrological performance II

(dashed) Maximum for the QFI for bipartite quantum states.

(solid) The QFI of the (2d)× (2d) PPT quantum state.

(dotted) Maximum for the QFI for separable quantum states.



QFI vs. variance

Observation 2.—For both families of states,

FQ[%Fn,H] = 4(∆H)2
%Fn

holds.

For the expectation value of the Hamiltonian

〈H〉%Fn = 0

holds.

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi, Bound entangled singlet-like states for quantum metrology,
Phys. Rev. Res. 3, 023101 (2021).



The effect of noise on the QFI

Observation 3.—If we mix the quantum state %Fn with white noise,

%
(p)
Fn = p%Fn + (1− p)

1

4d2 ,

the quantum Fisher information is given as

FQ[%
(p)
Fn ,H] =

2p1p2

(2p1 − 1)p + 1
FQ[%Fn,H],

where FQ[%Fn,H] we discussed before.

The constant p1 is given as

p1 =
√

d/(1 +
√

d).

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi, Bound entangled singlet-like states for quantum metrology,
Phys. Rev. Res. 3, 023101 (2021).
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First family of PPT states
Definition 1.—In matrix notation, the states %F1 can be written as

%F1 =
1
2


p1
√

XX † 0 0 p1X
0 p2

√
YY † p2Y 0

0 p2Y † p2
√

Y †Y 0
p1X † 0 0 p1

√
X †X

 ,
where the two matrices with a unit trace norm acting on A′B′ are
defined as

X =
1

d
√

d

d−1∑
i,j=0

uij |ij〉〈ji |,

Y =
√

dX Γ =
1
d

d−1∑
i,j=0

uij |ii〉〈jj |.

Here Γ denotes partial transposition in terms of Bob.



First family of PPT states II

The density matrix of the %F1 state can also be expressed as

%F1 =
p1

2d2

d−1∑
i,j=0

(|00ij〉〈00ij |+ |11ij〉〈11ij |)

+
p1

2d
√

d

d−1∑
i,j=0

(
uij |00ij〉〈11ji |+ u∗ij |11ji〉〈00ij |

)

+
p2

2d

d−1∑
i=0

(|01ii〉〈01ii |+ |10ii〉〈10ii |)

+
p2

2d

d−1∑
i,j=0

(
uij |01ii〉〈10jj |+ u∗ij |10jj〉〈01ii |

)
.

The order of subsystems is ABA′B′.



First family of PPT states III
The p1 probability is

p1 =
√

d/(1 +
√

d),

we define also p2 = 1− p1.

uij are matrix elements of a unitary operator acting on a
d-dimensional space fulfilling

|uij | = 1/
√

d

for all i , j . Such an operator exists for all d , and the one
corresponding to the quantum Fourier transform is appropriate

uij =
1√
d

ei 2π
d ij .

Important property

%F1 = (%F1)Γ, rank(%F1) = d2 + d .

P. Badziag, K. Horodecki, M. Horodecki, J. Jenkinson, and S. J. Szarek, Bound entangled states with extremal properties,

Phys. Rev. A 90, 012301 (2014).



First family of PPT states IV

Observation 4.—For the state %F1, for the term in the formula of
the quantum Fisher information, we have

〈µ|H|ν〉 =


2, if |µ〉 = |vij〉 and |ν〉 = |v−ij 〉

or |ν〉 = |vij〉 and |µ〉 = |v−ij 〉,
0, otherwise,

where 0 ≤ i , j ≤ d − 1.

Here |µ〉 and |ν〉 denote the eigenvectors of %F1 listed before. They
include all |vij〉’s and all |v−ij 〉’s.

For |vij〉 and |v−ij 〉, see
K. F. Pál, G. Tóth, E. Bene, and T. Vértesi,

Bound entangled singlet-like states for quantum metrology, Phys. Rev. Res. 3, 023101 (2021).



Relations to our 2018 PRL

This is the same Hamiltonian operator that appears in [G. Tóth
and T. Vértesi, PRL 2018] for two-qudit states.

The 4× 4 analytical state presented in [G. Tóth and T. Vértesi,
PRL 2018] can be transformed to %F1.

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi,

Bound entangled singlet-like states for quantum metrology, Phys. Rev. Res. 3, 023101 (2021).
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Second family of PPT states
Definition 2.—The family of states can be written as

%F2 =
p1

d2

d−1∑
i,j=0

|zij〉〈zij |+
p2

2d

d−1∑
i=0

|si〉〈si |

+
p2

2d

d−1∑
i=0

|10ii〉〈10ii |.

The probabilities p1 and p2 are the same as before, and

|zij〉 =
1√
2

(
|00ij〉+

d−1∑
k=0

Qj
ik |11jk〉

)

for 0 ≤ i , j ≤ d − 1, where Qj
ik are orthogonal matrices for all

values of j , that is, ∑
i

Qj
ikQj

ik ′ = δkk ′

holds for all j . Qj
ik also have further properties.



Second family of PPT states II

The states |si〉 are orthonormal vectors in the subspace

|01〉AB ⊗HA′ ⊗HB′ ,

which will also be specified later in terms of Qj
ik .

With an appropriate choice of the Qj
ik the partial transpose of % is

positive semidefinite.

Important property

%F1 6= (%F1)Γ, rank(%F1) = d2 + 2d .

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi,

Bound entangled singlet-like states for quantum metrology, Phys. Rev. Res. 3, 023101 (2021).



Second family of PPT states II

Observation 5.—For the state %F2, for the term in the formula of
the quantum Fisher information, we have

〈µ|H|ν〉 =
2, if |µ〉 = |zij〉 and |ν〉 = |z−ij 〉

or |ν〉 = |zij〉 and |µ〉 = |z−ij 〉,
0, otherwise,

where 0 ≤ i , j ≤ d − 1.

Here |µ〉 and |ν〉 denote the eigenvectors of %F2.



Relations to our 2018 PRL

The numerically found states presented in [G. Tóth and T. Vértesi,
PRL 2018] are like %F2.

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi,

Bound entangled singlet-like states for quantum metrology, Phys. Rev. Res. 3, 023101 (2021).
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Strong evidence that we found the best PPT state
for metrology

Based on extensive numerical maximization, it looks like that our
states have the best metrological performance for bipartite states
with a given d .

For large d , the QFI equals the maximum, corresponding to a
two-qubit singlet.



PPT singlet-like states

Starting from a PPT state, LOCC will lead to PPT states only.

If we have only PPT states, we can still try to distill the PPT state
best for metrology.

We could find concrete examples where using F as a local filter

%′ =
(F ⊗ F )%noisy(F ⊗ F )†

Tr[(F ⊗ F )%(F ⊗ F )†]
,

we could increase the QFI.
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QUBIT4MATLAB programs
The routine BES_private.m defines the states of the first family
For the uij unitaries, the quantum Fourier transform is used.

The routine BES_metro4x4.m defines the state presented in PRL
2018.

The routine BES_metro.m defines the states of the second family.

We also included other routines that show their usage. They are
called example_BES_private.m,
example_BES_metro4x4.m, and example_BES_metro.m.

The programs BES_private.m and BES_metro.m can give the
states corresponding to the order of the subsystems given as
ABA′B′, as in this paper.

The programs can also give the states corresponding to the order
of the subsystems given as AA′BB′, which is more appropriate for
studying bipartite entanglement between AA′ and BB′.



Summary
We presented quantum states with a positive partial transpose
with respect to all bipartitions that are useful for metrology.

G. Tóth and T. Vértesi,
Quantum states with a positive partial transpose

are useful for metrology,
Phys. Rev. Lett. 120, 020506 (2018).

K. F. Pál, G. Tóth, E. Bene, and T. Vértesi,
Bound entangled singlet-like states for quantum metrology,

Phys. Rev. Res. 3, 023101 (2021).

THANK YOU FOR YOUR ATTENTION!

https://doi.org/10.1103/PhysRevLett.120.020506
https://doi.org/10.1103/PhysRevResearch.3.023101
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