Quantum entanglement and its use in metrology

Géza Tóth Wigner Research Centre for Physics

Szilárd Leó Colloquium,

BME Institute of Physics, Department of Physics

Budapest, 2 November 2021

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Motivation

- There have been many experiments recently aiming to create multiparticle quantum states.
- Quantum Information Science can help to find good targets for such experiments.
- Highly entangled multiparticle quantum states are good candidates for such experiments.
- Such states are needed in quantum metrology.

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Theory of quantum entanglement

- Statistical physics: the ground state of spin systems can be factorized or not factorized.
- There are no pure states in an experiment. The product states must be generalized to the case of mixed states.
- Separable states = a mixture of product states.
- Entangled (non-separable) states are useful in certain quantum information processing applications.

Separable states

A state of N-particles is fully separable if it can be written in the following form

$$\varrho_{\text{sep}} = \sum_{m} p_{m} \rho_{m}^{(1)} \otimes \rho_{m}^{(2)} \otimes ... \otimes \rho_{m}^{(N)},$$

where $\rho_m^{(n)}$ are single-particle pure states.

 Separable states are essentially states that can be created without interaction between the particles by simply mixing the product states.

Separable states II

Let us have two separable states

$$\varrho_{\text{sep},k} = \sum_{m} p_{m,k} \rho_{m,k}^{(1)} \otimes \rho_{m,k}^{(2)} \otimes ... \otimes \rho_{m,k}^{(N)}$$

for k = 1, 2.

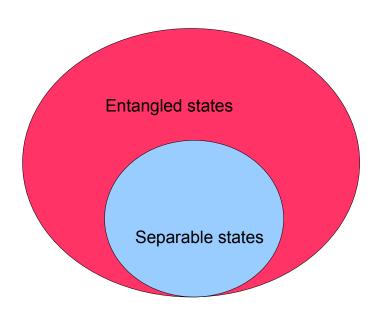
Their mixture

$$\varrho = p\varrho_{\mathrm{sep},1} + (1-p)\varrho_{\mathrm{sep},2},$$

where $0 \le p \le 1$, is also a separable state.

• Thus, the set of separable states is convex.

Convex sets



Many-body entanglement

A pure state k-producible, if it can be written as

$$|\Psi\rangle = \otimes_{\mathit{m}} |\psi_{\mathit{m}}\rangle,$$

where $|\psi_m\rangle$ are many-particle states with at most $k_m \leq k$ particles.

A mixed state is k-producuble if it can be written as a mixture of k-producible states.

A state that is not k-prodcuble, is at least (k + 1)-particle entangled.

Genuine multipartite entanglement

- Genuine multipartite entanglement=N-particle entanglement in a system of N particles.
- Biseparable states=states that are not genuine multipartite entangled.

Examples

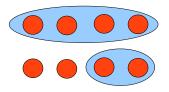
Examples

Two entangled states of four qubits:

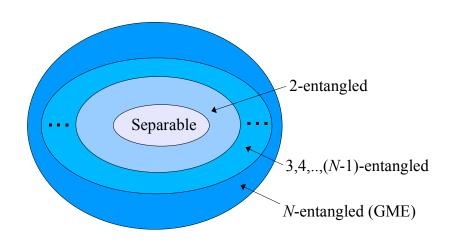
$$|\text{GHZ}_4\rangle = \tfrac{1}{\sqrt{2}}(|0000\rangle + |1111\rangle),$$

$$|\Psi_B\rangle = \frac{1}{\sqrt{2}}(|0000\rangle + |0011\rangle) = \frac{1}{\sqrt{2}}|00\rangle \otimes (|00\rangle + |11\rangle).$$

- The first state is genuine multipartite entangled, and 4-entangled.
- The second state is biseparable, and 2-entangled.



Convex sets



Convex sets of quantum states

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Entanglement detection

Looking at the definition

$$\varrho_{\text{sep}} = \sum_{m} p_{m} \rho_{m}^{(1)} \otimes \rho_{m}^{(2)} \otimes ... \otimes \rho_{m}^{(N)},$$

we see that is a difficult task to decide whether a quantum state is entangled or not.

There are no general methods.

Entanglement witness

An operatior *W* is an entanglement witness, if the following conditions are fulfilled

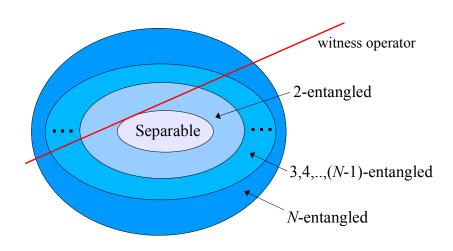
1. For separable states it is non-negative

$$\langle W \rangle_{\varrho_{\text{sep}}} \equiv \text{Tr}(\varrho_{\text{sep}} W) \geq 0.$$

2. There is such an entangled state ϱ_{ent} for which the expectation value is negative

$$\langle W \rangle_{o_{\text{ent}}} < 0.$$

Entanglement witness II



Entanglement witness III

- We have to look for witness operators that are easy to measure.
- Or, if we consider a general witness operator, it might be a highly nonlocal operator.
- We cannot measure its expectation value directly.
- It must be decomposed it as

$$W = \sum_{k} A_{k}^{(1)} \otimes A_{k}^{(2)} \otimes ... \otimes A_{k}^{(N)}.$$

The expectation value can be obtained as

$$\langle W \rangle \equiv \operatorname{Tr}(\varrho W) = \sum_{k} \left\langle A_{k}^{(1)} \otimes A_{k}^{(2)} \otimes ... \otimes A_{k}^{(N)} \right\rangle.$$

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Detecting entanglement with the Hamiltonian of spin chains

For a separable state of two qubits

$$-1 \leq \langle \sigma_x^{(1)} \sigma_x^{(2)} \rangle + \langle \sigma_y^{(1)} \sigma_y^{(2)} \rangle + \left\langle \sigma_z^{(1)} \sigma_z^{(2)} \right\rangle \leq 1.$$

holds.

- Basic idea: we take the maximum for product states of the type $|\psi_1\rangle\otimes|\psi_2\rangle$.
- For such states

$$\langle \sigma_I^{(1)} \sigma_I^{(2)} \rangle = \langle \sigma_I^{(1)} \rangle \langle \sigma_I^{(2)} \rangle$$

for I = x, y, z.

Detecting entanglement with the Hamiltonian of spin chains II

The expectation value can be written as a scalar product

$$\langle \sigma_{x}^{(1)} \sigma_{x}^{(2)} \rangle + \langle \sigma_{y}^{(1)} \sigma_{y}^{(2)} \rangle + \left\langle \sigma_{z}^{(1)} \sigma_{z}^{(2)} \right\rangle = \vec{s}_{1} \cdot \vec{s}_{2},$$

where

$$ec{m{s}}_{n} = \left(egin{array}{c} \langle \sigma_{m{x}}^{(n)}
angle_{|\psi_{n}
angle} \ \langle \sigma_{m{y}}^{(n)}
angle_{|\psi_{n}
angle} \ \langle \sigma_{m{z}}^{(n)}
angle_{|\psi_{n}
angle} \end{array}
ight)$$

for n = 1, 2.

The Cauchy-Schwarz yields

$$|\vec{s}_1\vec{s}_2| \leq |\vec{s}_1||\vec{s}_2| = 1.$$

• The bound is also valid for separable states, since they are the mixture of product states.

Detecting entanglement with the Hamiltonian of spin chains III

For the singlet state

$$\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$$

we have

$$\langle \sigma_{x}^{(1)} \sigma_{x}^{(2)} \rangle + \langle \sigma_{y}^{(1)} \sigma_{y}^{(2)} \rangle + \left\langle \sigma_{z}^{(1)} \sigma_{z}^{(2)} \right\rangle = -3.$$

An entanglement witness can be written as

$$W = 1 + \sigma_X^{(1)} \sigma_X^{(2)} + \sigma_y^{(1)} \sigma_y^{(2)} + \sigma_z^{(1)} \sigma_z^{(2)}$$

for which

$$\langle W \rangle = -2.$$

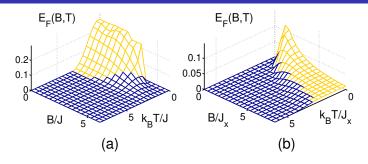
Spin chains

• If $\langle H \rangle$ is smaller than the energy minium of the classical latticem then the system is entangled.

 Antiferromagnetic Heisenberg-Hamiltonian operator with periodic boundary condition on d-dimensional square lattice.

 XY-Hamiltonian operator with periodic boundary condition on d-dimensional square lattice.

Numerical results



(a) Heisenberg chain, 8 spins.

(b) Ising chain

 E_F =entanglement of formation for the nearest neighbors

Yellow=detected states.

We detect the states that have more than minimal entanglement.

GT, Phys. Rev. A 2005.

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Dicke states

- Dicke states: eigenstates of $\vec{J}^2 = J_x^2 + J_y^2 + J_z^2$ and J_z .
- Symmetric Dicke states with $\langle J_z \rangle = \langle J_z^2 \rangle = 0$

$$|D_N^{(N/2)}\rangle = {N \choose \frac{N}{2}}^{-\frac{1}{2}} \sum_k \mathcal{P}_k \left(|0\rangle^{\otimes \frac{N}{2}} \otimes |1\rangle^{\otimes \frac{N}{2}} \right).$$

Due to symmetry, $\left\langle \vec{J}^{2}\right\rangle$ is maximal.

• E.g., for four qubits they look like

$$|D_4^{(2)}\rangle = \frac{1}{\sqrt{6}} \left(|0011\rangle + |0101\rangle + |1001\rangle + |0110\rangle + |1010\rangle + |1100\rangle \right).$$

photons: N. Kiesel, C. Schmid, GT, E. Solano, and H. Weinfurter, PRL 2007; Prevedel *et al.*, PRL 2007; W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, GT, H. Weinfurter, PRL 2009. cold atoms: Lücke *et al.*, Science 2011; Hamley *et al.*, Science 2011

Dicke states are useful because they ...

 \bullet ... possess strong multipartite entanglement, like Greenberger-Horne-Zelinger states (GHZ, \approx Schrödinger cat states)

```
GT, JOSAB 2007.
```

... are optimal for quantum metrology, similarly to GHZ states.

```
Hyllus et al., PRA 2012; Lücke et al., Science 2011.
GT, PRA 2012;
GT and Apellaniz, J. Phys. A, special issue for "50 year of Bell's theorem", 2014.
```

• ... are macroscopically entangled, like GHZ states.

```
Fröwis, Dür, PRL 2011.
```

Entanglement detection close to Dicke states

For biseparable (not genuine multipartite entangled) $\boldsymbol{\rho}$

$$F_{D_N} = \operatorname{Tr}(\rho|D_N\rangle\langle D_N|) \leq \frac{1}{2}\frac{N}{N-1} =: C.$$

Any state that violates the above inequality has true multibody entanglement. (We omit the N/2 superscript.)

- For large N, $C \approx 1/2$. That is, only a fidelity of 1/2 is required for a successful experiment.
- The limit cannot be smaller than 1/2.
- Previously, it was only known for GHZ and cluster states that this limit was 1/2.

Decomposition of the projector I

The fidelity with respect to the Dicke state is

$$F_{D_N} = \text{Tr}(\rho|D_N\rangle\langle D_N|).$$

The witness is

$$W = \frac{1}{2} \frac{N}{N-1} \mathbb{1} - |D_N\rangle\langle D_N|.$$

• We have to decompose the projector

$$|D_N\rangle\langle D_N|=\sum_k A_k\otimes A_k\otimes ...\otimes A_k.$$

• We did this for N = 6, for which

$$W = 0.61 - |D_N\rangle\langle D_N|$$
.

Decomposition of the projector II

$$\begin{aligned} 64|D_6^{(3)}\rangle\langle D_6^{(3)}| &= -0.6[\mathbbm{1}] + 0.3[x\pm\mathbbm{1}] - 0.6[x] + 0.3[y\pm\mathbbm{1}] - 0.6[y] + 0.2[z\pm\mathbbm{1}] - 0.2[z] \\ &+ 0.2\text{Mermin}_{0,z} + 0.05[x\pm y\pm\mathbbm{1}] - 0.05[x\pm z\pm\mathbbm{1}] - 0.05[y\pm z\pm\mathbbm{1}] \\ &- 0.05[x\pm y\pm z] + 0.2[x\pm z] + 0.2[y\pm z] + 0.1[x\pm y] \\ &+ 0.6\text{Mermin}_{x,z} + 0.6\text{Mermin}_{y,z}. \end{aligned} \tag{31}$$

Here we use the notation $[x+y] = (\sigma_x + \sigma_y)^{\otimes 6}$, $[x+y+1] = (\sigma_x + \sigma_y + 1)^{\otimes 6}$, etc. The \pm sign denotes a summation over the two signs, i.e., $[x \pm y] = [x+y] + [x-y]$. The Mermin operators are defined as

$$\operatorname{Mermin}_{a,b} := \sum_{k \text{ even}} (-1)^{k/2} \sum_{k} \mathcal{P}_{k}(\bigotimes_{i=1}^{k} \sigma_{a} \bigotimes_{i=k+1}^{N} \sigma_{b}), \tag{32}$$

where $\sigma_0 = 1$. That is, it is the sum of terms with even number of σ_a 's and σ_b 's, with the sign of the terms depending on the number of σ_a 's. The expectation value of the operators Mermin_{a,b} can be measured based on the decomposition [23]

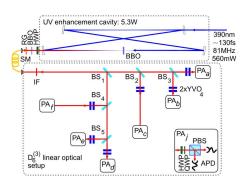
$$\operatorname{Mermin}_{a,b} = \frac{2^{N-1}}{N} \sum_{k=1}^{N} (-1)^k \left[\cos \left(\frac{k\pi}{N} \right) a + \sin \left(\frac{k\pi}{N} \right) b \right]^{\otimes N}. \tag{33}$$

Results

settings [15,16]. We have determined $F_{D_6^{(3)}} = 0.654 \pm 0.024$ with a measurement time of 31.5 h. This allows the application of the generic entanglement witness [10] $\langle W_g \rangle = 0.6 - F_{D_6^{(3)}} = -0.054 \pm 0.024$ and thus proves genuine six-qubit entanglement of the observed state with a significance of 2 standard deviations (Fig. 4).

C. Schwemmer, GT, A. Niggebaum, T. Moroder, D. Gross, O. Gühne, and H. Weinfurter, Efficient Tomographic Analysis of a Six Photon State, PRL 2014.

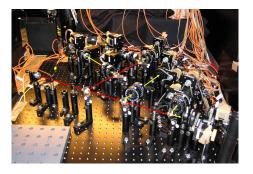
Experiments with photons



MPQ, München, experiment with six photons

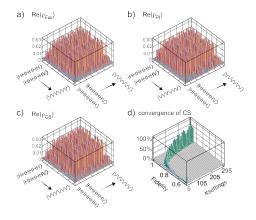
$$|D_6^{(3)}\rangle = \frac{1}{\sqrt{20}} (|111000\rangle + |110100\rangle + ... + |000111\rangle).$$

Experiments with photons



Experiments with photons

State tomography of the six-photon state



C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D. Gross, O. Gühne, and H. Weinfurter, Efficient Tomographic Analysis of a Six Photon State, PRL 2014.

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Many-particle systems

 For spin-¹/₂ particles, we can measure the collective angular momentum operators:

$$J_I := \frac{1}{2} \sum_{k=1}^N \sigma_I^{(k)},$$

where I = x, y, z and $\sigma_I^{(k)}$ a Pauli spin matrices.

We can also measure the

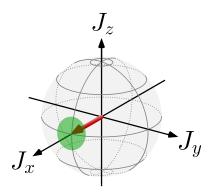
$$(\Delta J_I)^2 := \langle J_I^2 \rangle - \langle J_I \rangle^2$$

variances.

Fully polarized state

State fully polarized in the x-direction

$$|+1/2\rangle_x^{\otimes N}$$
.



We thank I. Appelaniz for the figure.

Spin squeezing

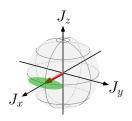
Definition

Uncertainty relation for the spin coordinates

$$(\Delta J_y)^2(\Delta J_z)^2 \geq \frac{1}{4}|\langle J_x\rangle|^2.$$

If $(\Delta J_z)^2$ is smaller than the standard quantum limit $\frac{1}{2}|\langle J_x\rangle|$ then the state is called spin squeezed (mean spin in the x direction!).

M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).



Spin squeezing II

Definition

Spin squeezing criterion for the detection of quantum entanglement

$$\frac{(\Delta J_z)^2}{\langle J_x \rangle^2 + \langle J_y \rangle^2} \ge \frac{1}{N}.$$

If a quantum state violates this criterion then it is entangled.

 Application: Quantum metrology, magnetometry. Used many times in experiments.

A. Sørensen *et al.*, Nature **409**, 63 (2001); experiments by E. Polzik, M.W. Micthell with cold atomic ensembles; M. Oberthaler, Ph. Treutlein with Bose-Einsetein condensates.

Generalized spin squeezing criteria for $j=\frac{1}{2}$

Let us assume that for a system we know only

$$\begin{split} \vec{J} &:= (\langle J_x \rangle, \langle J_y \rangle, \langle J_z \rangle), \\ \vec{K} &:= (\langle J_x^2 \rangle, \langle J_y^2 \rangle, \langle J_z^2 \rangle). \end{split}$$

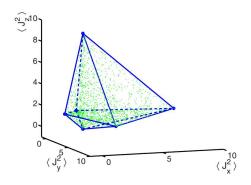
Then any state violating the following inequalities is entangled:

$$\begin{split} \langle J_x^2 \rangle + \langle J_y^2 \rangle + \langle J_z^2 \rangle & \leq \frac{N(N+2)}{4}, \\ (\Delta J_x)^2 + (\Delta J_y)^2 + (\Delta J_z)^2 & \geq \frac{N}{2}, \\ \langle J_k^2 \rangle + \langle J_I^2 \rangle & \leq (N-1)(\Delta J_m)^2 + \frac{N}{2}, \\ (N-1) \left[(\Delta J_k)^2 + (\Delta J_I)^2 \right] & \geq \langle J_m^2 \rangle + \frac{N(N-2)}{4}, \end{split}$$

where k, l, m take all the possible permutations of x, y, z.

Generalized spin squeezing criteria for $j = \frac{1}{2}$ II

Separable states are in the polytope



• We set $\langle J_I \rangle = 0$ for I = x, y, z.

Spin Squeezing Inequality for Dicke states

Let us rewrite the third inequality. For separable states

$$\langle J_x^2 \rangle + \langle J_y^2 \rangle - \frac{N}{2} \le (N-1)(\Delta J_z)^2$$

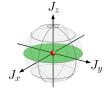
holds.

It detects states close to Dicke states since

$$\langle J_x^2 + J_y^2 \rangle = \frac{N}{2} \left(\frac{N}{2} + 1 \right) = \text{max.},$$

 $\langle J_z^2 \rangle = 0.$

• "Pancake" like uncertainty ellipse.



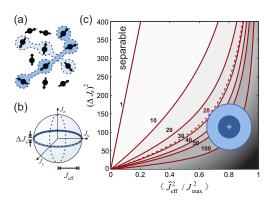
Bose-Einstein condensate people

Netflix movie "Spectral"

Filmed in Budapest

Multipartite entanglement

 Bose-Einstein condensate, 8000 particles. 28-particle entanglement is detected.



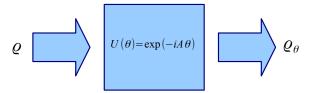
$$J_{\mathrm{eff}}^2 = J_{\scriptscriptstyle X}^2 + J_{\scriptscriptstyle Y}^2, \quad J_{\mathrm{max}} = \frac{N}{2}.$$

B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, GT, and C. Klempt, PRL 112, 155304 (2014).

Outline

- Motivation
 - Motivation
- Quantum entanglement
 - Definition of entanglement
 - Entanglement witnesses
- Entanglement detection in multiparticle systems
 - Detecting entanglement with the Hamiltonian of spin chains
 - Entanglement detection close to Dicke states of few particles
 - Entanglement detection in systems of very many particles
- Quantum metrology
 - Quantum metrology and entanglement

Multipartite entanglement and quantum metrology



Cramér-Rao bound

$$(\Delta \theta)^2 \geq \frac{1}{\nu F_O[\rho, A]},$$

where ν is the number of independent repetitions.

Quantum Fisher information

$$F_Q[\varrho, A] = 2\sum_{i,j} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j} |A_{ij}|^2.$$

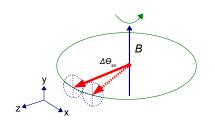
• Here λ_i denotes the eigenvalues of the density matrix, A_{ij} are the matrix elelements of A in the eigenbasis of the density matrix.

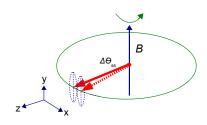
Special case $A = J_l$: linear interferometer

The operator A is defined as

$$A = J_I = \sum_{n=1}^{N} j_I^{(n)}, \quad I \in \{x, y, z\}.$$

Magnetometry with a linear interferometer





The quantum Fisher information vs. entanglement

Shot-noise limit: For separable states

$$F_Q[\varrho, J_l] \leq N, \qquad (\Delta \theta)^2 \geq \frac{1}{\nu N}, \qquad l = x, y, z.$$

Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Gühne, Smerzi, Phys. Rev. A 82, 012337 (2010).

• Heisenberg limit: For entangled states

$$F_Q[\varrho, J_l] \leq N^2, \qquad (\Delta \theta)^2 \geq \frac{1}{\nu N^2}, \qquad l = x, y, z.$$

where the bound can be saturated.

Multipartite entanglement and Quantum Fisher information

For N-qubit k-producible states states, the quantum Fisher information is bounded from above by

$$F_Q[\varrho, J_l] \leq sk^2 + (N - sk)^2,$$

where

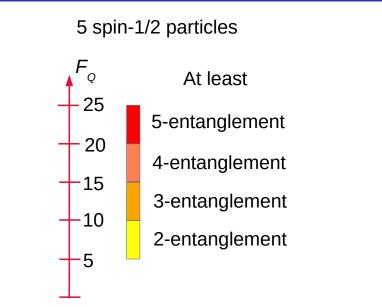
$$s = \lfloor \frac{N}{k} \rfloor,$$

and $\lfloor \frac{N}{k} \rfloor$ denotes the integer part of $\frac{N}{k}$.

Simpler form with a bound that is not optimal

$$F_Q[\varrho, J_l] \leq Nk, \qquad (\Delta \theta)^2 \geq \frac{1}{\nu Nk}.$$

Multipartite entanglement and Quantum Fisher information II



Metrology with Dicke states

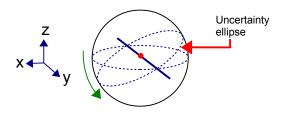
For our symmetric Dicke state

$$\langle J_l \rangle = 0, l = x, y, z, \quad \langle J_z^2 \rangle = 0, \quad \langle J_x^2 \rangle = \langle J_y^2 \rangle = \text{large}.$$

Linear metrology

$$U=\exp(-iJ_y\theta).$$

• Measure $\langle J_z^2 \rangle$ to estimate θ . (We cannot measure first moments, since they are zero.)



Metrology with Dicke states

They found that

$$F_Q[\varrho, J_l] \leq N,$$

is violated since they measured that

$$(\Delta \theta)^2 < \frac{1}{\nu N}.$$

Metrology with cold gases: B. Lücke, M Scherer, J. Kruse, L. Pezze, F. Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, C. Klempt, Science 2011.

Metrology with photons: R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, P. Hyllus, L. Pezze, A. Smerzi, PRL 2011.

Summary

- Effective entanglement detection is very important in an experiment.
- We have presented methods that can be used in systems where the particles are addressable separately.
- We also present methods that detect entanglement in multiparticle systems.
- We also found entanglement criteria based on quantum metrology.

www.gtoth.eu

THANK YOU FOR YOUR ATTENTION!

