
Witnessing metrologically useful multiparticle
entanglement

G. Tóth1,2,3 in collaboration with:

I. Apellaniz1, M. Kleinmann1, O. Gühne4,

B. Lücke5, J. Peise5, C. Klempt5

1University of the Basque Country UPV/EHU, Bilbao, Spain
2IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

3Wigner Research Centre for Physics, Budapest, Hungary
4University of Siegen, Germany

5Leibniz Universität Hannover, Germany

TQC, Berlin,
27 September 2016.

1 / 26





Why multipartite entanglement and metrology are
important?

Full tomography is not possible, we still have to say something
meaningful.

Claiming “entanglement” is not sufficient for many particles.

We should tell

How entangled the state is

What the state is good for, etc.
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Basic notions
Collective angular momentum operators:

Jl := 1
2

N∑
k=1

σ
(k)
l ,

where l = x , y , z, σ(k)
l are Pauli spin matrices, and N is the

number of spin-1
2 particles.

A state is (fully) separable if it can be written as∑
k

pk%
(1)
k ⊗ %

(2)
k ⊗ ... ⊗ %

(N)

k .

If a state is not separable then it is entangled (Werner, 1989).

Similar definitions for multipartite entanglement.



k -producibility/k -entanglement

A pure state is k -producible if it can be written as

|Φ〉 = |Φ1〉 ⊗ |Φ2〉 ⊗ |Φ3〉 ⊗ |Φ4〉....

where |Φl〉 are states of at most k qubits.

A mixed state is k -producible, if it is a mixture of k -producible pure
states.
[ e.g., O. Gühne and GT, New J. Phys 2005. ]

If a state is not k -producible, then it is at least (k + 1)-particle
entangled.

two-producible three-producible



Quantum metrology

Fundamental task in metrology with a linear interferometer

ϱθϱ U (θ )=exp (−iJ lθ )

We have to estimate θ in the dynamics

U = exp(−iJlθ)

where l ∈ {x , y , z}.



Outline

1 Introduction and motivation

2 Quantum metrology
Setting the scene
The quantum Fisher information

3 Witnessing metrological usefulness
Obtaining bounds on the quantum Fisher information
Applications of our method

8 / 26



The quantum Fisher information

Cramér-Rao bound on the precision of parameter estimation

(∆θ)2 ≥
1

FQ[%,A]
.

where FQ[%,A] is the quantum Fisher information.

The quantum Fisher information is given by an explicit formula for
% and A as

FQ[%,A] = 2
∑
k ,l

(λk − λl)
2

λk + λl
|〈k |A|l〉|2,

where % =
∑

k λk |k〉〈k |.

Linear interferometer: A = Jl , l = x , y , z.



The quantum Fisher information vs. entanglement

For separable states
FQ[%, Jl ] ≤ N .

[Pezze, Smerzi, PRL 2009]

For states with at most k -particle entanglement (k is divisor of N)

FQ[%, Jl ] ≤ kN .

[Hyllus et al., PRA 2012; GT, PRA 2012].

If a state violates the above inequality then it has (k + 1)-particle
metrologically useful entanglement.



Metrological precision vs. entanglement

For separable states
(∆θ)2 ≥ 1

N .

[Pezze, Smerzi, PRL 2009]

For states with at most k -particle entanglement (k is divisor of N)

(∆θ)2 ≥ 1
kN .

[Hyllus et al., PRA 2012; GT, PRA 2012].

If a state violates the above inequality then it has (k + 1)-particle
metrologically useful entanglement.



Metrologically useful entanglement vs. general
entanglement

Not all entangled states are more useful than separable states.
[Hyllus, Gühne, Smerzi, PRA 2010]

For states with metrologically useful k -particle entanglement %k−ent

FQ[%k−ent, Jz ] > FQ[%(k−1)−ent, Jz ]

holds for all %(k−1)−ent.

States with metrologically useful k -particle entanglement are more
useful than the state

|GHZ(k−1)〉 ⊗ |GHZ(k−1)〉 ⊗ |GHZ(k−1)〉 ⊗ ....
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Witnessing metrological usefulness
Direct measurement of the sensitivity

Measure (∆θ)2.

Obtain bound on FQ and multipartite entanglement.

Experimentally challenging, since we need dynamics.

The precision is affected by the noise during the dynamics.
[Experiments in cold atoms by the groups of Oberthaler, Klempt; photonic
experiments of the Weinfurter group.]

Witnessing (our choice)

Estimate how good the precision were, if we did the metrological
process.

Assume a perfect metrological process. Characterizes the state
only.

Another approach for thermal states
[P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Nat. Phys. (2016)]



Legendre transform (used often in physics)

Optimal linear lower bound on a convex function g(%) based on an
operator expectation value w = 〈W 〉% = Tr(W%)

g(%) ≥ rw − const .,

where w = Tr(%W ).

g

r1

r2

hwi
For every slope r there is a “const .”

Textbooks say
g(%) ≥ B(w) := rw − ĝ (rW ) ,

where ĝ is the Legendre transform.



Legendre transform II
Bound is best if we optimize over r as

g(%) ≥ B(w) := sup
r

[rw − ĝ (rW )] ,

where again w = Tr(%W ).

Then, we need the Legendre transform is given as

ĝ(W ) = sup
%

[〈W 〉% − g(%)].

Used for estimating entanglement measures, optimization over %
or Ψ is needed.

[Gühne, Reimpell, Werner, PRL 2007; Eisert, Brandao, Audenaert, NJP 2007.]

Related approach: Lagrange multipliers. Used also in quantum
information.



Bounding the quantum Fisher information

Problem: g(%) = FQ and the Legendre transform is an optimization
over all elements of %!

Key observation: FQ is the convex roof of the variance.
[GT, Petz, PRA 2013; S. Yu, arXiv1302.5311 (2013);
GT, Apellaniz, J. Phys. A: Math. Theor. 2014]

Hence, the Legendre transform given as an optimization over a single
(!) real variable

F̂Q(W ) = sup
µ

{
λmax

[
W − 4(Jl − µ)2

]}
.



Bounding the quantum Fisher information II

Big surprise

The quantum Fisher information is the ideal quantity for using the
Legendre transform technique.
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Witnessing the quantum Fisher information based
on the fidelity

Bound the quantum Fisher information based on some
measurements. First, consider small systems.
[See also Augusiak et al., 1506.08837.]
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Quantum Fisher information vs. Fidelity with respect to (a) GHZ states
and (b) Dicke states for N = 4,6,12.

[Apellaniz et al., arXiv:1511.05203.]

FQ = N2(1 − 2FGHZ)
2

if FGHZ >
1
2



Bounding the qFi based on collective
measurements

Bound on the quantum Fisher information for spin squeezed states
(Pezze-Smerzi bound)

FQ[%, Jy ] ≥
〈Jz〉

2

(∆Jx )2
.

[Pezze, Smerzi, PRL 2009.]

States with a large FQ are spin-squeezed states:

J
z
 is large

Variance of J
x 
is small

y

z

x



Bounding the qFi based on collective
measurements II

Optimal bound for the quantum Fisher information FQ[%, Jy ] for
spin squeezing for N = 4 particles

Dicke state

Fully 
polarised 

state

Completely 
mixed 
state

Spin-squeezed states

[Apellaniz, Kleinmann, Gühne, GT, arXiv:1511.05203.]



Bounding the qFi based on collective
measurements III

The bound can be obtained if additional expectation value, i.e.,
〈J2

x 〉 is measured, or we assume symmetry:
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[Apellaniz, Kleinmann, Gühne, GT, arXiv:1511.05203.]



Spin-squeezing experiment

Experiment with N = 2300 atoms,

ξ2
s = N

(∆Jx )2

〈Jz〉2
= −8.2dB = 10−8.2/10 = 0.1514.

[Gross, Zibold, Nicklas, Esteve, Oberthaler, Nature 2010.]

The Pezze-Smerzi bound is:

FQ[%N , Jy ]

N
≥

1
ξ2

s
= 6.605 → 7-qubit entanglement

We get the same value for our method!

[Pezze, Smerzi, PRL 2009]

Similar calculations for Dicke state experiments!

[Lücke, Peise, Vitagliano, Arlt, Santos, Tóth, Klempt, PRL 2014.]



Our method is unique for entanglement detection
in large systems

Advantages of our approach

It works for any set of observables to be measured.

It quantifies multipartite entanglement, not only detects it.

It works for large systems (i.e., 2000 × 2000 density matrix).

Alternatives that come close

Work for large systems, but for a specific set of observables,
e.g., spin squeezing inequalities.

Work for arbitrary observables, but only for small systems,
e.g., methods using semidefinite programming.



Summary

We discussed a very flexible method to detect multipartite
entanglement and metrological usefulness.

We can choose a set of operators and the method gives an
optimal lower bound on FQ .

Apellaniz, Kleinmann, Gühne, Tóth, arxiv: arXiv:1511.05203
[See also Apellaniz, Lücke, Peise, Klempt, GT, NJP 17, 083027 (2015)]

THANK YOU FOR YOUR ATTENTION!
FOR TRANSPARENCIES, PLEASE SEE www.gtoth.eu.
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