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Why multipartite entanglement is important?

Many experiments are aiming to create entangled states with
many atoms.

Full tomography is not possible, we still have to say something
meaningful.

Only collective quantities can be measured.

Thus, entanglement detection seems to be a good idea ...
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Entanglement

A bipartite state is separable if it can be written as∑
k

pk%
(a)
1 ⊗ %

(b)
2 .

If a state is not separable then it is entangled.
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Many-particle systems for j=1/2

For spin-1
2 particles, we can measure the collective angular

momentum operators:

Jl := 1
2

N∑
k=1

σ
(k)
l ,

where l = x , y , z and σ(k)
l a Pauli spin matrices.

We measure the expectation values 〈Jl〉 .

We can also measure the variances

(∆Jl)
2 := 〈J2

l 〉 − 〈Jl〉
2.
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Dicke states

Dicke states: eigenstates of ~J2 = J2
x + J2

y + J2
z and Jz .

Symmetric Dicke states with 〈Jz〉 = 〈J2
z 〉 = 0. Due to symmetry,〈

~J2
〉

is maximal. Explicit form:

|DN〉 =

(
N
N
2

)− 1
2 ∑

k

Pk

(
|0〉⊗

N
2 ⊗ |1〉⊗

N
2

)
,

where Pk denotes permutations.

E.g., for four qubits they look like

|D4〉 =
1
√

6
(|0011〉+ |0101〉+ |1001〉+ |0110〉+ |1010〉+ |1100〉) .

[photons: Kiesel et al., PRL 2007; Wieczorek et al., PRL 2009;
Prevedel et al., PRL 2009.]

[cold atoms: Lücke et al., Science 2011; Hamley et al., Nat. Phys. 2012.]



Dicke states are very interesting because they ...

... possess strong multipartite entanglement, like GHZ states.

[GT, JOSAB 2007.]

... are optimal for quantum metrology, similarly to GHZ states.

[Hyllus et al., PRA 2012; Lücke et al., Science 2011.]
[GT, PRA 2012;
GT and Apellaniz, J. Phys. A, special issue for “50 year of Bell’s theorem”, 2014.]

... are macroscopically entangled, like GHZ states.

[Fröwis, Dür, PRL 2011]



Collective uncertainties of Dicke states

Dicke states

〈J2
x + J2

y 〉 =
N
2

(
N
2

+ 1
)

= max.,

〈J2
z 〉 = 0.

"Pancake" like uncertainty ellipse.
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Experiment in the group of Carsten Klempt at the
University of Hannover

Rubidium BEC, spin-1 atoms.

Initially all atoms in state |0〉.

Dynamics
H = a2

0a†
+1a†

−1 + (a†0)2a+1a−1.

Tunneling from mode 0 to the mode +1 and −1.

Understanding the tunneling process

|00〉 →
1
√

2
(|1,−1〉+ | − 1,1〉) = Dicke state of 2 particles.



Experiment in the group of Carsten Klempt at the
University of Hannover II

After some time, we have a state

|n0,n−1,n+1〉 = |N − 2n,n,n〉.

That is, N − 2n particles remained in the 0 state, while 2n particles
form a symmetric Dicke state.



Experiment in the group of Carsten Klempt at the
University of Hannover III

Important: first excited spatial mode of the trap was used, not the
ground state mode.

It has two "bumps" rather than one, hence they had a split Dicke
state.

A B

[ K. Lange, J. Peise, B. Lücke, I. Kruse, G. Vitagliano, I. Apellaniz, M. Kleinmann, G.
Tóth, and C. Klempt, Entanglement between two spatially separated atomic modes,
Science 360, 416 (2018). ]
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Very simple entanglement criterion for singlets

For separable states of two large spins

[∆(J(a)
x + J(b)

x )]2 + [∆(J(a)
y + J(b)

y )]2 + [∆(J(a)
z + J(b)

z )]2 ≥
N
2

hold. For singlets, the LHS is zero.

Proof. For product states |Ψa〉 ⊗ |Ψb〉∑
m=x,y,z

[∆(J(a)
m +J(b)

m )]2 =
∑

m=x,y,z
(∆J(a)

m )2+
∑

m=x,y,z
(∆J(a)

m )2 ≥
Na

2
+

Nb

2
.

holds.

True also for separable states due to the concavity of the variance.
[ GT, Phys. Rev. A (2004). ]



Very simple entanglement criterion for Dicke
states

For separable states of two large spins

[∆(J(a)
x −J(b)

x )]2 + [∆(J(a)
y −J(b)

y )]2 + [∆(J(a)
z + J(b)

z )]2 ≥
N
2
.

For Dicke states, the LHS is around N
4 for large N , since

[∆(J(a)
z + J(b)

z )]2 = 0,

[∆(J(a)
m + J(b)

m )]2 = large,

[∆(J(a)
m −J(b)

m )]2 ≈
N
8

= small

for m = x,y.

Not a practical criterion since small noise makes the state
undetectable, and it assumes symmetry.



Our condition: we use normalized variables

Normalized variables

J̃(n)
m =

J(n)
m /jn
J(n)

,

where m = x , y and n = a, b (i.e., left well, right well).

The total spin is

jn =
Nn

2
,

and

J(n) =

〈
(J(n)

x )2 + (J(n)
y )2

j2n

〉 1
2

.

J(n) ≈ 1: close to be symmetric. In general, J(n) ≤ 1.



The two-well entanglement criterion

Main result

For separable states,[
(∆J+

z )2 +
1
2

]
×

[
〈(J̃−x )2 + (J̃−y )2〉

]
≥ f

(
J(a),J(b)

)
holds, where f (x , y) =

(x2+y2−1)2

xy .

Any state violating the inequality is entangled.

Here we define

J+
z = J(a)

z + J(b)
z ,

J̃−m = J̃(a)
m − J̃(b)

m .



Correlations for Dicke states

For the Dicke state

(∆(J(a)
x − J(b)

x ))2 ≈ 0,

(∆(J(a)
y − J(b)

y ))2 ≈ 0,

(∆Jz)2 = 0.

Measurement results on well "b" can be predicted from
measurements on "a"

J(b)
x ≈ J(a)

x , ← correlated

J(b)
y ≈ J(a)

y , ← anticorrelated

J(b)
z = −J(a)

z . ← anticorrelated
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Correlations for Dicke states - experimental results
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Here, J(n)
⊥ = cosαJ(n)

x + sinαJ(n)
y .



Violation of the criterion: entanglement is detected
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For separable states,[
(∆J+

z )2 +
1
2

]
×

[
〈(J̃−x )2 + (J̃−y )2〉

]
≥ f

(
J(a),J(b)

)
holds, where f (x , y) =

(x2+y2−1)2

xy .
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Summary

Detection of bipartite entanglement close to Dicke states.

K. Lange, J. Peise, B. Lücke, I. Kruse,
G. Vitagliano, I. Apellaniz, M. Kleinmann, G. Tóth, and C. Klempt,

Entanglement between two spatially separated atomic modes,
Science 360, 416 (2018).

THANK YOU FOR YOUR ATTENTION!
FOR TRANSPARENCIES, PLEASE SEE

www.gtoth.eu

http://www.gtoth.eu


Appendix



Proof

Product states. For states of the form |Ψ(a)〉 ⊗ |Ψ(b)〉.[
(∆J+

z )2 +
1
2

]
×

[
(∆J̃−x )2 + (∆J̃−y )2

]
= [(U(a) + 1

4) + (U(b) + 1
4)] · (V(a) +V(b))

≥ 4
√

(U(a) + 1
4)(U(b) + 1

4)V(a)V(b) ≥ 1

holds, where we used the notation

U(n) = (∆J(n)
z )2, V(n) = (∆J̃(n)

x )2 + (∆J̃(n)
y )2

for n = a, b. We used that
(i) [∆(A(a) + A(b))]2 = (∆A(a))2 + (∆A(b))2,

(ii) Inequality between the arithmetic and the geometric mean,
(iii) Our number-phase like uncertainty.



Proof II

Using 〈(J̃(n)
x )2〉+ 〈(J̃(n)

y )2〉 = 1 for n = a, b, our inequality for product
states yields

2
[
(∆J+

z )2 +
1
2

]
(S − C) ≥ S,

where correlations between the two subsystems are characterized by

C =

〈J(a)
x J(b)

x + J(a)
y J(b)

y

jajb

〉
,

and
S = J(a)J(b).

C can be negative and |C| ≤ S.

The normalization with the total spin will make it easier to adapt our
criterion to experiments with a varying particle number in the
ensembles.



Proof III

Separable states. We now consider a mixed separable state of the
form %sep =

∑
k pk |Ψ

(a)
k 〉 ⊗ |Ψ

(b)
k 〉. For such states, we can write the

following series of inequalities

2
[
(∆J+

z )2 +
1
2

]
(S − C) ≥ 2

∑
k

pk (∆Jz)2
k +

1
2


∑

k

pk (Sk − Ck )


≥ 2

∑
k

pk

√(
(∆Jz)2

k +
1
2

)
(Sk − Ck )


2

≥

∑
k

pk
√
Sk

2

,

Subscript k refers to the k th sub-ensemble |Ψ(a)
k 〉 ⊗ |Ψ

(b)
k 〉.

(i) The first inequality in is due to (∆J+
z )2 and S being concave in the

quantum state.
(ii) The second inequality is based on the Cauchy-Schwarz inequality.
(iii) The third inequality is the application of the previous inequality for
all sub-ensembles.



Proof IV

Next, we find a lower bound on the RHS of the last inequality based on
the knowledge of J(a) and J(b). We find that∑

k

pk

(
J

(a)
k J

(b)
k

)1/2
≥ (J(a))2 + (J(b))2 − 1,

which is based on noting (xy)1/4 ≥ x + y − 1 for 0 ≤ x , y ≤ 1.

Using this to bound the RHS from below and dividing by S we obtain

[
(∆J+

z )2 +
1
2

]
×

[
2 − 2

C

S

]
≥

[
(J(a))2 + (J(b))2 − 1

]2
S

.
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