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0 Motivation
@ Why is the quantum Fisher information important?
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Why is the quantum Fisher information important?

@ Many experiments are aiming to carry out a metrological task.

@ If we can estimate the quantum Fisher information, we know how
well this task could be carried out.

@ Estimating the quantum Fisher information can be much simpler
than carrying out the metrological task.



e Bacground
@ Quantum Fisher information
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Quantum metrology

@ Fundamental task in metrology

0 U (6)=exp(—id0) op

@ We have to estimate 6 in the dynamics

U = exp(—IiAd).



Precision of parameter estimation

@ Measure an operator M to get the estimate 6. The precision is
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The quantum Fisher information

@ Cramér-Rao bound on the precision of parameter estimation
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where Fg[o, A] is the quantum Fisher information.
@ The quantum Fisher information is
(M = N)? 2
Falo,Al=2» ———[(k|A|ll)|*,
ale. A =2 3 S AN

where o = 37, AlK) (K].



Special case A = J,

@ The operator A is defined as

N
A=J = Zjl(”), le{x,y,z}.
n=1

@ Magnetometry with a linear interferometer




e Bacground

@ Recent findings on the quantum Fisher information
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Properties of the Fisher information

Many bounds on the quantum Fisher information can be derived from
these simple properties:

@ For pure states, it equals four times the variance,
FIIW) (W], A] = 4(AA)?,,.

@ For mixed states, it is convex.



The quantum Fisher information vs. entanglement

@ For separable states
Falo. ] <N, I=xy,z

[Pezze, Smerzi, Phys. Rev. Lett. 102, 100401 (2009); Hyllus, Glihne, Smerzi,
Phys. Rev. A 82, 012337 (2010)]

@ For states with at most k-particle entanglement (k is divisor of N)
FO[Qv J/] < KN.

[P. Hyllus et al., Phys. Rev. A 85, 022321 (2012); GT, Phys. Rev. A 85, 022322
(2012)].

@ Macroscopic superpositions (e.g, GHZ states, Dicke states)

Fale, Ji] o< N2,

[F. Frowis, W. Dir, New J. Phys. 14 093039 (2012).]



Most important characteristics used for estimation

The quantum Fisher information is the convex roof of the variance
Folo, Al = 4 min AA)?,,
alo, Al pk’wkikjpk( )k

where
0= E Pr| Vi) (W]
K

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013); S. Yu, arXiv1302.5311 (2013);
GT, I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]

@ Thus, it is similar to entanglement measures that are also defined
by convex roofs.




Witnessing the quantum Fisher information based

on few measurements

@ The bound based on w = Tr(pW) is given as
Folo, J-] > sup [rw —- Fo (rW)] .
@ The Legendre transform is
Fo(W) = SL;D(<W>Q — Falo, J2]).
Due to the properties of Fo mentioned above, it can be simplified
Fo(W) = sup {max [W = 4(J; — 2]}

[I. Apellaniz, M. Kleinmann, O. Gihne, and G. T6th, Phys. Rev. A 95, 032330 (2017),
Editors’ Suggestion.]



Example: bound based on fidelity

@ Let us bound the quantum Fisher information based on some
measurements.

1 1
Fq = N(1 — 2Fgnz)?
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Quantum Fisher information vs. Fidelity with respect to
(a) GHZ states and (b) Dicke states for N = 4,6,12.
Foax = N2,

[Apellaniz et al., Phys. Rev. A 2017]



Variance

@ The variance is the concave roof of the itself

(AA)Z = sup > pk(AA),
{PVk} g

[GT, D. Petz, Phys. Rev. A 87, 032324 (2013)]

@ For 2 x 2 covariance matrices there is always {WVy, px} such that

C,= sup Pk Cu,,
{P:Vi} ; ‘

[Z. Léka and D. Petz, Prob. and Math. Stat. 33, 191 (2013)]

@ For 3 x 3 covariance matrices, this is not always possible.
Necessary and sufficient conditions for an arbitrary dimension.
[D. Petz and D. Virosztek, Acta Sci. Math. (Szeged) 80, 681 (2014)]



e Results
@ Bounding the quantum Fisher information based on the variance
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Bound based on the variance

@ Let us define the quantity

V(o,A) = (BAY - § Folo, Al

@ Itis well known that V(p, A) = 0 for pure states.
@ For states sufficiently pure V(p, A) is small.

@ For states that are far from pure, the difference can be larger.



Generalized variance

@ Generalized variances are defined as
Varf( me Aiy Aj) |Alj’2 <Z)‘Au> )
ij

where f : R™ — R* is a matrix monotone function, and
my(a, b) = bf(b/a) is a corresponding mean.

[Petz, J. Phys. A 35, 929 (2002); Gibilisco, Hiai, and Petz, IEEE Trans. Inf.
Theory 55, 439 (2009)]

@ We can define a large set of generalized variances, including for
example the usual variance (A?) — (A)2.

@ Consider fi,, = 2x/(1 + x). The corresponding mean is the
harmonic mean my_ (a, b) = 2ab/(a + b). Direct calculations yield

varha(A) = V(o, A).



Bound based on the variance, rank-2

Observation 1.—For rank-2 states p,
(DAY — L Falo, Al = $[1 = Tr(e)](61 — 52)°
holds, where & are the nonzero eigenvalues of the matrix
A = (K|All).

Here |k) are the two eigenvectors of g with nonzero eigenvalues. Thus,
ok are the eigenvalues of A on the range of o.

Note

Siin(0) =1 — Tr(?) =1 —Z/\k => M.
k£l



Bound based on the variance, arbitrary rank

Observation 2.—For states ¢ with an arbitrary rank we have
(AA)? - Falo, Al < 2Siin(0)omax(A%),

where omax(A?) is the largest eigenvalue of A2,

Estimate Fq:

@ Measure the variance.
@ Estimate the purity.

© Find a lower bound on Fq.



Bound based on the variance, arbitrary rank Il

Numerical verification of the bound

d=3
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Quantities Averaged over SU(d) generators

@ Traceless Hermitian matrices
Az = Z\Tﬁ,
where A = [A), A® A®) |7 are the SU(d) generators.

@ Average over unit vectors
- f(n)M(dn)
avgzf(n) = ffM(dﬁ) .

@ Compute average of V for operators.

@ ltis zero only for pure states. — Similar to entropies.



Bound on the average V

Observation 3.—The average of V over traceless Hermitian matrices
with a fixed norm is given as

2
avg V(QvA) = ﬁ I:Shn(g) + H(Q) - 1] )
A:A:AT,

Tr(A)=0,
Tr(A%)=2

where d is the dimension of the system, and

Ak A

Ak
H(p) =2 =142 .
(o) ;)\k—l-)\/ + %é:l)\k+)\/




Average quantum Fisher information

@ The average of the quantum Fisher information can be obtained
as

8
anﬁFo[QvAﬁ] = ﬁg[d — H(p)]-

@ It is maximal for pure states.



Bound based on the variance Il
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Figure: The relation between the von-Neumann entropy and H() for d = 3
and 10.

(filled area) Physical quantum states.

(dot) Pure states.

(square) Completely mixed state.

We see that
H(o) ~ exp[S(0)]-



What if we try the linear entropy

The relation between the two seems to be less strong.
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Other type of quantum Fisher information

@ The alternative form of the quantum Fisher information is defined

as
Fo(o;A) = 2 Awl?
alo A) Z/\kJr)\ll il
= Z%AM%ZA +A| Aul?.
k k£l

@ The quantum Fisher information defined above corresponds to
estimating the parameter ¢ for the dynamics

0¢ = 00 + PA.

The Cramér-Rao bound in this case is
1



Other type of quantum Fisher information

@ In contrast, Fq[o, A] corresponds to estimating the parameter 6 of
the unitary evolution

09 = exp(—iJz0)oo exp(+iJz0),

as discussed in the introduction.

@ The relation of the two types of quantum Fisher information is
given by
Falo, Al = Folo; ife; A]).-



Other type of quantum Fisher information Il
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Figure: The relation between the von-Neumann entropy S(o) and the
average F(o; A) defined in for d = 3 and 10.

(solid) Points corresponding to the states giving the minimum
(pure state mixed with white noise).

(square) Completely mixed state.



Generalized quantum Fisher information (D. Petz)

@ The gerealized QFl is defined as

where f : RT — R* is a matrix monotone function, and
my(a, b) = bf(b/a) is a corresponding mean.

@ Similarly, as before we can define

Fblo, Al = Fj(oiilo, A)).



Kubo-Mori-Bogoliubov quantum Fisher

information

@ Let us consider fiog(x) = (x — 1)/In x, which corresponds to the

logarithmic mean
a—-b
Mies(@0) = g —inp

@ The corresponding genetralized quantum Fisher information is
defined as

log(Ak) — log(A/)
F(e:A) = > Aul?
o (0:A) a NN | Al

B log(Ax) — log(\) 5
- g S |A|+Z>\.




Kubo-Mori-Bogoliubov quantum Fisher

information Il
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Figure: The relation between the von-Neumann entropy S(¢) and the
average F'°8(p; A) for d = 3 and 10.

(solid) Points corresponding to the states giving the minimum
(pure state mixed with white noise).

(square) Completely mixed state.



Kubo-Mori-Bogoliubov quantum Fisher

information Il

Let us calculate | |
Folle, Al = FQo (o ife, Al).
We obtain
F&olo. Al = "llog(Ak) — log(A)]1(Ak — Ar)|Awl?.
k.l

With this one can show that

d2 —iA0 A +iAO log

%S(QHG 0e™")|9=0 = Fq [0, Al,

and
2
avgFatlo. Asl = —ﬁg(ZdS +2 " log k).
k

We get a similar curve for the minimum.



Kubo-Mori-Bogoliubov quantum Fisher

information IV

@ Relation to other works in the literature.

@ S. Huber, R. Koenig, and A. Vershynina, Geometric inequalities
from phase space translations, arxiv:1606.08603.

They establish a quantum version of the classical isoperimetric
inequality relating the Fisher information and the entropy power of
a quantum state.

@ C. Rouze, N. Datta, and Y. Pautrat, Contractivity properties of a
quantum diffusion semigrou, arxiv:1607.04242.



@ We discussed how to find lower bounds on the quantum Fisher
information and entropies.

See:
G. Téth,

Lower bounds on the quantum Fisher information based on the
variance and various types of entropies, arxiv:1701.07461.

THANK YOU FOR YOUR ATTENTION!

e rc European MINISTERIO — .

3 Research DE CIENCIA

o5 Council E INNOVACION EUSKO JAURLARITZA
W GOBIERNO VASCO


https://arxiv.org/abs/1701.07461

	Motivation
	Why is the quantum Fisher information important?

	Bacground
	Quantum Fisher information
	Recent findings on the quantum Fisher information

	Results
	Bounding the quantum Fisher information based on the variance


